Lecture 16:
Introduction to

Classes and Objects

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 23, 2010

3.6 Initializing Objects with
Constructors

Each class can provide a constructor that can be
used to Initialize an object of the class when the
object Is created.

A constructor Is a special member function that
must be defined with the same name as the class,
so that the compiler can distinguish it from the
class’s other member functions.

An important difference between constructors and
other functions Is that constructors cannot return
values, so they cannot specify a return type (not
even void).

Normally, constructors are declared pub11c.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

3.6 Initializing Objects with
Consiruciors (cont.)

« C++ requires a constructor call for each object that Is
created, which helps ensure that each object is
initialized before 1t’s used 1n a program.

« The constructor call occurs implicitly when the object
IS created.

 |f a class does not explicitly include a constructor, the
compiler provides a default constructor—that Is, a
constructor with no parameters.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

1 // Fig. 3.7: fig03_07.cpp

2 // Instantiating multiple objects of the GradeBook class and using

3 // the GradeBook constructor to specify the course name

4 // when each GradeBook object is created.

5 #include <iostream>

6 #include <string> // program uses C++ standard string class

7 using namespace std;

8

9 // GradeBook class definition

10 class GradeBook

11 {

12 public:

13 // constructor initializes courseName with string supplied as argument
14 GradeBook(string name)
15 {
16 setCourseName(name); // call set function to initialize courseName
17 } // end GradeBook constructor
18

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the
GradeBook constructor to specify the course name when each GradeBook object is
created. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// function to set the course name
void setCourseName(string name)
{
courseName = name; // store the course name in the object
} // end function setCourseName

// function to get the course name
string getCourseName()
{
return courseName; // return object's courseName
} // end function getCourseName

// display a welcome message to the GradeBook user
void displayMessage()
{

// call getCourseName to get the courseName

cout << "Welcome to the grade book for\n" << getCourseName()

<< << endT;
} // end function displayMessage

private:

string courseName; // course name for this GradeBook

}; // end class GradeBook

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the
GradeBook constructor to specify the course name when each GradeBook object is

created. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

41
42
43
44
45
46
47
48
49
50
51
52
53

// function main begins program execution

int main(Q)

{
// create two GradeBook objects
GradeBook gradeBookl("CS101 Introduction to C++ Programming”);
GradeBook gradeBook2("CS102 Data Structures in C++");

// display initial value of courseName for each GradeBook
cout << "gradeBookl created for course: " << gradeBookl.getCourseName()
<< "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
<< endl;
} // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the
GradeBook constructor to specify the course name when each GradeBook object is
created. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

3.6 Initializing Olbjects with
Consiructors (cont.)

 Any constructor that takes no arguments is called a default
constructor.

A class gets a default constructor in one of two ways:

— The compiler implicitly creates a default constructor in a class that
does not define a constructor. Such a constructor does not initialize
the class’s data members, but does call the default constructor for
each data member that is an object of another class. An
uninitialized variable typically contains a “garbage” value.

— You explicitly define a constructor that takes no arguments. Such a
default constructor will call the default constructor for each data
member that is an object of another class and will perform
additional initialization specified by you.

* |f you define a constructor with arguments, C++ will not

implicitly create a default constructor for that class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

3.7 Placing a Class in a Separaie File for
Reusability

 One of the benefits of creating class definitions
IS that, when packaged properly, our classes
can be reused by programmers—jpotentially
worldwide.

» Programmers who wish to use our
GradeBook class cannot simply include the
file from Fig. 3.7 in another program.

— As you learned in Chapter 2, function main

begins the execution of every program, and every
program must have exactly one main function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

3.7 Plaeing a Class inh a Separatie File for
Reusability (cont.)

 Each of the previous examples in the chapter
consists of a single . cpp file, also known as a
source-code file, that contains a GradeBook
class definition and a ma1n function.

* When building an object-oriented C++ program,
it’s customary to define reusable source code
(such as a class) in a file that by convention has a
. h filename extension—known as a header file.

» Programs use #1nclude preprocessor directives
to Iinclude header files and take advantage of
reusable software components.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

3.7 Placing a Class in a Separate File for
Reusability (cont.)

» Our next example separates the code from Fig. 3.7 into two
files—GradeBook . h (Fig. 3.9) and T1g03_10.cpp
(Fig. 3.10).

— As you look at the header file in Fig. 3.9, notice that it contains only

the GradeBook class definition (lines 8-38), the appropriate
header files and a using declaration.

— The ma1in function that uses class GradeBook is defined in the
source-code file T1g03_10. cpp (Fig. 3.10) in lines 8-18.

