Lecture 20:
Bits, Characters, and Structs

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 30, 2010

21.2 Structure Definitions

 Structures are aggregate data types—that is, they can be
blilcllt us?g elements of several types including other
structs.

 Consider the following structure definition:
e sStruct Card
string face;

string suit;
}: // end struct Card

— Keyword struct introduces the definition for structure Card.

— The identifier Card is the structure name and is used in C++ to
declare variables of the structure type (in C, the type name of the
preceding structure is struct card).

— In this example, the structure type is Card.

— Data (and possibly functions—just as with classes) declared within
the braces of the structure definition are the structure’s members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21.2 Struciure Definitions (cont.)

« Members of the same structure must have
unique names, but two different structures may
contain members of the same name without

conflict.

e Each structure definition must end with a
semicolon.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Structure Definitions (comnt.)

 Structure members can be variables of the fundamental data
types (e.g., 1nt, double, etc.) or aggregates, such as
arrays, other structures and classes.

« Data members in a single structure definition can be of
many data types.

e A structure cannot contain an instance of itself.

— A pointer to a structure of the same type, however, can be included.

— A structure containing a member that is a pointer to the same
structure type is referred to as a self-referential structure.

— We can use self-referential classes to build various kinds of linked
data structures.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

21.2 Structure Definitions (cont.)

A structure definition does not reserve any space in
memory; rather, it creates a new data type that Is used
to declare structure variables.

e Structure variables are declared like variables of other

types.

 Variables of a given structure type can also be
declared by placing a comma-separated list of the
variable names between the closing brace of the
structure definition and the semicolon that ends the
structure definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

21.2 Struciure Definitions (cont.)

« The only valid built-in operations that may be
performed on structure objects are
— assigning one structure object to another of the same type,
— taking the address (&) of a structure object,

— accessing the members of a structure object (in the same
manner as members of a class are accessed) and

— using the s1zeof operator to determine the size of a
structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21.2 Structure Definitions (cont.)

o Structure members are not necessarily stored in
consecutive bytes of memory.

 Sometimes there are “holes” 1n a structure, because
some computers store specific data types only on
certain memory boundaries for performance reasons,
such as half-word, word or double-word boundaries.

« A word Is a standard memory unit used to store data
In a computer—usually two bytes or four bytes and
typically four bytes on today’s popular 32-bit
systems.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21.2 Structure Definitions (cont.)

 Consider the following structure definition in
which structure objects samp lel and samp 1e?2
of type Examp 1 e are declared:
e sStruct Example

{

char c;
1nt 1,
} samplel, sample?2;
A computer with two-byte words mi1ght require
that each of the members of Examp | e be aligned
on a word boundary (i.e., at the beginning of a

word—this i1s machine dependent).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

01100001 00000000 01100001

Fig. 21.1 | Possible storage alignment for a variable of type Examp1e, showing
an undefined area in memory.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

21.8 Initializing Structures

Structures can be initialized using initializer lists, like arrays.

For example, the declaration
e Card oneCard = { "Three", "Hearts" };

creates Card variable oneCard and initializes member face
0 "Three™ and member suit to "Hearts".

If there are fewer initializers in the list than members in the
structure, the remaining members are initialized to their default
values.

Structure variables declared outside a function definition (i.e.,
externally) are initialized to their default values if they’re not
explicitly initialized in the external declaration.

Structure variables may also be set in assignment expressions by
assigning a structure variable of the same type or by assigning
values to the individual data members of the structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

21.4 Using Structures with Functions

« There are two ways to pass the information in structures to functions.

* You can either pass the entire structure or pass the individual members
of a structure.

« By default, structures are passed by value.

» Structures and their members can also be passed by reference by
passing either references or pointers.

» To pass a structure by reference, pass the address of the structure object
or a reference to the structure object.

« In Chapter 7, we stated that an array could be passed by value by using
a structure.

 To pass an array by value, create a structure (or a class) with the array
as a member, then pass an object of that structure (or class) type to a
function by value.

« Because structure objects are passed by value, the array member, too, is
passed by value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

21.7 Biiwise Operators

« C++ provides extensive bit-manipulation
capabilities for getting down to the so-called
“bits-and-bytes” level.

« Operating systems, test-equipment software,
networking software and many other kinds of
software require that you communicate
“directly with the hardware.”

