

• Structures are aggregate data types—that is, they can be
built using elements of several types including other
structs.

• Consider the following structure definition:
• struct Card
{

string face;
string suit;

}; // end struct Card
– Keyword struct introduces the definition for structure Card.
– The identifier Card is the structure name and is used in C++ to

declare variables of the structure type (in C, the type name of the
preceding structure is struct Card).

– In this example, the structure type is Card.
– Data (and possibly functions—just as with classes) declared within

the braces of the structure definition are the structure’s members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

• Members of the same structure must have

unique names, but two different structures may

contain members of the same name without

conflict.

• Each structure definition must end with a

semicolon.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

• Structure members can be variables of the fundamental data

types (e.g., int, double, etc.) or aggregates, such as

arrays, other structures and classes.

• Data members in a single structure definition can be of

many data types.

• A structure cannot contain an instance of itself.

– A pointer to a structure of the same type, however, can be included.

– A structure containing a member that is a pointer to the same

structure type is referred to as a self-referential structure.

– We can use self-referential classes to build various kinds of linked

data structures.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

• A structure definition does not reserve any space in
memory; rather, it creates a new data type that is used
to declare structure variables.

• Structure variables are declared like variables of other
types.

• Variables of a given structure type can also be
declared by placing a comma-separated list of the
variable names between the closing brace of the
structure definition and the semicolon that ends the
structure definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

• The only valid built-in operations that may be

performed on structure objects are

– assigning one structure object to another of the same type,

– taking the address (&) of a structure object,

– accessing the members of a structure object (in the same

manner as members of a class are accessed) and

– using the sizeof operator to determine the size of a

structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

• Structure members are not necessarily stored in

consecutive bytes of memory.

• Sometimes there are ―holes‖ in a structure, because

some computers store specific data types only on

certain memory boundaries for performance reasons,

such as half-word, word or double-word boundaries.

• A word is a standard memory unit used to store data

in a computer—usually two bytes or four bytes and

typically four bytes on today’s popular 32-bit

systems.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

• Consider the following structure definition in
which structure objects sample1 and sample2
of type Example are declared:

• struct Example
{

char c;
int i;

} sample1, sample2;

• A computer with two-byte words might require
that each of the members of Example be aligned
on a word boundary (i.e., at the beginning of a
word—this is machine dependent).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

• Structures can be initialized using initializer lists, like arrays.

• For example, the declaration
• Card oneCard = { "Three", "Hearts" };

• creates Card variable oneCard and initializes member face
to "Three" and member suit to "Hearts".

• If there are fewer initializers in the list than members in the
structure, the remaining members are initialized to their default
values.

• Structure variables declared outside a function definition (i.e.,
externally) are initialized to their default values if they’re not
explicitly initialized in the external declaration.

• Structure variables may also be set in assignment expressions by
assigning a structure variable of the same type or by assigning
values to the individual data members of the structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

• There are two ways to pass the information in structures to functions.

• You can either pass the entire structure or pass the individual members
of a structure.

• By default, structures are passed by value.

• Structures and their members can also be passed by reference by
passing either references or pointers.

• To pass a structure by reference, pass the address of the structure object
or a reference to the structure object.

• In Chapter 7, we stated that an array could be passed by value by using
a structure.

• To pass an array by value, create a structure (or a class) with the array
as a member, then pass an object of that structure (or class) type to a
function by value.

• Because structure objects are passed by value, the array member, too, is
passed by value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

• C++ provides extensive bit-manipulation

capabilities for getting down to the so-called

―bits-and-bytes‖ level.

• Operating systems, test-equipment software,

networking software and many other kinds of

software require that you communicate

―directly with the hardware.‖

• We introduce each of C++’s many bitwise

operators, and we discuss how to save memory

by using bit fields.©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

• All data is represented internally by computers as sequences
of bits.

• Each bit can assume the value 0 or the value 1.

• On most systems, a sequence of 8 bits forms a byte—the
standard storage unit for a variable of type char.

• Other data types are stored in larger numbers of bytes.

• Bitwise operators are used to manipulate the bits of integral
operands (char, short, int and long; both signed
and unsigned).

• Unsigned integers are normally used with the bitwise
operators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• The bitwise operator discussions in this section show
the binary representations of the integer operands.
– For a detailed explanation of the binary (also called base-2)

number system, see Appendix D, Number Systems.

• Because of the machine-dependent nature of bitwise
manipulations, some of these programs might not work
on your system without modification.

• The bitwise operators are: bitwise AND (&), bitwise
inclusive OR (|), bitwise exclusive OR (^), left shift
(<<), right shift (>>) and bitwise complement (~)—also
known as the one’s complement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

• The bitwise AND, bitwise inclusive OR and
bitwise exclusive OR operators compare their two
operands bit by bit.

• The bitwise AND operator sets each bit in the
result to 1 if the corresponding bit in both
operands is 1.

• The bitwise inclusive-OR operator sets each bit in
the result to 1 if the corresponding bit in either (or
both) operand(s) is 1.

• The bitwise exclusive-OR operator sets each bit in
the result to 1 if the corresponding bit in either
operand—but not both—is 1.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• The left-shift operator shifts the bits of its left

operand to the left by the number of bits specified in

its right operand.

• The right-shift operator shifts the bits in its left

operand to the right by the number of bits specified in

its right operand.

