Lecture 18:
Pointers

& Classes

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 27th, 2010

6.5 Using const with Pointers (cont.)

* There are four ways to pass a pointer to a
function
— a nonconstant pointer to nonconstant data
— a honconstant pointer to constant data (Fig. 8.10)
— a constant pointer to nonconstant data (Fig. 8.11)
— a constant pointer to constant data (Fig. 8.12)

« Each combination provides a different level of
access privilege.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

8.9 Using const with Pointers (cont.)

« A nonconstant pointer to constant data

— A pointer that can be modified to point to any data item of the appropriate type,
but the data to which it points cannot be modified through that pointer.

 Might be used to receive an array argument to a function that will
process each array element, but should not be allowed to modify the
data.

« Any attempt to modify the data in the function results in a compilation
error.

« Sample declaration:
e const int *countPtr;
— Read from right to left as “countPtr is a pointer to an integer constant.”
« Figure 8.10 demonstrates the compilation error messages produced

when attempting to compile a function that receives a nonconstant
pointer to constant data, then tries to use that pointer to modify the data.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

VoOoO~NONND WN =

17
18

// Fig. 8.10: fig08_10.cpp
// Attempting to modify data through a
// nonconstant pointer to constant data.

void f(const int *); // prototype
int main()
{

int y;

fC &y); // f attempts illegal modification
} // end main

// XPtr cannot modify the value of constant variable to which it points
void f(const int *xPtr)

{
*xPtr = 100; // error: cannot modify a const object
} // end function f

Microsoft Visual C++ compiler error message:

c:\cpphtp7_examples\ch08\Fig08_10\fig08_10.cpp(17)

error C3892: 'xPtr' : you cannot assign to a variable that is const

Fig. 8.10 | Attempting to modify data through a nonconstant pointer to constant

data. (Part | of 2.) ©1992-2010 by Pearson Education, Inc. Al Rights Reserved.

GNU C++ compiler error message:

fig08_10.cpp: In function ‘void f(const int*)':
fig08_10.cpp:17: error: assignment of read-only location

Fig. 8.10 | Attempting to modify data through a nonconstant pointer to constant
data. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

8.9 Using const with Pointers (cont.)

» A constant pointer to nonconstant data Is a pointer that always
points to the same memory location; the data at that location can
be modified through the pointer.

 An example of such a pointer Is an array name, which is a
constant pointer to the beginning of the array.

« All data in the array can be accessed and changed by using the
array name and array subscripting.

A constant pointer to nonconstant data can be used to receive an
array as an argument to a function that accesses array elements
using array subscript notation.

« Pointers that are declared const must be initialized when
they’re declared.

 If the pointer 1s a function parameter, i1t’s initialized with a
pointer that’s passed to the function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

Common Programming Error 8.6
Not initializing a pointer that is declared const is a
compilation error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

VoOoO~NONND WN =

10
11
12
13
14
15

// Fig. 8.11: fig08_11.cpp
// Attempting to modify a constant pointer to nonconstant data.

int main()

{

int x, y;

// ptr is a constant pointer to an integer that can

// be modified through ptr, but ptr always points to the
// same memory Tlocation.

int * const ptr = &x; // const pointer must be initialized

*ptr = 7; // allowed: *ptr is not const
ptr = &y; // error: ptr is const; cannot assign to it a new address
} // end main

Microsoft Visual C++ compiler error message:

c:\cpphtp7_examples\ch08\Fig08_11\fig08_11.cpp(14) : error C3892: 'ptr'
you cannot assign to a variable that is const

GNU (C++ compiler error message:

Fig. 8.11 | Attempting to modify a constant pointer to nonconstant data. (Part | of

2)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

fig08_11.cpp: In function “int main()':
fig08_11.cpp:14: error: assignment of read-only variable “ptr'

Fig. 8.11 | Attempting to modify a constant pointer to nonconstant data. (Part 2 of
2)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

8.9 Using const with Pointers (cont.)

The minimum access privilege Is granted by a constant pointer to
constant data.

— Such a pointer always points to the same memory location, and the data
at that location cannot be modified via the pointer.

— This is how an array should be passed to a function that only reads the
array, using array subscript notation, and does not modify the array.
The pro-gram of Fig. 8.12 declares pointer variable ptr to be of
type const 1nt * const (line 13).
This declaration is read from right to left as “ptr Is a constant
pointer to an integer constant.”

