

• There are four ways to pass a pointer to a

function

– a nonconstant pointer to nonconstant data

– a nonconstant pointer to constant data (Fig. 8.10)

– a constant pointer to nonconstant data (Fig. 8.11)

– a constant pointer to constant data (Fig. 8.12)

• Each combination provides a different level of

access privilege.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

• A nonconstant pointer to constant data
– A pointer that can be modified to point to any data item of the appropriate type,

but the data to which it points cannot be modified through that pointer.

• Might be used to receive an array argument to a function that will
process each array element, but should not be allowed to modify the
data.

• Any attempt to modify the data in the function results in a compilation
error.

• Sample declaration:
• const int *countPtr;

– Read from right to left as ―countPtr is a pointer to an integer constant.‖

• Figure 8.10 demonstrates the compilation error messages produced
when attempting to compile a function that receives a nonconstant
pointer to constant data, then tries to use that pointer to modify the data.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

• A constant pointer to nonconstant data is a pointer that always
points to the same memory location; the data at that location can
be modified through the pointer.

• An example of such a pointer is an array name, which is a
constant pointer to the beginning of the array.

• All data in the array can be accessed and changed by using the
array name and array subscripting.

• A constant pointer to nonconstant data can be used to receive an
array as an argument to a function that accesses array elements
using array subscript notation.

• Pointers that are declared const must be initialized when
they’re declared.

• If the pointer is a function parameter, it’s initialized with a
pointer that’s passed to the function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

• The minimum access privilege is granted by a constant pointer to
constant data.
– Such a pointer always points to the same memory location, and the data

at that location cannot be modified via the pointer.

– This is how an array should be passed to a function that only reads the
array, using array subscript notation, and does not modify the array.

• The pro-gram of Fig. 8.12 declares pointer variable ptr to be of
type const int * const (line 13).

• This declaration is read from right to left as ―ptr is a constant
pointer to an integer constant.‖

• The figure shows the error messages generated when an attempt
is made to modify the data to which ptr points and when an
attempt is made to modify the address stored in the pointer
variable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

• A void * pointer cannot be dereferenced.

– The com-piler must know the data type to

determine the number of bytes to be dereferenced

for a particular pointer—for a pointer to void,

this number of bytes cannot be determined from

the type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• Pointers can be compared using equality and

relational operators.

– Comparisons using relational operators are meaningless

unless the pointers point to members of the same array.

– Pointer comparisons compare the addresses stored in the

pointers.

• A common use of pointer comparison is determining

whether a pointer is 0 (i.e., the pointer is a null

pointer—it does not point to anything).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

• An array name can be thought of as a constant pointer.

• Pointers can be used to do any operation involving array
subscripting.

• Assume the following declarations:
• int b[5]; // create 5-element int array b
int *bPtr; // create int pointer bPtr

• Because the array name (without a subscript) is a (constant)
pointer to the first element of the array, we can set bPtr to
the address of the first element in array b with the statement

• bPtr = b; // assign address of array b to bPtr

• equivalent to
• bPtr = &b[0]; // also assigns address of
array b to bPtr

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• Array element b[3] can alternatively be

referenced with the pointer expression
•*(bPtr + 3)

• The 3 in the preceding expression is the offset

to the pointer.

• This notation is re-ferred to as pointer/offset

notation.

– The parentheses are necessary, because the

precedence of * is higher than that of +.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

• Just as the array element can be refer-enced with a pointer
expression, the address

• &b[3]

• can be written with the pointer expression
• bPtr + 3

• The array name (which is implicitly const) can be treated
as a pointer and used in pointer arithmetic.

• For exam-ple, the expression
• *(b + 3)

• also refers to the array element b[3].

• In general, all subscripted array expressions can be written
with a pointer and an offset.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

• Pointers can be subscripted exactly as arrays

can.

• For example, the expression
•bPtr[1]

• refers to the array element b[1]; this

expression uses pointer/subscript notation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• Characters are the fundamental building blocks of C++ source
programs.

• Character constant
– An integer value represented as a character in single quotes.

– The value of a character constant is the integer value of the character in
the machine’s character set.

• A string is a series of characters treated as a single unit.
– May include letters, digits and various special characters such as +, -,
*, /and $.

• String literals, or string constants, in C++ are written in double
quotation marks

• A pointer-based string is an array of characters ending with a null
character ('\0').

