

• Data that is formatted and written to a sequential file as shown in
Section 17.4 cannot be modified without the risk of destroying other
data in the file.

• For example, if the name ―White‖ needs to be changed to
―Worthington,‖ the old name cannot be overwritten without
corrupting the file.

• The record for White was written to the file as
• 300 White 0.00

• If this record were rewritten beginning at the same location in the file
using the longer name, the record would be

• 300 Worthington 0.00

• The new record contains six more characters than the original record.

• Therefore, the characters beyond the second ―o‖ in ―Worthington‖
would overwrite the beginning of the next sequential record in the file.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

• The problem is that, in the formatted input/output
model using the stream insertion operator << and
the stream extraction operator >>, fields—and
hence records—can vary in size.
– For example, values 7, 14, –117, 2074, and 27383 are

all ints, which store the same number of ―raw data‖
bytes internally (typically four bytes on today’s
popular 32-bit machines).

– However, these integers become different-sized fields
when output as formatted text (character sequences).

– Therefore, the formatted input/output model usually is
not used to update records in place.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

• Such updating can be done awkwardly.

• For example, to make the preceding name change, the

records before 300 White 0.00 in a sequential file

could be copied to a new file, the updated record then

written to the new file, and the records after 300
White 0.00 copied to the new file.

• This requires process-ing every record in the file to

update one record.

• If many records are being updated in one pass of the

file, though, this technique can be acceptable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

• Sequential files are inappropriate for instant-access applications,
in which a particular record must be located immediately.

• Common instant-access applications are
– airline reservation systems,
– banking systems,
– point-of-sale systems,
– automated teller machines and
– other kinds of transaction-processing systems that require rapid access

to specific data.

• A bank might have hundreds of thousands (or even millions) of
other customers, yet, when a customer uses an automated teller
machine, the program checks that customer’s account in a few
seconds or less for sufficient funds.

• This kind of instant access is made possible with random-access
files.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

• Individual records of a random-access file can be accessed
directly (and quickly) without having to search other records.

• C++ does not impose structure on a file. So the application that
wants to use random-access files must create them.

• Perhaps the easiest method is to require that all records in a file
be of the same fixed length.

• Using same-size, fixed-length records makes it easy for a
program to calculate (as a function of the record size and the
record key) the exact location of any record relative to the begin-
ning of the file.

• Figure 17.9 illustrates C++’s view of a random-access file
composed of fixed-length records (each record, in this case, is
100 bytes long).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

• Data can be inserted into a random-access file

without destroying other data in the file.

• Data stored previously also can be updated or

deleted without rewriting the entire file.

• In the following sections, we explain how to

create a random-access file, enter data into the

file, read the data both sequentially and

randomly, update the data and delete data that

is no longer needed.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• The ostream member function write outputs a fixed
number of bytes, beginning at a specific location in
memory, to the specified stream.

• When the stream is associated with a file, function write
writes the data at the location in the file specified by the
―put‖ file-position pointer.

• The istream member function read inputs a fixed
number of bytes from the specified stream to an area in
memory beginning at a specified address.

• If the stream is associated with a file, function read inputs
bytes at the location in the file specified by the ―get‖ file-
position pointer.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

• Outputting a four-byte integer as text could print as few digits as
one or as many as 11 (10 digits plus a sign, each requiring a
single byte of storage)

• The following statement always writes the binary version of the
integer’s four bytes (on a machine with four-byte integers):

• outFile.write(reinterpret_cast<
const char * >(&number), sizeof(number));

• Function write treats its first argument as a group of bytes by
viewing the object in memory as a const char *, which is a
pointer to a byte.

• Starting from that location, function write outputs the number
of bytes specified by its second argument—an integer of type
size_t.

• istream function read can be used to read the four bytes back
into an integer vari-able.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

• Most pointers that we pass to function write as the first argument are
not of type const char *.