The figure shows the error messages generated when an attempt
Is made to modify the data to which ptr points and when an
attempt is made to modify the address stored in the pointer
variable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

VoOoO~NONND WN =

19

// Fig. 8.12: fig08_12.cpp

// Attempting to modify a constant pointer to constant data.
#include <iostream>

using namespace std;

int main()

{

int x =5, vy;

// ptr is a constant pointer to a constant integer.

// ptr always points to the same location; the integer
// at that Tocation cannot be modified.

const int *const ptr = &x;

cout << *ptr << endl;

*ptr = 7; // error: *ptr is const; cannot assign new value
ptr = &y; // error: ptr is const; cannot assign new address

} // end main

Microsoft Visual C++ compiler error message:

Fig. 8.12 | Attempting to modify a constant pointer to constant data. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

11

c:\cpphtp7_examples\ch08\Fig08_ 12\fig08_12.cpp(1l7) : error C3892: 'ptr'
you cannot assign to a variable that is const

c:\cpphtp7_examples\ch08\Fig08_12\fig08_12.cpp(1l8) : error C3892: 'ptr'
you cannot assign to a variable that is const

GNU (C++ compiler error message:

fig08_12.cpp: In function “int main()':
fig08_12.cpp:17: error: assignment of read-only location
fig08_12.cpp:18: error: assignment of read-only variable “ptr’

Fig. 8.12 | Attempting to modify a constant pointer to constant data. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12

8.6 Polnter Expressions and Pointer
Arithmetic (cont.)

« Avoid * pointer cannot be dereferenced.

— The com-piler must know the data type to
determine the number of bytes to be dereferenced
for a particular pointer—for a pointer to vo1id,
this number of bytes cannot be determined from
the type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

8.6 Pointer Expressions and Pointer
Arithmetic (cont.)

 Pointers can be compared using equality and
relational operators.

— Comparisons using relational operators are meaningless
unless the pointers point to members of the same array.

— Pointer comparisons compare the addresses stored in the
pointers.
« A common use of pointer comparison is determining
whether a pointer is O (i.e., the pointer is a null
pointer—It does not point to anything).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

8.9 Relationship Between Poiniers and
Arrays

« An array name can be thought of as a constant pointer.

» Pointers can be used to do any operation involving array
subscripting.

« Assume the following declarations:

e« int b[5]; // create 5-element int array b
int *bPtr; // create int pointer bPtr

« Because the array name (without a subscript) is a (constant)
pointer to the first element of the array, we can set bPtr to
the address of the first element in array b with the statement

e bPtr = b; // assign address of array b to bPtr

 equivalent to

e bPtr = & [0]; // also assigns address of
array b to bPtr

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

8.9 Relationship Between Pointers and
Arrays (cont.)

« Array element b[3] can alternatively be

referenced with the pointer expression
e *(bPtr + 3)

« The 3 in the preceding expression is the offset
to the pointer.

 This notation is re-ferred to as pointer/offset
notation.

— The parentheses are necessary, because the
precedence of * Is higher than that of +.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

8.9 Relationship Between Pointers and
Arrays (cont.)

« Just as the array element can be refer-enced with a pointer
expression, the address
« &b[3]

* can be written with the pointer expression
e bPtr + 3

« The array name (which is implicitly const) can be treated
as a pointer and used In pointer arithmetic.

« For exam-ple, the expression
e*(b+ 3)

« also refers to the array element b[3].

 In general, all subscripted array expressions can be written
with a pointer and an offset.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

8.9 Relationship Beiween Pointers and
Arrays (cont.)

 Pointers can be subscripted exactly as arrays
can.

* For example, the expression
e bPtr[1]

e refersto the array element b [1]; this
expression uses pointer/subscript notation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

1 // Fig. 8.18: fig08_18.cpp

2 // Using subscripting and pointer notations with arrays.