* To help you prepare for the larger programs you’ll
encounter later in this book and in industry, we often use a
separate source-code file containing function main to test
our classes (this is called a driver program).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

1 // Fig. 3.9: GradeBook.h

2 // GradeBook class definition in a separate file from main.

3 #include <iostream>

4 #include <string> // class GradeBook uses C++ standard string class
5 using namespace std;

6

7 // GradeBook class definition

8 class GradeBook

9 {

10 public:

11 // constructor initializes courseName with string supplied as argument
12 GradeBook(string name)

13 {

14 setCourseName(name); // call set function to initialize courseName
15 } // end GradeBook constructor

16

17 // function to set the course name

18 void setCourseName(string name)

19 {
20 courseName = name; // store the course name in the object
21 } // end function setCourseName
22

Fig. 3.9 | GradeBook class definition in a separate file from main. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

11

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// function to get the course name
string getCourseName()
{
return courseName; // return object's courseName
} // end function getCourseName

// display a welcome message to the GradeBook user
void displayMessage()

{
// call getCourseName to get the courseName
cout << "Welcome to the grade book for\n" << getCourseName()
<< "I << endl;
} // end function displayMessage
private:

string courseName; // course name for this GradeBook
}; // end class GradeBook

Fig. 3.9 | GradeBook class definition in a separate file from main. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12

OoOo~NSNUNDh WN =

10
11
12
13
14
15
16
17
18

// Fig. 3.10: fig03_10.cpp

// Including class GradeBook from file GradeBook.h for use in main.
#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// function main begins program execution

int main(Q)

{
// create two GradeBook objects
GradeBook gradeBookl("CS101 Introduction to C++ Programming');
GradeBook gradeBook2("CS102 Data Structures in C++");

// display initial value of courseName for each GradeBook
cout << "gradeBookl created for course: " << gradeBookl.getCourseName()
<< "\ngradeBook2 created for course: << gradeBook2.getCourseName()
<< endl;
} // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: (CS102 Data Structures in C++

Fig. 3.10 | Including class GradeBook from file GradeBook . h for use in main.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

3.7 Placing a Class in a Separate File for
Reusability (cont.)

A header file such as GradeBook . h (Fig. 3.9) cannot be used
to begin program execution, because it does not contain amain
function.

« Totest class GradeBook (defined in Fig. 3.9), you must write a
separate source-code file containing a main function (such as
Fig. 3.10) that instantiates and uses objects of the class.

* To help the compiler understand how to use a class, we must
explicitly provide the compiler with the class’s definition

— That’s why, for example, to use type String, a program must include
the <string> header file.

— This enables the compiler to determine the amount of memory that it
must reserve for each object of the class and ensure that a program calls
the class’s member functions correctly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

3.7 Placing a Class in a Separate File for
Reusability (cont.)

* The compiler creates only one copy of the class’s member
functions and shares that copy among all the class’s objects.

* Each object, of course, needs its own copy of the class’s
data members, because their contents can vary among
objects.

» The member-function code, however, is not modifiable, so
It can be shared among all objects of the class.

« Therefore, the size of an object depends on the amount of
memory required to store the class’s data members.

« By including GradeBook.h in line 4, we give the
compiler access to the information it needs to determine the
size of a GradeBook object and to determine whether
objects of the class are used correctly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

3.7 Placing a Class in a Separate File for
Reusability (cont.)

« A #1nclude directive instructs the C++ preprocessor to
replace the directive with a copy of the contents of
GradeBook. h before the program is compiled.

— When the source-code file f1g03_10. cpp is compiled, it now
contains the GradeBook class definition (because of the #1nclude),
and the compiler is able to determine how to create GradeBook
objects and see that their member functions are called correctly.

* Now that the class definition is in a header file (without a
main function), we can include that header in any program
that needs to reuse our GradeBook class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

3.7 Plaeing a Class inh a Separatie File for
Reusability (cont.)

 Notice that the name of the GradeBook . h header file in
line 4 of Fig. 3.10 is enclosed in quotes ("' ") rather than
angle brackets (< >).

— Normally, a program’s source-code files and user-defined header
files are placed in the same directory.

— When the preprocessor encounters a header file name in quotes, it
attempts to locate the header file in the same directory as the file in
which the #1nc lude directive appears.

— If the preprocessor cannot find the header file in that directory, it
?]earé:he?_ Ifor It in the same location(s) as the C++ Standard Library
eader files.

— When the preprocessor encounters a header file name in angle
brackets (e.g., <10stream>), it assumes that the header is part of
the C++ Standard Library and does not look in the directory of the
program that is being preprocessed.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

3.7 Placing a Class in a Separate File for
Reusability (cont.)

 Placing a class definition in a header file reveals the entire
implementation of the class to the class’s clients.

