


• Composition

– Sometimes referred to as a has-a relationship

– A class can have objects of other classes as 

members

• An object’s constructor can pass arguments to 

member-object constructors via member 

initializers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



• As you study class Date (Fig. 10.10), notice that 
the class does not provide a constructor that 
receives a parameter of type Date.

• Why can the Employee constructor’s member 
initializer list initialize the birthDate and 
hireDate objects by passing Date object’s to 
their Date constructors? 

• The compiler provides each class with a default 
copy constructor that copies each data member of 
the constructor’s argument object into the 
corresponding member of the object being 
initialized.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



• If a member object is not initialized through a 

member initializer, the member object’s 

default constructor will be called implicitly.

• Values, if any, established by the default 

constructor can be overrid-den by set 

functions.

• However, for complex initialization, this 

approach may require significant additional 

work and time.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18



• A friend function of a class is defined outside that 

class’s scope, yet has the right to access the non-

public (and public) members of the class.

• Standalone functions, entire classes or member 

functions of other classes may be declared to be 

friends of another class. 

• Using friend functions can enhance performance.

• Friendship is granted, not taken.

• The friendship relation is neither symmetric nor 

transitive.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26



• How do member functions know which object’s data 

members to manipulate? Every object has access to its own 

address through a pointer called this (a C++ keyword).

• The this pointer is not part of the object itself.

– The this pointer is passed (by the compiler) as an implicit 

argument to each of the object’s non-static member functions.

• Objects use the this pointer implicitly or explicitly to 

reference their data members and member functions.

• The type of the this pointer depends on the type of the 

object and whether the member function in which this is 

used is declared const.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31



• Another use of the this pointer is to enable 

cascaded member-function calls

– invoking multiple functions in the same statement

• The program of Figs. 10.17–10.19 modifies 

class Time’s set functions setTime, 

setHour, set-Minute and setSecond
such that each returns a reference to a Time
object to enable cascaded member-function 

calls.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40



• In certain cases, only one copy of a variable 

should be shared by all objects of a class.

• A static data member is used for these and 

other reasons.

• Such a variable represents “class-wide” 

information.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42



• Although they may seem like global variables, a class’s static data 
members have class scope.

• static members can be declared public, private or 
protected.

• A fundamental-type static data member is initialized by default to 
0.

• If you want a different initial value, a static data member can be 
initialized once.

• A static const data member of int or enum type can be 
initialized in its declaration in the class definition.

• All other static data members must be defined at global namespace 
scope and can be initialized only in those definitions.

• If a static data member is an object of a class that provides a default 
constructor, the static data member need not be initialized because 
its default constructor will be called. 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43



• A class’s private and protected static members are 
normally accessed through the class’s public member 
functions or friends.

• A class’s static members exist even when no objects of that 
class exist.

• To access a public static class member when no objects of 
the class exist, prefix the class name and the binary scope 
resolution operator (::) to the name of the data member.

• To access a private or protected static class member 
when no objects of the class exist, provide a public static
member function and call the function by prefix-ing its name 
with the class name and binary scope resolution operator.

• A static member function is a service of the class, not of a 
specific object of the class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53



• A member function should be declared static if it 

does not access non-static data members or non-

static member functions of the class.

• A static member function does not have a this
pointer, because static data members and 

static member functions exist independently of 

any ob-jects of a class.

• The this pointer must refer to a specific object of 

the class, and when a static member function is 

called, there might not be any objects of its class in 

memory.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56



57©1992-2010 by Pearson Education, Inc. All Rights Reserved.