 We introduce each of C++’s many bitwise
operators, and we discuss how to save memory
DY USING DIt TIBLCLS weeon csscaion e g resees ’

21.7 Bitwise Operators (cont.)

All data Is represented internally by computers as sequences
of bits.

Each bit can assume the value O or the value 1.

On most systems, a sequence of 8 bits forms a byte—the
standard storage unit for a variable of type char.

Other data types are stored in larger numbers of bytes.

Bitwise operators are used to manipulate the bits of integral
operands (char, short, int and 1ong; both signed
and unsigned).

Unsigned integers are normally used with the bitwise
operators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

21.7 Bliwise Operators (cont.)

» The bitwise operator discussions in this section show
the binary representations of the integer operands.

— For a detailed explanation of the binary (also called base-2)
number system, see Appendix D, Number Systems.

- Because of the machine-dependent nature of bitwise
manipulations, some of these programs might not work
on your system without modification.

 The bitwise operators are: bitwise AND (&), bitwise
inclusive OR (), bitwise exclusive OR ("), left shift
(<<), right shift (>>) and bitwise complement (~)—also
known as the one’s complement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

21.7 Bitwise Operators (cont.)

The bitwise AN
bitwise exclusiv
operands bit by

The bitwise AN
result to 1 if the
operands is 1.

The bitwise incl

D, bitwise inclusive OR and
e_%)R operators compare their two
It.

D operator sets each bit In the
corresponding bit in both

usive-OR operator sets each bit In

the result to 1 if the corresponding bit in either (or
both) operand(s) is 1.
The bitwise exclusive-OR operator sets each bit in

the resultto 1 i1f

the corresponding bit in either

operand—but not both—Is 1.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

21.7 Bliwise Operators (cont.)

* The left-shift operator shifts the bits of its left
operand to the left by the number of bits specified In
Its right operand.

 The right-shift operator shifts the bits in its left
operand to the right by the number of bits specified in
Its right operand.

« The bitwise complement operator sets all O bits in its
operand to 1 in the result and sets all 1 bits in its
operand to O in the result.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

21.7 Bliwise Operators (cont.)

* When using the bitwise operators, 1t’s useful to
Illustrate their precise effects by printing
values In their binary representation.

« The program of Fig. 21.6 prints an unsigned
Integer In Its binary representation in groups of
eight bits each.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 21.6: fig21l 06.cpp

// Printing an unsigned integer in bits.
#include <iostream>

#include <iomanip>

using namespace std;

void displayBits(unsigned); // prototype

int main()

{

unsigned inputValue; // integral value to print in binary
cout << "Enter an unsigned integer: ";
cin >> inputValue;
displayBits(inputValue);

} // end main

// display bits of an unsigned integer value
void displayBits(unsigned value)
{
const int SHIFT = 8 * sizeof(unsigned) - 1;
const unsigned MASK = 1 << SHIFT;

Fig. 21.6 | Printing an unsigned integer in bits. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18

24
25
26
27
28
29
30
31
32
33
34
35
36
37

m "

cout << setw(10) << value << = "

// display bits
for (unsigned i = 1; i <= SHIFT + 1; i++)
{
cout << (value & MASK ? "1" : "0");
value <<= 1; // shift value left by 1

if (1% 8 ==0) // output a space after 8 bits

cout << ;
} // end for

cout << endl;
} // end function displayBits

Enter an unsigned integer: 65000

65000 = 00000000 00000000 11111101 11101000

Enter an unsigned integer: 29

29 = 00000000 00000000 00000000 00011101

Fig. 21.6 | Printing an unsigned integer in bits. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19

21.7 Bliwise Operators (cont.)

Function displayBits (lines 19-37) uses the
bitwise AND operator to combine variable value
with constant MASK.

Often, the bitwise AND operator is used with an
operand called a mask—an integer value with specific
bits set to 1.

Masks are used to hide some bits in a value while
selecting other bits.

IndisplayBits, line 22 assigns constant MASK
the value 1 << SHIFT.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

21.7 Bitwise Operators (cont.)

The value of constant SHIFT was calculated in line 21 with
the expression

« 8 * sizeof(unsigned) - 1
which multiplies the number of bytes an unsigned object
requires in memory by 8 (the number of bits in a byte) to
get the total number of bits required to store an unsigned
object, then subtracts 1.

