|Lecture 23:
File Processing

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 5t, 2010

17.4 Creating a Sequerntial File (cont.)

« InFig. 17.4, the file is to be opened for output, so an ofstream object is
created.

« Two arguments are passed to the object’s constructor—the filename and the
file-open mode (line 12).

« For an ofstream object, the file-open mode can be either ios: :out to output
data to a file or 10s: - app to append data to the end of a file (without
modifying any data already in the file).

 Existing files opened with mode 10s: :out are truncated—all data in the file
Is discarded.

- |If the specified file does not yet exist, then the ofstream object creates the
file, using that filename.

« The ofstream constructor opens the file—this estab-lishes a “line of
communication” with the file.

« By default, of stream objects are opened for output, so the open mode is not
required in the constructor call.

» Figure 17.5 lists the file-open modes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

Common Programming Error 17.1

Use caution when opening an existing file for output
(10s: :out), especially when you want to preserve the
file’s contents, which will be discarded without warn-

ing.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

Mode Description

jos:

jos::

jos:
jios:
jos::

jos:

:app Append all output to the end of the file.
ate Open a file for output and move to the end of the file (normally used to
append data to a file). Data can be written anywhere in the file.
2in Open a file for input.
sout Open a file for output.
trunc Discard the file’s contents (this also is the default action for ios: :out).
:binary Open a file for binary (i.e., nontext) input or output.

Fig. 17.5 | File open modes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17.4 Creating a Sequential File (cont.)

« An ofstream object can be created without
opening a specific file—a file can be attached to the
object later.

» For example, the statement
e ofstream outClientFile;

* creates an ofstream object named
outClientFile.

« The ofstream member function open opens a file
and attaches it to an existing ofstream object as

follows:
e outClientFile.open(''clients.dat"”, 1os::out);

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

17.4 Creating a Sequential File (cont.)

 Function ex1t terminates a program.

— The argument to ex1t is returned to the
environment from which the program was
Invoked.

— Argument O indicates that the program terminated
normally; any other value indicates that the
program terminated due to an error.

— The calling environment (most likely the operating
system) uses the value returned by exit to
respond appropriately to the error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

17.4 Creating a Sequential File (cont.)

« The opera-tor void * function can be
used to test an input object for end-of-file
instead of calling the eot member function

ex-plicitly on the input object.

« Figure 17.6 lists the keyboard combinations
for entering end-of-file for various computer
systems.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

Computer system Keyboard combination

UNIX/Linux/Mac OS X <Ctrl-d> (on a line by itself)
Microsoft Windows <Ctrl-z> (sometimes followed by pressing Enter)
VAX (VMYS) <Ctrl-z>

Fig. 17.6 | End-of-file key combinations for various popular computer
systems.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

Performance Tip 17.1
I Closing files explicitly when the program no longer needs
to reference them can reduce resource usage (especially if
the program continues execution after closing the files).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

17.8 Reading Daia irom a Sequential File
(cont.)

 Creating an 1fstream object opens a file for input.

« The 1fstream constructor can receive the filename
and the file open mode as arguments.

 Line 15 creates an 1 fstream object called
1nClientF11e and associates it with the
clients.dat file.

« The arguments Iin parentheses are passed to the
1fstream constructor function, which opens the

file and establishes a “line of communication’” with
the file.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

Good Programming Practice 17.1

Open a file for input only (using ios::in) if the file’s con-

tents should not be modified. This prevents unintention-
al modification of the file’s contents and is an example of

the principle of least privilege.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

11

// Fig. 17.7: Figl7_07.cpp

// Reading and printing a sequential file.
#include <jostream>

#include <fstream> // file stream
#include <iomanip>

#include <string>

#include <cstdlib>

using namespace std;

VoOoO~NONND WN =

10 void outputLine(int, const string, double); // prototype

12 1int main(Q)

13 {

14 // ifstream constructor opens the file

I5 ifstream inClientFile("clients.dat", ios::in);
16

17 // exit program if ifstream could not open file
18 if (!'inClientFile)

19 {

20 cerr << "File could not be opened” << endl;
21 exit(1);