« Conventional software engineering wisdom says that to use an object of
a class, the client code needs to know only what member functions to
call, what arguments to provide to each member function and what
return type to expect from each member function.

— The client code does not need to know how those functions are implemented.
 If client code does know how a class is implemented, the client-code

programmer might write client code based on the class’s
Implementation details.

» Ideally, if that implementation changes, the class’s clients should not
have to change.

« Hiding the class’s implementation details makes it easier to change the
class’s implementation while minimizing, and hopetully eliminating,
changes to client code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

Separating Interface from
limplementation

* Interfaces define and standardize the ways in which
things such as people and systems interact with one
another.

e The interface of a class describes what services a
class’s clients can use and how to request those
services, but not how the class carries out the
Services.

« A class’s pub11c interface consists of the class’s
pub 11 c member functions (also known as the
class’s public services).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19

3.6 Separating Interface from
Implementation (cont.)

« By convention, member-function definitions
are placed in a source-code file of the same
base nhame (e.g., GradeBook) as the class’s
header file but with a . cpp filename
extension.

 Figure 3.14 shows how this three-file program
IS compiled from the perspectives of the
GradeBook class programmer and the client-
code programmer—we’ll explain this figure in
detail.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

VoOo~NoNNDE WN =—

10
11
12
13
14
15
16
17
18

// Fig. 3.11: GradeBook.h
// GradeBook class definition. This file presents GradeBook's public

// interface without revealing the implementations of GradeBook's member

// functions, which are defined in GradeBook.cpp.
#include <string> // class GradeBook uses C++ standard string class
using namespace std;

// GradeBook class definition
class GradeBook
{
public:
GradeBook(string); // constructor that initializes courseName
void setCourseName(string); // function that sets the course name
string getCourseName(); // function that gets the course name
void displayMessage(); // function that displays a welcome message
private:
string courseName; // course name for this GradeBook
}:; // end class GradeBook

Fig. 3.11 | GradeBook class definition containing function prototypes that specify
the interface of the class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21

VoOo~NoNNDE WN =—

// Fig. 3.12: GradeBook.cpp

// GradeBook member-function definitions. This file contains

// implementations of the member functions prototyped in GradeBook.h.
#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook: :GradeBook(string name)
{

setCourseName(name); // call set function to initialize courseName
} // end GradeBook constructor

// function to set the course name
void GradeBook::setCourseName(string name)
{
courseName = name; // store the course name in the object
} // end function setCourseName

Fig. 3.12 | GradeBook member-function definitions represent the implementation
of class GradeBook. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22

20 // function to get the course name
21 string GradeBook::getCourseName()
22 {
23 return courseName; // return object's courseName
24 } // end function getCourseName

25

26 // display a welcome message to the GradeBook user
27 void GradeBook::displayMessage()

28 {

29 // call getCourseName to get the courseName

30 cout << "Welcome to the grade book for\n" << getCourseName()
31 << """ << endl;

32 } // end function displayMessage

Fig. 3.12 | GradeBook member-function definitions represent the implementation

of class GradeBook. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

23

3.8 Separating Interface from
Implementation (cont.)

« To indicate that the member functions in
GradeBook. cpp are part of class GradeBook, we must
first include the GradeBook . h header file (line 5 of
Fig. 3.12).

 This allows us to access the class name GradeBook in the
GradeBook. cpp file.

« When compiling GradeBook . cpp, the compiler uses the
information in GradeBook . h to ensure that

— the first line of each member function matches its prototype in the
GradeBook. h file, and that

— each member function knows about the class’s data members and
other member functions

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

VoOo~NoNNDE WN =—

19

// Fig. 3.13: fig03_13.cpp

// GradeBook class demonstration after separating

// its interface from its implementation.

#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// function main begins program execution

int main()

{
// create two GradeBook objects
GradeBook gradeBookl("CS101 Introduction to C++ Programming");
GradeBook gradeBook2("CS102 Data Structures in C++")3

// display initial value of courseName for each GradeBook
cout << "gradeBookl created for course: " << gradeBookl.getCourseName()
<< "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
<< endl;
} // end main

Fig. 3.13 | GradeBook class demonstration after separating its interface from its
implementation. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.13 | GradeBook class demonstration after separating its interface from its
implementation. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

.6 Separating Interface from
Implementation (cont.)

« Before executing this program, the source-code files
In Fig. 3.12 and Fig. 3.13 must both be compiled,
then linked together—that is, the member-function
calls in the client code need to be tied to the
implementations of the class’s member functions—a

job performed by the linker.