3 #include <iostream>

4 using namespace std;

5

6 1int main(Q)

7 {

8 int b[] = { 10, 20, 30, 40 }; // create 4-element array b

9 int *bPtr = b; // set bPtr to point to array b

10

11 // output array b using array subscript notation

12 cout << "Array b printed with:\n\nArray subscript notation\n";
13

14 for (int i = 0; i < 4; 4+)

15 cout << "b[" << i << "] = " << b[i] << "\n';

16

17 // output array b using the array name and pointer/offset notation
18 cout << "\nPointer/offset notation where "

19 << "the pointer is the array name\n";
20
21 for (int offsetl = 0; offsetl < 4; offsetl++)
22 cout << "*(b + " << offsetl << ") = " << *(b + offsetl) << '\n';

Fig. 8.18 | Referencing array elements with the array name and with pointers. (Part

| of 3.)
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19

23
24
25
26
27
28
29
30
31
32
33
34
35
36

// output array b using bPtr and array subscript notation
cout << "\nPointer subscript notation\n";

for (int j = 0; j < 4; j++)
cout << "bPtr[" << j << "] = " << bPtr[j] << '\n';

cout << "\nPointer/offset notation\n";

// output array b using bPtr and pointer/offset notation
for (int offset2 = 0; offset2 < 4; offset2++)
cout << "F(bPtr + " << offset2 << ") ="
<< *(bPtr + offset2) << '\n';

} // end main

b[0]
b[1]
b[2]
b[3]

Array b printed with:

Array subscript notation

10
20
30
40

Fig. 8.18 | Referencing array elements with the array name and with pointers. (Part

2 0of 3))

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20

Pointer/offset notation where the pointer is the array name

*(b + 0) = 10
*(b + 1) = 20
*(b + 2) = 30
*(b + 3) = 40
Pointer subscript notation
bPtr[0] = 10
bPtr[1] = 20
bPtr[2] = 30
bPtr[3] = 40

Pointer/offset notation
*(bPtr + 0) = 10

*(bPtr + 1) = 20
#(bPtr + 2) = 30
*(bPtr + 3) = 40

Fig. 8.18 | Referencing array elements with the array name and with pointers. (Part
30f3)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21

8.10 Pointer-Based String Processing
(cont.)

Characters are the fundamental building blocks of C++ source
programs.
Character constant

— An integer value represented as a character in single quotes.

— The value of a character constant is the integer value of the character in
the machine’s character set.

A string Is a series of characters treated as a single unit.

— Ma/y inclflﬁde letters, digits and various special characters such as +, -,
* /and $.

String literals, or string constants, in C++ are written in double
quotation marks

A pointer-based string is an array of characters ending with a null
character ('0").

A string Is accessed via a pointer to its first character.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

Common Programming Error 8.15

Not allocating sufficient space in a character array to
store the null character that terminates a string is an er-
ror.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

Common Programming Error 8.16
Creating or using a C-style string that does not contain a
terminating null character can lead to logic errors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

Error-Prevention Tip 8.4

When storing a string of characters in a character array,
be sure that the array is large enough to hold the largest
string that will be stored. C++ allows strings of any
length to be stored. If a string is longer than the character
array in which it’s to be stored, characters beyond the end
of the array will overwrite data in memory following the
array, leading to logic errovs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25

6.10 Pointer-Based Siring Processing
(cont.)

» Because a string Is an array of characters, we
can access individual characters in a string
directly with array subscript notation.

A string can be read into a character array
using stream extraction with c1n.

« The setw stream manipulator can be used to
ensure that the string read into word does not
exceed the size of the array.

— Applies only to the next value being input.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

Pointer-Based String Processing
(cont.)

In some cases, 1t’s desirable to input an entire line of text
Into a character array.

For this purpose, the c1n object provides the member
function get 1 1ne.

Three arguments—a character array in which the line of text
will be stored, a length and a delimiter character.

The function stops reading characters when the delimiter
character '\n"' is encountered, when the end-of-file
Indicator Is entered or when the number of characters read
so far is one less than the length specified in the second
argument.

The third argumentto cin.getline has '\n' asa
default value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

Pointer-Based String Processing
(cont.)

A character array representing a null-terminated
string can be output with cout and <<.

» The characters of the string are output until a

terminating null character is encountered; the null
character is not printed.

e C1n and cout assume that character arrays should
be processed as strings terminated by null characters;
cin and cout do not provide similar input and

output processing capabilities for other array types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

3.11 Arrays of Pointers

 Arrays may contain pointers.

« A common use of such a data structure is to form an array
of pointer-based strings, referred to simply as a string array.

« Each entry in the array iIs a string, but in C++ a string is
essentially a pointer to its first character, so each entry in an
array of strings is simply a pointer to the first character of a
string.

e const char * const suit[4] =

{ "Hearts", "Diamonds',
"Clubs", "Spades" };
— An array of four elements.
— Each element is of type “pointer to char constant data.”