22 } // end if

23

Fig. 17.7 | Reading and printing a sequential file. (Part I of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

int account;
string name;
double balance;

cout << left << setw(10) << "Account” << setw(13)
<< "Name" << "Balance" << endl << fixed << showpoint;

// display each record in file
while (inClientFile >> account >> name >> balance)
outputLine(account, name, balance);
} // end main

// display single record from file
void outputLine(int account, const string name, double balance)
{
cout << Teft << setw(10) << account << setw(13) << name
<< setw(7) << setprecision(2) << right << balance << endl;
} // end function outputLine

Fig. 17.7 | Reading and printing a sequential file. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

Account
100
200
300
400
500

Name
Jones
Doe
White
Stone
Rich

Balance
24.98
345.67
0.00
-42.16
224.62

Fig. 17.7 | Reading and printing a sequential file. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

14

17.8 Reading Daia irom a Sequential File
(cont.)

« Objects of class 1 fstream are opened for input by de-fault.
« We could have used the statement
e ifstream inClientFile("clients.dat");
« toopenclients.dat forinput.
 Just as with an ofstream ob-ject, an 1fstream object can be

created without opening a specific file, because a file can be attached to
it later.

« Line 32 reads a set of data (i.e., a record) from the file.

« Each time line 32 executes, it reads another record from the file into the
variables account, name and balance.

« When the end of file has been reached, the implicit call to operator
void * in the wh1 1e condition returns the null pointer (which
converts to the boo value false), the 1 fstream destructor
function closes the file and the program terminates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

17.8 Reading Daia irom a Sequential File
(cont.)

 To retrieve data sequentially from a file, programs normally
start reading from the beginning of the file and read all the
data consecutively until the desired data is found.

It might be necessary to process the file sequentially several
times (from the beginning of the file) during the execution
of a program.

« Both 1stream and ostream provide member functions
for repositioning the file-position pointer (the byte num-ber
of the next byte in the file to be read or written).

- seekg (“ seek get”) for 1stream
- seekp (“ seek put”) for ostream

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

17.8 Reading Daia irom a Sequential File
(cont.)

« Each 1stream object has a “get pointer,” which
Indicates the byte number in the file from which the
next input Is to occur, and each ostream object has
a “put pointer,” which indi-cates the byte number in
the file at which the next output should be placed.

e The statement
e inClientFile.seekg(0);

* repositions the file-position pointer to the beginning
of the file (location 0) attached to TnClientFile.

« The argument to seekg normally is a 1ong integer.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

17.8 Reading Daia irom a Sequential File
(cont.)

A second argu-ment can be specified to indicate the
seek direction, which can be

- 10s: ‘beg (the de-fault) for positioning relative to the
beginning of a stream,

- 10s: cur for positioning relative to the current position in
a stream or

- 10s: :end for positioning relative to the end of a stream

 The file-position pointer is an integer value that
specifies the location in the file as a number of bytes
from the file’s starting location (this is also re-ferred
to as the offset from the beginning of the file).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

« Some examples of po-sitioning the “get” file-position
pointer are

e« // position to the nth byte of fileObject
(assumes 10s::beg)
fileObject.seekg(n);

e« // position n bytes forward in fileObject
fileObject.seekg(n, 1os::cur);

« // position n bytes back from end of fileObject
fileObject.seekg(n, 1os::end);

e« // position at end of fileObject
fileObject.seekg(0, 1os::end);

« The same operations can be performed using ostream
member function seekp.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

17.8 Reading Daia irom a Sequential File
(cont.)

« Member functions tellgand tel lp are provided to
return the current locations of the “get” and “put”
pointers, respectively.