« The diagram in Fig. 3.14 shows the compilation and
linking process that results in an executable
GradeBook application that can be used by
Instructors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

Class Implementation
Programmer

GradeBook. cpp
implementation file

GradeBook class's
object code

C++ Standard Library
object code .
ﬁh.-.- e

Client Code
Programmer

GradeBook.h
class definition/interface

main function
(client source code)

main function’s

object code

~ -

GradeBook

Application Llser/'

N o e e e e

i
1
7’

Fig. 3.14 | Compilation and linking process that produces an executable

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

28

3.9 Validating Data with set Funciions

« The program of Figs. 3.15-3.17 enhances class GradeBook’s
member function setCourseName to perform validation
(also known as validity checking).

« Since the interface of the clas remains unchanged, clients of
this class need not be changed when the definition of member
function setCourseName is modified.

« This enables clients to take advantage of the improved
GradeBook class simply by linking the client code to the
updated GradeBook’s object code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

Ooe~NGOWNbh WN =

// Fig. 3.15: GradeBook.h

// GradeBook class definition presents the public interface of

// the class. Member-function definitions appear in GradeBook.cpp.
#include <string> // program uses C++ standard string class

using namespace std;

// GradeBook class definition
class GradeBook
{
public:
GradeBook(string); // constructor that initializes a GradeBook object
void setCourseName(string); // function that sets the course name
string getCourseName(); // function that gets the course name
void displayMessage(); // function that displays a welcome message
private:
string courseName; // course name for this GradeBook
}:; // end class GradeBook

Fig. 3.15 | GradeBook class definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

30

3.10 Validating Data with set Functions

« The C++ Standard Library’s string class defines a
member function length that returns the number of
characters in a string object.

A consistent state is a state in which the object’s data
member contains a valid value.

« Class string provides member function substr (short for
“substring”) that returns a new String object created by
copying part of an existing string object.

— The first argument specifies the starting position in the original
string from which characters are copied.

— The second argument specifies the number of characters to copy.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

OoOo~NSNUNDh WN =

10
11
12
13
14
15
16
17
18
19
20

// Fig. 3.16: GradeBook.cpp

// Implementations of the GradeBook member-function definitions.
// The setCourseName function performs validation.

#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook: :GradeBook(string name)
{
setCourseName(name); // validate and store courseName
} // end GradeBook constructor

// function that sets the course name;
// ensures that the course name has at most 25 characters
void GradeBook::setCourseName(string name)
{
if (name.length() <= 25) // if name has 25 or fewer characters
courseName = name; // store the course name in the object

Fig. 3.16 | Member-function definitions for class GradeBook with a set function
that validates the length of data member courseName. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

32

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

if (name.length() > 25) // if name has more than 25 characters

{

// set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // start at 0, length of 25

cout << "Name \"" << name << "\" exceeds maximum length (25).\n
<< "Limiting courseName to first 25 characters.\n" << endl;
} // end if
¥ // end function setCourseName

// function to get the course name
string GradeBook::getCourseName()
{
return courseName; // return object's courseName
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage()
{
// call getCourseName to get the courseName
cout << "Welcome to the grade book for\n" << getCourseName()
<< """ << endl;
} // end function displayMessage

m

Fig. 3.16 | Member-function definitions for class GradeBook with a set function
that validates the length of data member courseName. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

33

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 3.17: fig03_17.cpp

// Create and manipulate a GradeBook object; illustrate validation.
#include <iostream>

#include "GradeBook.h"™ // include definition of class GradeBook
using namespace std;

// function main begins program execution
int main(Q)

{

// create two GradeBook objects;

// initial course name of gradeBookl is too long

GradeBook gradeBookl("CS101 Introduction to Programming in C++");
GradeBook gradeBook2("CS102 C++ Data Structures"™);

// display each GradeBook's courseName

cout << "gradeBookl's initial course name is:
<< gradeBookl.getCourseName()
<< "\ngradeBook2's initial course name is:
<< gradeBook2.getCourseName() << endl;

// modify myGradeBook's courseName (with a valid-length string)
gradeBookl.setCourseName("CS101 C++ Programming”);

Fig. 3.17 | Creating and manipulating a GradeBook object in which the course
name is limited to 25 characters in length. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

34

24 // display each GradeBook's courseName

25 cout << "\ngradeBookl's course name is: "
26 << gradeBookl.getCourseName()

27 << "\ngradeBook2's course name is: "
28 << gradeBook2.getCourseName() << endl;

29 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBookl's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBookl's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Fig. 3.17 | Creating and manipulating a GradeBook object in which the course
name is limited to 25 characters in length. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

35

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

36