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

suit[0]
suit[1]
suit[2]

suit[3]

Fig. 8.19 | Graphical representation of the suit array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

8.11 Arrays of Pointers (cont.)

o String arrays are commonly used with
command-line arguments that are passed to
function ma1n when a program begins
execution.

 Such arguments follow the program name
when a program is executed from the
command line.

A typical use of command-line arguments Is to
pass options to a program.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

 Our first example (Figs. 9.1-9.3) creates class
Time and a driver program that tests the class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 9.1: Time.h
// Declaration of class Time.
// Member functions are defined in Time.cpp

// prevent multiple inclusions of header file
#ifndef TIME H
#define TIME_H

// Time class definition
class Time
{
public:
Time(); // constructor
void setTime(int, int, int); // set hour, minute and second
void printUniversal(); // print time in universal-time format
void printStandard(); // print time in standard-time format
private:
int hour; // 0 - 23 (24-hour clock format)
int minute; // 0 - 59
int second; // 0 - 59
}; // end class Time

#endif

Fig. 9.1 | Time class definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

33

9.2 Time Class Case Study (cont.)

 In Fig. 9.1, the class definition Is enclosed in the following

Preprocessor wrapper:

// prevent multiple inclusions of header file
#ifndef TIME_H
#define TIME_H

#ené%%
— Prevents the code between #1fndef and #end1f from being
included if the name TIME_H has been defined.

— If the header has not been included previously in a file, the name
TIME_H is defined by the #def ine directive and the header file
statements are included.

— |If the header has been in-cluded previously, TIME_H is defined
already and the header file is not included again.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

34

Vv~V EWN=—

FNONEWN -

19
20
21
22
23

// Fig. 9.2: Time.cpp

// Member-function definitions for class Time.

#include <iostream>

#include <iomanip>

#include "Time.h" // include definition of class Time from Time.h
using namespace std;

// Time constructor initializes each data member to zero.
// Ensures all Time objects start in a consistent state.
Time::Time()
{

hour = minute = second = 0;
} // end Time constructor

// set new Time value using universal time; ensure that
// the data remains consistent by setting invalid values to zero
void Time::setTime(int h, int m, int s)

{
hour = (h>=0&% h <24) ? h: 0; // validate hour
minute = (m>=0&& m< 60) ?m: 0; // validate minute
second = (s >=0&& s < 60) ? s : 0; // validate second
} // end function setTime

Fig. 9.2 | Time class member-function definitions. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

35

24
25
26
27
28
29
30
31
32
33
34
35
36
37

// print Time in universal-time format (HH:MM:SS)
void Time::printUniversal()

{
cout << setfill('0") << setw(2) << hour << ":"
<< setw(2) << minute << ":" << setw(2) << second;

} // end function printUniversal

// print Time in standard-time format (HH:MM:SS AM or PM)
void Time::printStandard()

{

cout << (C hour == 0 || hour == 12) ? 12 : hour % 12) << ":"
<< setw(2)

"woon

<< setfill(C '0") << setw(2) << minute <<
<< second << (hour < 12 72 ™ AM"™ : ™ PM");
} // end function printStandard

Fig. 9.2 | Time class member-function definitions. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

36

9.2 Time Class Case Study (cont.)

» Even though a member function declared in a
class definition may be defined outside that
class definition, that member function is still
within that class’s scope.

 If a member function is defined in the body of
a class definition, the compiler attempts to
Inline calls to the member function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

37

e Once class T1me has been defined, it can be
used as a type In object, array, pointer and
reference declarations as follows:

Time sunset; // object of type Time

Time arrayofTimes[5]; // array of 5 Time objects
Time &dinnerTime = sunset; // reference to a Time object
Time *timePtr = &dinnerTime; // pointer to a Time object

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

1 // Fig. 9.3: fig09_03.cpp

2 // Program to test class Time.