» Figure 17.8 enables a credit manager to display the
account informa-tion for those customers with

— zero balances (i.e., customers who do not owe the company
any money),

— credit (negative) balances (i.e., customers to whom the
company owes money), and

— debit (positive) balances (i.e., customers who owe the

company money for goods and services re-ceived in the
past)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 17.8: Figl7_08.cpp
// Credit inquiry program.
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

#include <cstdlib>

using namespace std;

enum RequestType { ZERO_BALANCE = 1, CREDIT_BALANCE, DEBIT_BALANCE, END };
int getRequest();

bool shouldDisplay(int, double);

void outputLine(int, const string, double);

int main(Q)
{
// ifstream constructor opens the file
ifstream inClientFile("clients.dat"”, ios::1n);

// exit program if ifstream could not open file
if (!inClientFile)
{

cerr << "File could not be opened” << endl;

Fig. 17.8 | Credit inquiry program. (Part | of 7.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

exit(1);
} // end if

int request;
int account;
string name;
double balance;

// get user's request (e.g., zero, credit or debit balance)
request = getRequest();

// process user's request
while (request != END)
{
switch (request)
{
case ZERO BALANCE:
cout << "\nAccounts with zero balances:\n";
break;
case CREDIT_BALANCE:
cout << "\nAccounts with credit balances:\n";
break;

Fig. 17.8 | Credit inquiry program. (Part 2 of 7.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22

46 case DEBIT_BALANCE:

47 cout << "\nAccounts with debit balances:\n";
48 break;

49 } // end switch

50

51 // read account, name and balance from file

52 inClientFile >> account >> name >> balance;

53

54 // display file contents (until eof)

55 while (!inClientFile.eof())

56 {

57 // display record

58 if (shouldDisplay(request, balance))

59 outputLine(account, name, balance);

60

61 // read account, name and balance from file

62 inClientFile >> account >> name >> balance;

63 } // end inner while

64

65 inClientFile.clear(); // reset eof for next input
66 inClientFile.seekg(0); // reposition to beginning of file
67 request = getRequest(); // get additional request from user
68 } // end outer while

69

Fig. 17.8 | Credit inquiry program. (Pu9320fby Pearson Education, Inc. All Rights Reserved. 23

70 cout << "End of run." << endl;
71 } // end main

72

73 // obtain request from user

74 int getRequest()

75 {

76 int request; // request from user

77

78 // display request options

79 cout << "\nEnter request"” << endl

80 << " 1 - List accounts with zero balances” << end]
81 << " 2 - List accounts with credit balances" << end]l
82 << " 3 - List accounts with debit balances" << end]
83 << " 4 - End of run" << fixed << showpoint;

84

85 do // input user request

86 {

87 cout << "\n?7 ";

88 cin >> request;

89 } while (request < ZERO BALANCE && request > END);
90

91 return request;

92 } // end function getRequest

93

Fig' 17.8 | Credit ianiry program. @E&ﬂz@ﬂ@ Pearson Education, Inc. All Rights Reserved. 24

94
95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

// determine whether to display given record
bool shouldDisplay(int type, double balance)
{

// determine whether to display zero balances
if (type == ZERO_BALANCE && balance == 0)
return true;

// determine whether to display credit balances
if (type == CREDIT_BALANCE && balance < 0)
return true;

// determine whether to display debit balances
if (type == DEBIT_BALANCE && balance > 0)
return true;

return false;
} // end function shouldDisplay

// display single record from file
void outputLine(int account, const string name, double balance)
{
cout << Teft << setw(10) << account << setw(13) << name
<< setw(7) << setprecision(2) << right << balance << endl;
} // end function outputLine

Fig. 17.8 | Credit inquiry program. (Part 5 of 7.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25

Enter request
1 - List accounts
2 - List accounts
3 - List accounts
4 - End of run
71

Accounts with zero
300 White

Enter request
1 - List accounts
2 - List accounts
3 - List accounts
4 - End of run
? 2

with zero balances
with credit balances
with debit balances

balances:
0.00

with zero balances
with credit balances
with debit balances

Accounts with credit balances:

400 Stone

-42.16

Fig. 17.8 | Credit inquiry program. (Part 6 of 7.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

26

Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

7?3

Accounts with debit balances:
100 Jones 24.98
200 Doe 345.67
500 Rich 224.62

Enter request

1 - List accounts with zero balances

2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run
7 4

End of run.

Fig. 17.8 | Credit inquiry program. (Part 7 of 7.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

27

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

28

