

• Like other functions, constructors can specify default

arguments.

• The default arguments to the constructor ensure that,

even if no values are provided in a constructor call,

the constructor still initializes the data members to

maintain the Time object in a consistent state.

• A constructor that defaults all its arguments is also a

default constructor—i.e., a constructor that can be

invoked with no arguments.

• There can be at most one default constructor per

class.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• Calling setHour, setMinute and setSecond from the
constructor may be slightly more efficient because the extra call
to setTime would be eliminated.

• Similarly, copying the code from lines 27, 33 and 39 into
constructor would eliminate the overhead of calling setTime,
setHour, setMinute and setSecond.

• This would make maintenance of this class more difficult.
– If the implementations of setHour, setMinute and setSecond

were to change, the implementation of any member function that
duplicates lines 27, 33 and 39 would have to change accordingly.

• Calling setTime and having setTime call setHour,
setMinute and setSecond enables us to limit the changes
to the corresponding set function.
– Reduces the likelihood of errors when altering the implementation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• The name of the destructor for a class is the tilde character (~)
followed by the class name.

• Often referred to with the abbreviation ―dtor‖ in the literature.
• Called implicitly when an object is destroyed.
• The destructor itself does not actually release the object’s

memory—it performs termination housekeeping before the
object’s memory is reclaimed, so the memory may be reused to
hold new objects.

• Receives no parameters and returns no value.
• May not specify a return type—not even void.
• A class may have only one destructor.
• A destructor must be public.
• If you do not explicitly provide a destructor, the compiler creates

an ―empty‖ destructor.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

• Constructors and destructors are called implicitly.

• The order in which these function calls occur depends on
the order in which execution enters and leaves the scopes
where the objects are instantiated.

• Generally, destructor calls are made in the reverse order of
the corresponding constructor calls
– The storage classes of objects can alter the order in which

destructors are called.

• Constructors are called for objects defined in global scope
before any other function (including main) in that file
begins exe-cution (although the order of execution of global
object constructors between files is not guaranteed).
– The corresponding destructors are called when main terminates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• Function exit forces a program to terminate

immediately and does not execute the

destructors of automatic objects.

• Function abort performs similarly to function

exit but forces the program to terminate

immediately, without allowing the destructors

of any objects to be called.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

• Constructors and destructors for automatic objects are called each
time execution enters and leaves the scope of the object.

• Destructors are not called for automatic objects if the program
terminates with a call to function exit or function abort.

• The constructor for a static local object is called only once,
when execution first reaches the point where the object is
defined—the corresponding destructor is called when main
terminates or the program calls function exit.

• Global and static objects are destroyed in the reverse order of
their creation.

• Destructors are not called for static objects if the program
terminates with a call to function abort.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• A reference to an object is an alias for the name of the object and,
hence, may be used on the left side of an assignment statement.

• In this context, the reference makes a perfectly acceptable lvalue
that can receive a value.

• Unfortunately a public member function of a class can return a
reference to a private data member of that class.

• Such a reference return actually makes a call to that member
function an alias for the private data member!
– The function call can be used in any way that the private data

member can be used, including as an lvalue in an assignment statement

– The same problem would occur if a pointer to the private data were
to be returned by the function.

• If a function returns a const reference, that reference cannot be
used as a modifiable lvalue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

• The assignment operator (=) can be used to assign an object
to another object of the same type.

• By default, such assignment is performed by memberwise
assignment

– Each data member of the object on the right of the assignment
operator is assigned individually to the same data member in the
object on the left of the assignment operator.

• [Caution: Memberwise assignment can cause serious
problems when used with a class whose data members
contain pointers to dynamically allocated memory; we
discuss these problems in Chapter 11 and show how to deal
with them.]

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

• Objects may be passed as function arguments and may be
returned from functions.

• Such passing and returning is performed using pass-by-
value by default—a copy of the object is passed or returned.
– C++ creates a new object and uses a copy constructor to copy the

original object’s values into the new object.

• For each class, the compiler provides a default copy
constructor that copies each member of the original object
into the corresponding member of the new object.
– Copy constructors can cause serious problems when used with a

class whose data members contain pointers to dynamically
allocated memory.

• Chapter 11 discusses customized copy constructors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

33©1992-2010 by Pearson Education, Inc. All Rights Reserved.