• Must convert the pointers to those objects to type const char *;
otherwise, the compiler will not compile calls to function write.

• C++ provides the reinterpret_cast operator for cases like this in
which a pointer of one type must be cast to an unrelated pointer type.

• Without a reinterpret_cast, the write statement that outputs
the integer number will not compile because the compiler does not
allow a pointer of type int * (the type returned by the expression
&number) to be passed to a function that expects an argument of type
const char *—as far as the compiler is concerned, these types are
incompatible.

• A reinterpret_cast is performed at compile time and does not
change the value of the object to which its operand points.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

• In Fig. 17.12, we use reinterpret_cast
to convert a ClientData pointer to a

const char *, which reinterprets a

ClientData object as bytes to be output to a

file.

• Random-access file-processing programs

typically write one object of a class at a time,

as we show in the following examples.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• Figure 17.13 writes data to the file credit.dat
and uses the combina-tion of fstream functions

seekp and write to store data at exact locations in

the file.

• Function seekp sets the ―put‖ file-position pointer

to a specific position in the file, then write outputs

the data.

• Line 6 includes the header file ClientData.h
defined in Fig. 17.10, so the program can use

ClientData objects.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• Lines 47–48 position the ―put‖ file-position pointer for object
outCredit to the byte location calculated by

• (client.getAccountNumber() - 1) *
sizeof(ClientData)

• Because the account number is between 1 and 100, 1 is
subtracted from the account number when calculating the byte
location of the record.
– Thus, for record 1, the file-position pointer is set to byte 0 of the file.

• Line 16 uses the fstream object outCredit to open the
existing credit.dat file.
– The file is opened for input and output in binary mode by combining

the file-open modes ios::in, ios::out and ios::binary.

• Multiple file-open modes are combined by separating each open
mode from the next with the bitwise inclusive OR operator (|).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

• In this section, we develop a program that reads a file
sequentially and prints only those records that contain data.

• The istream function read inputs a specified number of
bytes from the current position in the specified stream into
an object.

• For example, lines 30–31 from Fig. 17.14 read the number
of bytes specified by sizeof(ClientData) from the
file associated with ifstream object inCredit and
store the data in the client record.

• Function read requires a first argument of type char *.

• Since &client is of type ClientData *, &client
must be cast to char * using the cast operator
reinterpret_cast.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

• This chapter and Chapter 15 introduced the object-oriented style
of input/output.

• An object’s member functions are not input or output with the
object’s data; rather, one copy of the class’s member functions
remains available internally and is shared by all objects of the
class.

• When object data members are output to a disk file, we lose the
object’s type information.

• We store only the values of the object’s attributes, not type
information, on the disk.

• If the program that reads this data knows the object type to which
the data corresponds, the program can read the data into an object
of that type as we did in our random-access file examples.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

• An interesting problem occurs when we store objects of different types
in the same file.

• How can we distinguish them (or their collections of data members) as
we read them into a program?

• The problem is that objects typically do not have type fields (we
discussed this issue in Chapter 13).

• One approach used by several programming languages is called object
serialization.

• A so-called serialized object is an object represented as a sequence of
bytes that includes the object’s data as well as information about the
object’s type and the types of data stored in the object.

• After a serialized object has been written to a file, it can be read from
the file and deserialized—that is, the type information and bytes that
represent the object and its data can be used to recreate the object in
memory.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

• C++ does not provide a built-in serialization

mechanism; however, there are third party and

open source C++ libraries that support object

serialization.

• The open source Boost C++ Libraries

(www.boost.org) provide support for

serializing objects in text, binary and

extensible markup language (XML) formats

(www.boost.org/libs/serializati
on/doc/index.html).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

• The class template basic_string provides typical string-
manipulation operations such as copying, searching, etc.

• The template definition and all support facilities are defined
in namespace std; these include the typedef
statement

• typedef basic_string< char > string;

• A typedef is also provided for the wchar_t type
(wstring).