• A string is accessed via a pointer to its first character.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

• Because a string is an array of characters, we

can access individual characters in a string

directly with array subscript notation.

• A string can be read into a character array

using stream extraction with cin.

• The setw stream manipulator can be used to

ensure that the string read into word does not

exceed the size of the array.

– Applies only to the next value being input.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

• In some cases, it’s desirable to input an entire line of text
into a character array.

• For this purpose, the cin object provides the member
function getline.

• Three arguments—a character array in which the line of text
will be stored, a length and a delimiter character.

• The function stops reading characters when the delimiter
character '\n' is encountered, when the end-of-file
indicator is entered or when the number of characters read
so far is one less than the length specified in the second
argument.

• The third argument to cin.getline has '\n' as a
default value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

• A character array representing a null-terminated

string can be output with cout and <<.

• The characters of the string are output until a

terminating null character is encountered; the null

character is not printed.

• cin and cout assume that character arrays should

be processed as strings terminated by null characters;

cin and cout do not provide similar input and

output processing capabilities for other array types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

• Arrays may contain pointers.

• A common use of such a data structure is to form an array
of pointer-based strings, referred to simply as a string array.

• Each entry in the array is a string, but in C++ a string is
essentially a pointer to its first character, so each entry in an
array of strings is simply a pointer to the first character of a
string.

• const char * const suit[4] =
{ "Hearts", "Diamonds",

"Clubs", "Spades" };
– An array of four elements.

– Each element is of type ―pointer to char constant data.‖

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

• String arrays are commonly used with

command-line arguments that are passed to

function main when a program begins

execution.

• Such arguments follow the program name

when a program is executed from the

command line.

• A typical use of command-line arguments is to

pass options to a program.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

• Our first example (Figs. 9.1–9.3) creates class

Time and a driver program that tests the class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

• In Fig. 9.1, the class definition is enclosed in the following
preprocessor wrapper:

// prevent multiple inclusions of header file
#ifndef TIME_H
#define TIME_H

...
#endif

– Prevents the code between #ifndef and #endif from being
included if the name TIME_H has been defined.

– If the header has not been included previously in a file, the name
TIME_H is defined by the #define directive and the header file
statements are included.

– If the header has been in-cluded previously, TIME_H is defined
already and the header file is not included again.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

• Even though a member function declared in a

class definition may be defined outside that

class definition, that member function is still

within that class’s scope.

• If a member function is defined in the body of

a class definition, the compiler attempts to

inline calls to the member function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

• Once class Time has been defined, it can be

used as a type in object, array, pointer and

reference declarations as follows:
Time sunset; // object of type Time

Time arrayOfTimes[5]; // array of 5 Time objects
Time &dinnerTime = sunset; // reference to a Time object
Time *timePtr = &dinnerTime; // pointer to a Time object

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

• People new to object-oriented programming

often suppose that objects must be quite large

because they contain data members and

member functions.

• Logically, this is true—you may think of

objects as containing data and functions (and

our discussion has certainly encouraged this

view); physically, however, this is not true.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

• A class’s data members and member functions
belong to that class’s scope.

• Nonmember functions are defined at global
namespace scope.

• Within a class’s scope, class members are
immediately accessible by all of that class’s
member functions and can be referenced by name.

• Outside a class’s scope, public class members
are referenced through one of the handles on an
object—an object name, a reference to an object
or a pointer to an object.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

• Member functions of a class can be overloaded only by
other member functions of that class.

• If a member function defines a variable with the same name
as a variable with class scope, the class-scope variable is
hidden by the block-scope variable in the local scope.
– Such a hidden variable can be ac-cessed by preceding the variable

name with the class name followed by the scope resolution operator
(::).

• The dot member selection operator (.) is preceded by an
object’s name or with a reference to an object to access the
object’s members.

• The arrow member selection operator (->) is preceded by a
pointer to an object to access the object’s members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47

• Separating classes into two files—a header file

for the class definition (i.e., the class’s

interface) and a source code file for the class’s

member-function definitions (i.e., the class’s

implementation) makes it easier to modify

programs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

• Access functions can read or display data.

• A common use for access functions is to test

the truth or falsity of conditions—such

functions are often called predicate functions.

• A utility function is a private member

function that supports the operation of the

class’s public member functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55

56©1992-2010 by Pearson Education, Inc. All Rights Reserved.