The bit representation of 1 << SHIFT on a computer that
represents unsigned objects in four bytes of memory is
« 10000000 00000000 00000000 00000000

The left-shift operator shifts the value 1 from the low-order
(rightmost) bit to the high-order (leftmost) bit in MASK, and
fills in O bits from the right.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

21.7 Bliwise Operators (cont.)

Line 29 prints a 1 or a O for the current leftmost bit of variable value.

Assume that variable value contains 65000 (00000000
00000000 11111101 11101000).

When value and MASK are combined using &, all the bits except the
high-order bit in variable value are “masked off” (hidden), because
any bit “ANDed” with O yields O.

If the leftmost bit is 1, value & MASK evaluates to

« 00000000 00000000 11111101 11101000 (value)
10000000 00000000 00000000 00000000 (MASK)
00000000 00000000 00000000 00000000 (value & MASK)

which is interpreted as false, and O is printed.

Then line 30 shifts variable value left by one bit with the expression
value <<=1(i.e.,, value =value << 1).

These steps are repeated for each bit variable value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22

21.7 Bliwise Operators (cont.)

« Eventually, a bit with a value of 1 is shifted into the

leftmost bit position, and the bit manipulation is as follows:

« 11111101 11101000 00000000 00000000 (value)
10000000 00000000 00000000 00000000 (MASK)

10000000 00000000 00000000 00000000 (value &
MASK)

« Because both left bits are 1s, the expression’s result is
nonzero (true) and 1 is printed.

« Figure 21.7 summarizes the results of combining two bits
with the bitwise AND operator.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

Common Programming Error 21.3
Using the logical AND operator (&&) for the bitwise
AND operator (&) and vice versa is a logic error.

Common Programming Error 21.4
Using the logical OR operator (1) for the bitwise OR op-

erator (1) and vice versa is a logic error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

24

21.7 Bitwise Operators (cont.)

The bitwise complement operator (~) sets all 1 bits in its
operand to O in the result and sets all O bits to 1 in the
result—otherwise referred to as “taking the one’s
complement of the value.”

For example if variable number1 has the value 21845
(00000000 00000000 01010101 01010101).

When the expression ~number1 evaluates, the result is
(11111111 1117171111 10101010 10101010).

Figure 21.11 demonstrates the left-shift operator (<<) and
the right-shift operator (>>).

Function d1splayB1ts (lines 27-45) prints the
unsigned integer values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

1 // Fig. 21.11: fig21 11.cpp

2 // Using the bitwise shift operators.

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 void displayBits(unsigned); // prototype

8

9 1int main()

10 {

11 unsigned numberl = 960;

12

13 // demonstrate bitwise left shift

14 cout << "The result of left shifting\n";

15 displayBits(numberl);

16 cout << "8 bit positions using the left-shift operator is\n";
17 displayBits(numberl << 8);

18

19 // demonstrate bitwise right shift
20 cout << "\nThe result of right shifting\n";
21 displayBits(numberl);
22 cout << "8 bit positions using the right-shift operator is\n";
23 displayBits(numberl >> 8);
24 } // end main

Fig. 21.11 | Bitwise shift operators. (Part | of 3.)
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

26

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// display bits of an unsigned integer value
void displayBits(unsigned value)
{
const int SHIFT = 8 * sizeof(unsigned) - 1;
const unsigned MASK = 1 << SHIFT;

cout << setw(10) << value << " ="}

// display bits
for (unsigned i = 1; i <= SHIFT + 1; i++)

{
cout << (value & MASK ? "1" : "0");
value <<= 1; // shift value left by 1
if (1% 8 ==0) // output a space after 8 bits
cout << " '
} // end for

cout << endl;
} // end function displayBits

Fig. 21.11 | Bitwise shift operators. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

27

The result of left shifting
960 = 00000000 00000000 00000011 11000000
8 bit positions using the left-shift operator is
245760 = 00000000 00000011 11000000 00000000

The result of right shifting
960 = 00000000 00000000 00000011 11000000
8 bit positions using the right-shift operator is
3 = 00000000 00000000 00000000 00000011

Fig. 21.11 | Bitwise shift operators. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

28

21.7 Bliwise Operators (cont.)

The left-shift operator (<<) shifts the bits of its
left QP_erand_to the left by the number of bits
specified In Its right operand.

Bits vacated to the right are replaced with Os; bits
shifted off the left are lost.

In the Program of Fi%. 21.11, line 11 assigns
variable number]1 the value 960 6000 0000
00000000 00000011 11000000).