3 // NOTE: This file must be compiled with Time.cpp.
4 #include <iostream>

5 #include "Time.h" // include definition of class Time from Time.h
6 using namespace std;

7

8 1int main(Q)

9 {

10 Time t; // instantiate object t of class Time
11

12 // output Time object t's initial values

13 cout << "The initial universal time is ";

14 t.printUniversal(); // 00:00:00

15 cout << "\nThe initial standard time is ";

16 t.printStandard(); // 12:00:00 AM

17

18 t.setTime(13, 27, 6); // change time

19
20 // output Time object t's new values
21 cout << "\n\nUniversal time after setTime is ";
22 t.printUniversal(); // 13:27:06

Fig. 9.3 | Program to test class Time. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

m

23 cout << "\nStandard time after setTime is ";

24 t.printStandard(); // 1:27:06 PM

25

26 t.setTime(99, 99, 99); // attempt invalid settings
27

28 // output t's values after specifying invalid values
29 cout << "\n\nAfter attempting invalid settings:"

30 << "\nUniversal time: ";

31 t.printUniversal(); // 00:00:00

32 cout << "\nStandard time: ";

33 t.printStandard(); // 12:00:00 AM

34 cout << endl;

35 } // end main

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime 1is 13:27:06
Standard time after setTime is 1:27:06 PM

After attempting invalid settings:
Universal time: 00:00:00
Standard time: 12:00:00 AM

Fig. 9.3 | Program to test class Time. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

9.2 Time Class Case Study (cont.)

 People new to object-oriented programming
often suppose that objects must be quite large
because they contain data members and
member functions.

 Logically, this Is true—you may think of
objects as containing data and functions (and
our discussion has certainly encouraged this
view); physically, however, this Is not true.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

41

9.2 Time Class Case Study (cont.)

5. Performance Tip 9.2

Objects contain only data, so objects are much smaller
than if they also contained member functions. Applying
operator Sizeof to a class name or to an object of that
class will report only the size of the class’s data members.
The compiler creates one copy (only) of the member func-
tions separate from all objects of the class. All objects of
the class share this one copy. Each object, of course, needs
its own copy of the class’s data, because the data can vary
among the objects. The function code is nonmodifiable
and, hence, can be shared among all objects of one class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

2.8 Class Scope and Accessing Class
Members

A class’s data members and member functions
belong to that class’s scope.

Nonmember functions are defined at global
namespace scope.

Within a class’s scope, class members are
immediately accessible by all of that class’s
member functions and can be referenced by name.

Outside a class’s scope, pub 11 c class members
are referenced through one of the handles on an
object—an object name, a reference to an object
or a pointer to an object.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

9.8 Class Scope and Accessiing Class

Members (cont.)

Member functions of a class can be overloaded only by
other member functions of that class.

If a member function defines a variable with the same name
as a variable with class scope, the class-scope variable is
hidden by the block-scope variable in the local scope.

— Such a hidden variable can be ac-cessed by preceding the variable
name with the class name followed by the scope resolution operator

(::).
The dot member selection operator (.) iIs preceded by an
object’s name or with a reference to an object to access the
object’s members.

The arrow member selection operator (—>) Is preceded by a
pointer to an object to access the object’s members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 9.4: fig09_04.cpp

// Demonstrating the class member access operators . and ->
#include <iostream>

using namespace std;

// class Count definition
class Count
{
public: // public data is dangerous
// sets the value of private data member x
void setX(int value)
{
X = value;
} // end function setX

// prints the value of private data member x
void print()
{
cout << x << endl;
} // end function print

Fig. 9.4 | Accessing an object’'s member functions through each type of object
handle—the object’s name, a reference to the object and a pointer to the object. (Part |

of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

45

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

private:
int x;
}; // end class Count

int main()

{

Count counter; // create counter object

Count *counterPtr
Count &counterRef

cout << "Set x to

1

&counter; // create pointer to counter
counter; // create reference to counteroé

and print using the object's name: ";

counter.setX(1); // set data member x to 1
counter.print(); // call member function print

cout << "Set x to 2 and print using a reference to an object:
counterRef.setX(2); // set data member x to 2
counterRef.print(); // call member function print

cout << "Set x to 3 and print using a pointer to an object:

counterPtr->setX(3); // set data member x to 3
counterPtr->print(); // call member function print

} // end main

",
)

Fig. 9.4 | Accessing an object’'s member functions through each type of object
handle—the object’s name, a reference to the object and a pointer to the object. (Part 2

of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

46

Set x to 1 and print using the object's name: 1
Set x to 2 and print using a reference to an object: 2
Set x to 3 and print using a pointer to an object: 3

Fig. 9.4 | Accessing an object’'s member functions through each type of object
handle—the object’s name, a reference to the object and a pointer to the object. (Part 3
of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. a7

9.4 Separating Interface from
lmplementation

 Separating classes into two files—a header file
for the class definition (i.e., the class’s
interface) and a source code file for the class’s
member-function definitions (i.e., the class’s
Implementation) makes it easier to modify
programs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

9.9 Access Functions and Utility
Functions

 Access functions can read or display data.

