

• Each class can provide a constructor that can be
used to initialize an object of the class when the
object is created.

• A constructor is a special member function that
must be defined with the same name as the class,
so that the compiler can distinguish it from the
class’s other member functions.

• An important difference between constructors and
other functions is that constructors cannot return
values, so they cannot specify a return type (not
even void).

• Normally, constructors are declared public.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

• C++ requires a constructor call for each object that is

created, which helps ensure that each object is

initialized before it’s used in a program.

• The constructor call occurs implicitly when the object

is created.

• If a class does not explicitly include a constructor, the

compiler provides a default constructor—that is, a

constructor with no parameters.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

• Any constructor that takes no arguments is called a default
constructor.

• A class gets a default constructor in one of two ways:
– The compiler implicitly creates a default constructor in a class that

does not define a constructor. Such a constructor does not initialize
the class’s data members, but does call the default constructor for
each data member that is an object of another class. An
uninitialized variable typically contains a ―garbage‖ value.

– You explicitly define a constructor that takes no arguments. Such a
default constructor will call the default constructor for each data
member that is an object of another class and will perform
additional initialization specified by you.

• If you define a constructor with arguments, C++ will not
implicitly create a default constructor for that class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

• One of the benefits of creating class definitions

is that, when packaged properly, our classes

can be reused by programmers—potentially

worldwide.

• Programmers who wish to use our

GradeBook class cannot simply include the

file from Fig. 3.7 in another program.

– As you learned in Chapter 2, function main
begins the execution of every program, and every

program must have exactly one main function.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• Each of the previous examples in the chapter
consists of a single .cpp file, also known as a
source-code file, that contains a GradeBook
class definition and a main function.

• When building an object-oriented C++ program,
it’s customary to define reusable source code
(such as a class) in a file that by convention has a
.h filename extension—known as a header file.

• Programs use #include preprocessor directives
to include header files and take advantage of
reusable software components.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

• Our next example separates the code from Fig. 3.7 into two
files—GradeBook.h (Fig. 3.9) and fig03_10.cpp
(Fig. 3.10).

– As you look at the header file in Fig. 3.9, notice that it contains only
the GradeBook class definition (lines 8–38), the appropriate
header files and a using declaration.

– The main function that uses class GradeBook is defined in the
source-code file fig03_10.cpp (Fig. 3.10) in lines 8–18.

• To help you prepare for the larger programs you’ll
encounter later in this book and in industry, we often use a
separate source-code file containing function main to test
our classes (this is called a driver program).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• A header file such as GradeBook.h (Fig. 3.9) cannot be used
to begin program execution, because it does not contain a main
function.

• To test class GradeBook (defined in Fig. 3.9), you must write a
separate source-code file containing a main function (such as
Fig. 3.10) that instantiates and uses objects of the class.

• To help the compiler understand how to use a class, we must
explicitly provide the compiler with the class’s definition

– That’s why, for example, to use type string, a program must include
the <string> header file.

– This enables the compiler to determine the amount of memory that it
must reserve for each object of the class and ensure that a program calls
the class’s member functions correctly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

• The compiler creates only one copy of the class’s member
functions and shares that copy among all the class’s objects.

• Each object, of course, needs its own copy of the class’s
data members, because their contents can vary among
objects.

• The member-function code, however, is not modifiable, so
it can be shared among all objects of the class.

• Therefore, the size of an object depends on the amount of
memory required to store the class’s data members.

• By including GradeBook.h in line 4, we give the
compiler access to the information it needs to determine the
size of a GradeBook object and to determine whether
objects of the class are used correctly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• A #include directive instructs the C++ preprocessor to

replace the directive with a copy of the contents of

GradeBook.h before the program is compiled.

– When the source-code file fig03_10.cpp is compiled, it now

contains the GradeBook class definition (because of the #include),

and the compiler is able to determine how to create GradeBook
objects and see that their member functions are called correctly.

• Now that the class definition is in a header file (without a

main function), we can include that header in any program

that needs to reuse our GradeBook class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

• Notice that the name of the GradeBook.h header file in
line 4 of Fig. 3.10 is enclosed in quotes (" ") rather than
angle brackets (< >).
– Normally, a program’s source-code files and user-defined header

files are placed in the same directory.

– When the preprocessor encounters a header file name in quotes, it
attempts to locate the header file in the same directory as the file in
which the #include directive appears.

– If the preprocessor cannot find the header file in that directory, it
searches for it in the same location(s) as the C++ Standard Library
header files.

– When the preprocessor encounters a header file name in angle
brackets (e.g., <iostream>), it assumes that the header is part of
the C++ Standard Library and does not look in the directory of the
program that is being preprocessed.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

• Placing a class definition in a header file reveals the entire
implementation of the class to the class’s clients.

• Conventional software engineering wisdom says that to use an object of
a class, the client code needs to know only what member functions to
call, what arguments to provide to each member function and what
return type to expect from each member function.
– The client code does not need to know how those functions are implemented.

• If client code does know how a class is implemented, the client-code
programmer might write client code based on the class’s
implementation details.

• Ideally, if that implementation changes, the class’s clients should not
have to change.

• Hiding the class’s implementation details makes it easier to change the
class’s implementation while minimizing, and hopefully eliminating,
changes to client code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

• Interfaces define and standardize the ways in which

things such as people and systems interact with one

another.

• The interface of a class describes what services a

class’s clients can use and how to request those

services, but not how the class carries out the

services.

• A class’s public interface consists of the class’s

public member functions (also known as the

class’s public services).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• By convention, member-function definitions

are placed in a source-code file of the same

base name (e.g., GradeBook) as the class’s

header file but with a .cpp filename

extension.

• Figure 3.14 shows how this three-file program

is compiled from the perspectives of the

GradeBook class programmer and the client-

code programmer—we’ll explain this figure in

detail.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

• To indicate that the member functions in
GradeBook.cpp are part of class GradeBook, we must
first include the GradeBook.h header file (line 5 of
Fig. 3.12).

• This allows us to access the class name GradeBook in the
GradeBook.cpp file.

• When compiling GradeBook.cpp, the compiler uses the
information in GradeBook.h to ensure that

– the first line of each member function matches its prototype in the
GradeBook.h file, and that

– each member function knows about the class’s data members and
other member functions

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

• Before executing this program, the source-code files

in Fig. 3.12 and Fig. 3.13 must both be compiled,

then linked together—that is, the member-function

calls in the client code need to be tied to the

implementations of the class’s member functions—a

job performed by the linker.

• The diagram in Fig. 3.14 shows the compilation and

linking process that results in an executable

GradeBook application that can be used by

instructors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

• The program of Figs. 3.15–3.17 enhances class GradeBook’s

member function setCourseName to perform validation

(also known as validity checking).

• Since the interface of the clas remains unchanged, clients of

this class need not be changed when the definition of member

function setCourseName is modified.

• This enables clients to take advantage of the improved

GradeBook class simply by linking the client code to the

updated GradeBook’s object code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

• The C++ Standard Library’s string class defines a

member function length that returns the number of

characters in a string object.

• A consistent state is a state in which the object’s data

member contains a valid value.

• Class string provides member function substr (short for

―substring‖) that returns a new string object created by

copying part of an existing string object.

– The first argument specifies the starting position in the original

string from which characters are copied.

– The second argument specifies the number of characters to copy.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

36©1992-2010 by Pearson Education, Inc. All Rights Reserved.