• The bitwise complement operator sets all 0 bits in its

operand to 1 in the result and sets all 1 bits in its

operand to 0 in the result.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

• When using the bitwise operators, it’s useful to

illustrate their precise effects by printing

values in their binary representation.

• The program of Fig. 21.6 prints an unsigned
integer in its binary representation in groups of

eight bits each.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• Function displayBits (lines 19–37) uses the

bitwise AND operator to combine variable value
with constant MASK.

• Often, the bitwise AND operator is used with an

operand called a mask—an integer value with specific

bits set to 1.

• Masks are used to hide some bits in a value while

selecting other bits.

• In displayBits, line 22 assigns constant MASK
the value 1 << SHIFT.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

• The value of constant SHIFT was calculated in line 21 with
the expression

• 8 * sizeof(unsigned) - 1

• which multiplies the number of bytes an unsigned object
requires in memory by 8 (the number of bits in a byte) to
get the total number of bits required to store an unsigned
object, then subtracts 1.

• The bit representation of 1 << SHIFT on a computer that
represents unsigned objects in four bytes of memory is

• 10000000 00000000 00000000 00000000

• The left-shift operator shifts the value 1 from the low-order
(rightmost) bit to the high-order (leftmost) bit in MASK, and
fills in 0 bits from the right.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• Line 29 prints a 1 or a 0 for the current leftmost bit of variable value.

• Assume that variable value contains 65000 (00000000
00000000 11111101 11101000).

• When value and MASK are combined using &, all the bits except the
high-order bit in variable value are ―masked off‖ (hidden), because
any bit ―ANDed‖ with 0 yields 0.

• If the leftmost bit is 1, value & MASK evaluates to
• 00000000 00000000 11111101 11101000 (value)
10000000 00000000 00000000 00000000 (MASK)

00000000 00000000 00000000 00000000 (value & MASK)

• which is interpreted as false, and 0 is printed.

• Then line 30 shifts variable value left by one bit with the expression
value <<= 1 (i.e., value = value << 1).

• These steps are repeated for each bit variable value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

• Eventually, a bit with a value of 1 is shifted into the

leftmost bit position, and the bit manipulation is as follows:

• 11111101 11101000 00000000 00000000 (value)
10000000 00000000 00000000 00000000 (MASK)

10000000 00000000 00000000 00000000 (value &
MASK)

• Because both left bits are 1s, the expression’s result is

nonzero (true) and 1 is printed.

• Figure 21.7 summarizes the results of combining two bits

with the bitwise AND operator.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

• The bitwise complement operator (~) sets all 1 bits in its
operand to 0 in the result and sets all 0 bits to 1 in the
result—otherwise referred to as ―taking the one’s
complement of the value.‖

• For example if variable number1 has the value 21845
(00000000 00000000 01010101 01010101).

• When the expression ~number1 evaluates, the result is
(11111111 11111111 10101010 10101010).

• Figure 21.11 demonstrates the left-shift operator (<<) and
the right-shift operator (>>).

• Function displayBits (lines 27–45) prints the
unsigned integer values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

• The left-shift operator (<<) shifts the bits of its
left operand to the left by the number of bits
specified in its right operand.

• Bits vacated to the right are replaced with 0s; bits
shifted off the left are lost.

• In the program of Fig. 21.11, line 11 assigns
variable number1 the value 960 (00000000
00000000 00000011 11000000).

• The result of left-shifting variable number1 8
bits in the expression number1 << 8 (line 17) is
245760 (00000000 00000011 11000000
00000000).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

• The right-shift operator (>>) shifts the bits of its left

operand to the right by the number of bits specified in

its right operand.

• Performing a right shift on an unsigned integer

causes the vacated bits at the left to be replaced by 0s;

bits shifted off the right are lost.

• In the program of Fig. 21.11, the result of right-

shifting number1 in the expression number1 >> 8
(line 23) is 3 (00000000 00000000 00000000
00000011).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

• C++ provides the ability to specify the number

of bits in which an integral type or enum type

member of a class or a structure is stored.

• Such a member is referred to as a bit field.

• Bit fields enable better memory utilization by

storing data in the minimum number of bits

required.

• Bit field members must be declared as an

integral or enum type.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

• struct BitCard
{

unsigned face : 4;
unsigned suit : 2;
unsigned color : 1;

}; // end struct BitCard

• The definition contains three unsigned bit fields—face, suit and
color—used to represent a card from a deck of 52 cards.

• A bit field is declared by following an integral type or enum type
member with a colon (:) and an integer constant representing the width
of the bit field (i.e., the number of bits in which the member is stored).

• The width must be an integer constant.

• The preceding structure definition indicates that member face is
stored in 4 bits, member suit in 2 bits and member color in 1 bit.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

• The number of bits is based on the desired range of

values for each structure member.

• Member face stores values between 0 (Ace) and 12
(King)—4 bits can store a value between 0 and 15.

• Member suit stores values between 0 and 3 (0 =

Diamonds, 1 = Hearts, 2 = Clubs, 3 = Spades)—2

bits can store a value between 0 and 3.

• Finally, member color stores either 0 (Red) or 1
(Black)—1 bit can store either 0 or 1.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

39©1992-2010 by Pearson Education, Inc. All Rights Reserved.

