

• In Fig. 17.4, the file is to be opened for output, so an ofstream object is
created.

• Two arguments are passed to the object’s constructor—the filename and the
file-open mode (line 12).

• For an ofstream object, the file-open mode can be either ios::out to output
data to a file or ios::app to append data to the end of a file (without
modifying any data already in the file).

• Existing files opened with mode ios::out are truncated—all data in the file
is discarded.

• If the specified file does not yet exist, then the ofstream object creates the
file, using that filename.

• The ofstream constructor opens the file—this estab-lishes a ―line of
communication‖ with the file.

• By default, ofstream objects are opened for output, so the open mode is not
required in the constructor call.

• Figure 17.5 lists the file-open modes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

• An ofstream object can be created without

opening a specific file—a file can be attached to the

object later.

• For example, the statement
• ofstream outClientFile;

• creates an ofstream object named

outClientFile.

• The ofstream member function open opens a file

and attaches it to an existing ofstream object as

follows:
• outClientFile.open("clients.dat", ios::out);

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

• Function exit terminates a program.

– The argument to exit is returned to the

environment from which the program was

invoked.

– Argument 0 indicates that the program terminated

normally; any other value indicates that the

program terminated due to an error.

– The calling environment (most likely the operating

system) uses the value returned by exit to

respond appropriately to the error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

• The opera-tor void * function can be

used to test an input object for end-of-file

instead of calling the eof member function

ex-plicitly on the input object.

• Figure 17.6 lists the keyboard combinations

for entering end-of-file for various computer

systems.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

• Creating an ifstream object opens a file for input.

• The ifstream constructor can receive the filename

and the file open mode as arguments.

• Line 15 creates an ifstream object called

inClientFile and associates it with the

clients.dat file.

• The arguments in parentheses are passed to the

ifstream constructor function, which opens the

file and establishes a ―line of communication‖ with

the file.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

• Objects of class ifstream are opened for input by de-fault.

• We could have used the statement
• ifstream inClientFile("clients.dat");

• to open clients.dat for input.

• Just as with an ofstream ob-ject, an ifstream object can be
created without opening a specific file, because a file can be attached to
it later.

• Line 32 reads a set of data (i.e., a record) from the file.

• Each time line 32 executes, it reads another record from the file into the
variables account, name and balance.

• When the end of file has been reached, the implicit call to operator
void * in the while condition returns the null pointer (which
converts to the bool value false), the ifstream destructor
function closes the file and the program terminates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• To retrieve data sequentially from a file, programs normally

start reading from the beginning of the file and read all the

data consecutively until the desired data is found.

• It might be necessary to process the file sequentially several

times (from the beginning of the file) during the execution

of a program.

• Both istream and ostream provide member functions

for repositioning the file-position pointer (the byte num-ber

of the next byte in the file to be read or written).

– seekg (― seek get‖) for istream

– seekp (― seek put‖) for ostream

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

• Each istream object has a ―get pointer,‖ which

indicates the byte number in the file from which the

next input is to occur, and each ostream object has

a ―put pointer,‖ which indi-cates the byte number in

the file at which the next output should be placed.

• The statement
• inClientFile.seekg(0);

• repositions the file-position pointer to the beginning

of the file (location 0) attached to inClientFile.

• The argument to seekg normally is a long integer.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

• A second argu-ment can be specified to indicate the

seek direction, which can be

– ios::beg (the de-fault) for positioning relative to the

beginning of a stream,

– ios::cur for positioning relative to the current position in

a stream or

– ios::end for positioning relative to the end of a stream

• The file-position pointer is an integer value that

specifies the location in the file as a number of bytes

from the file’s starting location (this is also re-ferred

to as the offset from the beginning of the file).
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

• Some examples of po-sitioning the ―get‖ file-position
pointer are

• // position to the nth byte of fileObject
(assumes ios::beg)
fileObject.seekg(n);

• // position n bytes forward in fileObject
fileObject.seekg(n, ios::cur);

• // position n bytes back from end of fileObject
fileObject.seekg(n, ios::end);

• // position at end of fileObject
fileObject.seekg(0, ios::end);

• The same operations can be performed using ostream
member function seekp.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• Member functions tellg and tellp are provided to

return the current locations of the ―get‖ and ―put‖

pointers, respectively.

• Figure 17.8 enables a credit manager to display the

account informa-tion for those customers with

– zero balances (i.e., customers who do not owe the company

any money),

– credit (negative) balances (i.e., customers to whom the

company owes money), and

– debit (positive) balances (i.e., customers who owe the

company money for goods and services re-ceived in the

past)
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

28©1992-2010 by Pearson Education, Inc. All Rights Reserved.