– Type wchar_t stores characters (e.g., two-byte characters, four-
byte characters, etc.) for supporting other character sets.

• To use strings, include header file <string>.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

• A string object can be initialized with a constructor
argument such as

• // creates a string from a const char *
string text("Hello");

• which creates a string containing the characters in
"Hello", or with two constructor arguments as in

• string name(8, 'x'); // string of 8 'x'
characters

• which creates a string containing eight 'x' characters.

• Class string also provides a default constructor (which
creates an empty string) and a copy constructor.

• An empty string is a string that does not contain any
characters.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

• A string also can be initialized via the alternate

constructor syntax in the definition of a string as

in
• // same as: string month("March");
string month = "March";

• Remember that operator = in the preceding

declaration is not an assignment; rather it’s an

implicit call to the string class constructor, which

does the conversion.

• Class string provides no conversions from int or

char to string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

• Unlike C-style char * strings, strings are not
necessarily null terminated.

• The length of a string can be retrieved with member
function length and with member function size.

• The subscript operator, [], can be used with strings
to access and modify individual characters.

• Like C-style strings, strings have a first subscript of
0 and a last subscript of length() – 1.

• Most string member functions take as arguments a
starting subscript location and the number of characters
on which to operate.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

• The stream extraction operator (>>) is overloaded to
support strings.
– Input is delimited by white-space characters.

– When a delimiter is encountered, the input operation is
terminated.

• Function getline also is overloaded for strings.

• Assuming string1 is a string, the statement
• getline(cin, string1);

• reads a string from the keyboard into string1.

• Input is delimited by a newline ('\n'), so getLine
can read a line of text into a string object.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

• Line 19 uses the subscript operator to assign 'r'
to string3[2] (forming "car") and to
assign 'r' to string2[0] (forming "rat").

• Lines 25–26 output the contents of string3 one
character at a time using member function at,
which provides checked access (or range
checking)
– going past the end of the string throws an
out_of_range exception.

• The subscript operator, [], does not provide
checked access.

• This is consistent with its use on arrays.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

• Class string provides member functions for

comparing strings.

• Figure 18.2 demonstrates class string’s

comparison capabilities.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

• All the string class overloaded relational and equality
operator functions return bool values.

• Line 29 uses string member function compare to
compare string1 to string2.
– The function returns 0 if the strings are equivalent, a positive

number if string1 is lexicographically greater than string2 or
a negative number if string1 is lexicographically less than
string2.

• When we say that a string is lexicographically less than
another, we mean that the compare method uses the
numerical values of the characters (see Appendix B, ASCII
Character Set) in each string to determine that the first
string is less than the second.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

• Class string provides member function

substr for retrieving a substring from a

string.

• The result is a new string object that is

copied from the source string.

• Figure 18.3 demonstrates substr.

• The first argument of substr specifies the

beginning subscript of the desired substring;

the second argument specifies the substring’s

length. ©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

• Class string provides member function swap for

swapping strings.

• Figure 18.4 swaps two strings.

• Lines 9–10 declare and initialize strings first
and second.

• Each string is then output.

• Line 15 uses string member function swap to

swap the values of first and second.

• The string member function swap is useful for

implementing programs that sort strings.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

• Class string provides member functions for gathering
information about a string’s size, length, capacity, maximum
length and other characteristics.

• A string’s size or length is the number of characters currently
stored in the string.

• A string’s capacity is the number of characters that can be
stored in the string without allocating more memory.
– The capacity of a string must be at least equal to the current size of

the string, though it can be greater.
– The exact capacity of a string depends on the implementation.

• The maximum size is the largest possible size a string can
have.
– If this value is exceeded, a length_error exception is thrown.

• Figure 18.5 demonstrates string class member functions for
determining various characteristics of strings.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

54©1992-2010 by Pearson Education, Inc. All Rights Reserved.