« A common use for access functions Is to test
the truth or falsity of conditions—such

functions are often called predicate functions.

« A utility function is a private member
function that supports the operation of the
class’s pub11c member functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

49

Ooe~NGOWNbh WN =

10
11
12
13
14
15
16
17
18
19
20

// Fig. 9.5: SalesPerson.h

// SalesPerson class definition.

// Member functions defined in SalesPerson.cpp.
#ifndef SALESP H

#define SALESP_H

class SalesPerson
{
public:
static const int monthsPerYear = 12; // months in one year
SalesPerson(); // constructor
void getSalesFromUser(); // input sales from keyboard
void setSales(int, double); // set sales for a specific month
void printAnnualSales(); // summarize and print sales
private:
double totalAnnualSales(); // prototype for utility function
doubTle sales[monthsPerYear]; // 12 monthly sales figures
}:; // end class SalesPerson

#endif

Fig. 9.5 | SalesPerson class definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

50

VoOo~NGOWNbh WN=—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 9.6: SalesPerson.cpp

// SalesPerson class member-function definitions.

#include <iostream>

#include <iomanip>

#include "SalesPerson.h" // include SalesPerson class definition
using namespace std;

// initialize elements of array sales to 0.0
SalesPerson::SalesPerson()
{
for (int i = 0; i < monthsPerYear; i++)
sales[i] = 0.0;
} // end SalesPerson constructor

// get 12 sales figures from the user at the keyboard
void SalesPerson::getSalesFromUser()

{

doubTe salesFigure;

for (int i = 1; i1 <= monthsPerYear; i++)

{

cout << "Enter sales amount for month " << i << ": ";
cin >> salesFigure;

Fig. 9.6 | SalesPerson class member-function definitions. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

51

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

setSales(i, salesFigure);
} // end for
} // end function getSalesFromUser

// set one of the 12 monthly sales figures; function subtracts
// one from month value for proper subscript in sales array
void SalesPerson::setSales(int month, double amount)
{
// test for valid month and amount values
if (month >= 1 & & month <= monthsPerYear && amount > 0)
sales[month - 1] = amount; // adjust for subscripts 0-11
else // invalid month or amount value
cout << "Invalid month or sales figure" << endl;
} // end function setSales

// print total annual sales (with the help of utility function)
void SalesPerson::printAnnualSales()
{
cout << setprecision(2) << fixed
<< "\nThe total annual sales are: $"
<< totalAnnualSales() << endl; // call utility function
} // end function printAnnualSales

Fig. 9.6 | SalesPerson class member-function definitions. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

52

47
48
49
50
51
52
53
54
55
56

// private utility function to total annual sales
double SalesPerson::totalAnnualSales()

{
double total = 0.0; // initialize total

for (int 1 = 0; i < monthsPerYear; i++)} // summarize sales results
total += sales[i]; // add month i sales to total

return total;
} // end function totalAnnualSales

Fig. 9.6 | SalesPerson class member-function definitions. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

53

VoOoO~NONND WN =

10
11
12
13
14

// Fig. 9.7: fig09_07.cpp

// Utility function demonstration.
// Compile this program with SalesPerson.cpp

// include SalesPerson class definition from SalesPerson.h

#include "SalesPerson.h"

int main()

{

SalesPerson s; // create SalesPerson object s

s.getSalesFromUser(); // note simple sequential code; there are

s.printAnnualSales(); // no control statements in main

} // end main

Fig. 9.7 | Utility function demonstration. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

54

Enter sales
Enter sales
Enter sales
Enter sales
Enter sales
Enter sales
Enter sales
Enter sales
Enter sales
Enter sales
Enter sales
Enter sales

amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount

for
for
for
for
for
for
for
for
for
for
for
for

The total annual sales

month
month
month
month
month
month
month
month
month
month
month
month

are:

1: 5314.76

2: 4292.38

3: 4589.83

4: 5534.03

5: 4376.34

6: 5698.45

7: 4439.22

8: 5893.57

9: 4909.67

10: 5123.45
11: 4024.97
12: 5923.92
$60120.59

Fig. 9.7 | Utility function demonstration. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

55

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

56