0
The result of left-shifting variable numberl 8
bits in the expression humberl << 8 (line 17) is
245760 (00000000 00000011 11000000
00000000).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

21.7 Bitwise Operators (cont.)

 The right-shift operator (>>) shifts the bits of its left

operand to the right by the number of bits specified in
Its right operand.

« Performing a right shift on an unsigned integer
causes the vacated bits at the left to be replaced by Os;
bits shifted off the right are lost.

* |In the program of Fig. 21.11, the result of right-
shifting numberl in the expression numberl >> 8

(line 23) is 3 (00000000 00000000 00000000
00000011).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

21.6 Bit Fields

C++ provides the ability to specify the number
of bits in which an integral type or enum type
member of a class or a structure Is stored.

Such a member Is referred to as a bit field.

Bit fields enable better memory utilization by
storing data in the minimum number of bits
required.

Bit field members must be declared as an
Integral or enum type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

o

erformance Tip 21.2
Bit fields help conserve storage.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

elds (cont.)

. ?truct BitCard

unsigned face : 4;

unsigned suit : 2;

unsigned color : 1;
}; // end struct Bitcard

The definition contains three unsigned bit fields—face, suit and
co lor—used to represent a card from a deck of 52 cards.

A Dbit field is declared by following an integral type or enum type
member with a colon (:) and an integer constant representing the width
of the bit field (i.e., the number of bits in which the member is stored).

The width must be an integer constant.

The preceding structure definition indicates that member face is
stored in 4 bits, member suit in 2 bits and member color in 1 bit.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

21.8 Bit Fields (cont.)

The number of bits is based on the desired range of
values for each structure member.

Member face stores values between O (Ace) and 12
(King)—4 bits can store a value between 0 and 15.

Member su t stores values between 0 and 3 (0 =
Diamonds, 1 = Hearts, 2 = Clubs, 3 = Spades)—2
Dits can store a value between O and 3.

~inally, member color stores either O (Red) or 1
(Black)—1 bit can store either O or 1.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

o ~NSTND WN=-

// Fig. 21.14: DeckOfCards.h

// Definition of class DeckOfCards that
// represents a deck of playing cards.
#include <vector>

using namespace std;

// BitCard structure definition with bit fields
struct BitCard
{
unsigned face : 4; // 4 bits; 0-15
unsigned suit : 2; // 2 bits; 0-3
unsigned color : 1; // 1 bit; 0-1
}; // end struct BitCard

// DeckOfCards class definition

class DeckOfCards

{

public:
static const int faces = 13;
static const int colors = 2; // black and red
static const int numberOfCards = 52;

Fig. 21.14 | Header file for class DeckOfCards. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

35

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20

// Fig. 21.15: DeckOfCards.cpp

// Member-function definitions for class DeckOfCards that simulates
// the shuffling and dealing of a deck of playing cards.

#include <iostream>

#include <iomanip>

#include "DeckOfCards.h" // DeckOfCards class definition

using namespace std;

// no-argument DeckOfCards constructor intializes deck
DeckOfCards: :DeckOfCards()

{
for (int i = 0; i < numberOfCards; i++)
{
deck[i].face = i % faces; // faces in order
deck[1].suit i / faces; // suits 1in order
deck[1].color =1 / (faces * colors); // colors 1in order
} // end for
} // end no-argument DeckOfCards constructor

Fig. 21.15 | Class file for DeckOfCards. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

36

21
22
23
24
25
26
27
28
29
30
31
32

// deal cards in deck
void DeckOfCards::deal()

{

for (int k1 = 0, k2 = k1 + numberOfCards / 2;
kl < numberOfCards / 2 - 1; kl++, k2++)
cout << "Card:" << setw(3) << deck[k1].face

<<
<<
<<
<<
<<

Suit:" << setw(2) << deck[k1].suit
Color:" << setw(2) << deck[k1].color
" << "Card:" << setw(3) << deck[k2].face
Suit:" << setw(2) << deck[k2].suit
Color:" << setw(2) << deck[k2].color << endl;

} // end function deal

Fig. 21.15 | Class file for DeckofCards. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

37

21.6 Bit Fields (cont.)

Card: 0 Suit: 0 Color: O Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: O Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: O Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: O Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: O Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: O Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: O Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: O Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: O Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: O Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: O Card: 11 Suit: 2 Color: 1
Card: 12 Suit: 0 Color: O Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: O Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: O Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: O Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: O Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1

Fig. 21.16 | Bit fields used to store a deck of cards. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

39

