

• The program declares empty string string1 (line 11) and
passes it to function printStatistics (line 14).

• Function printStatistics (lines 42–48) takes a reference
to a const string as an argument and outputs
– capacity (using member function capacity),
– maximum size (using member function max_size), size (using member

function size),

– length (using member function length) and

– whether the string is empty (using member function empty).

• A size and length of 0 indicate that there are no characters stored
in a string.

• When the initial capacity is 0 and characters are placed into the
string, memory is allocated to accommodate the new
characters.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

• Line 30 uses the overloaded += operator to

concatenate a 46-character-long string to string1.

• The capacity has increased to 63 elements and the

length is now 50.

• Line 35 uses member function resize to increase the

length of string1 by 10 characters.

• The additional elements are set to null characters.

• The output shows that the capacity has not changed

and the length is now 60.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

• Class string provides const member

functions for finding substrings and characters

in a string.

• Figure 18.6 demonstrates the find functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• Line 14 attempts to find "is" in string1
using function find.

– If "is" is found, the subscript of the starting

location of that string is returned.

– If the string is not found, the value

string::npos (a public static constant

defined in class string) is returned.

– This value is returned by the string find-

related functions to indicate that a substring or

character was not found in the string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

• Line 15 uses member function rfind to search

string1 backward (i.e., right-to-left).

• If "is" is found, the subscript location is

returned.

• If the string is not found, string::npos is

returned.

• [Note: The rest of the find functions presented

in this section return the same type unless

otherwise noted.]
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

• Line 18 uses member function find_first_of to locate the
first occurrence in string1 of any character in "misop".
– The searching is done from the beginning of string1.

• Line 23 uses member function find_last_of to find the
last occurrence in string1 of any character in "misop".
– The searching is done from the end of string1.

• Line 28 uses member function find_first_not_of to find
the first character in string1 not contained in "noi
spm".
– Searching is done from the beginning of string1.

• Line 34 uses member function find_first_not_of to
find the first character not contained in "12noi spm".
– Searching is done from the end of string1.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

• Lines 40–41 use member function

find_first_not_of to find the first

character not contained in "noon is 12
pm; midnight is not.".

– In this case, the string being searched contains

every character specified in the string argument.

– Because a character was not found,

string::npos (which has the value –1 in this

case) is returned.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

• Figure 18.7 demonstrates string member

functions for replacing and erasing characters.

• Line 20 uses string member function erase
to erase everything from (and including) the

character in position 62 to the end of

string1.

• [Note: Each newline character occupies one

element in the string.]

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

• Lines 26–33 use find to locate each

occurrence of the space character.

• Each space is then replaced with a period by a

call to string member function replace.

• Function replace takes three arguments:

– the subscript of the character in the string at

which replacement should begin,

– the number of characters to replace and

– the replacement string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

• Lines 37–45 use function find to find every period and

another overloaded function replace to replace every

period and its following character with two semicolons.

• The arguments passed to this version of replace are

– the subscript of the element where the replace operation begins,

– the number of characters to replace,

– a replacement character string from which a substring is selected to

use as replacement characters,

– the element in the character string where the replacement substring

begins and

– the number of characters in the replacement character string to use.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

• Class string provides member functions for inserting

characters into a string.

• Figure 18.8 demonstrates the string insert
capabilities.

• Line 19 uses string member function insert to insert

string2’s content before element 10 of string1.

• Line 22 uses insert to insert string4 before

string3’s element 3.

– The last two arguments specify the starting and last element of

string4 that should be inserted.

– Using string::npos causes the entire string to be inserted.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• Class string provides member functions for converting
string class objects to C-style pointer-based strings.

• As mentioned earlier, unlike pointer-based strings, strings are
not necessarily null terminated.

• These conversion functions are useful when a given function
takes a pointer-based string as an argument.

• Figure 18.9 demonstrates conversion of strings to pointer-
based strings.

• The string string1 is initialized to "STRINGS", ptr1 is
initialized to 0 and length is initialized to the length of
string1.

• Memory of sufficient size to hold a pointer-based string
equivalent of string string1 is allocated dynamically and
attached to char pointer ptr2.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

• Line 15 uses string member function copy to copy

object string1 into the char array pointed to by

ptr2.

• Line 16 manually places a terminating null character

in the array pointed to by ptr2.

• Line 20 uses function c_str to obtain a const
char * that points to a null terminated C-style string

with the same content as string1.

• The pointer is passed to the stream insertion operator

for output.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

• Line 26 assigns the const char * ptr1 a pointer returned by
class string member function data.

• This member function returns a non-null-terminated C-style
character array.

• We do not modify string string1 in this example.

• If string1 were to be modified (e.g., the string’s dynamic
memory changes its address due to a member function call such
as string1.insert(0, "abcd");), ptr1 could become
invalid—which could lead to unpredictable results.

• Lines 29–30 use pointer arithmetic to output the character array
pointed to by ptr1.

• In lines 32–33, the C-style string pointed to by ptr2 is output
and the memory allocated for ptr2 is deleted to avoid a
memory leak.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

• Class string provides iterators for forward and

backward traversal of strings.

• Iterators provide access to individual characters with

syntax that is similar to pointer operations.

• Iterators are not range checked.

• In this section we provide ―mechanical examples‖ to

demonstrate the use of iterators.

• We discuss more robust uses of iterators in

Chapter 22, Standard Template Library (STL).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

• Figure 18.10 demonstrates iterators.

• Lines 9–10 declare string string1 and
string::const_iterator iterator1.

• A const_iterator is an iterator that cannot modify the
string—in this case the string through which it’s
iterating.

• Iterator iterator1 is initialized to the beginning of
string1 with the string class member function begin.

• Two versions of begin exist—one that returns an
iterator for iterating through a non-const string
and a const version that returns a const_iterator for
iterating through a const string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

• Lines 16–20 use iterator iterator1 to

―walk through‖ string1.

• Class string member function end returns

an iterator (or a const_iterator) for

the position past the last element of string1.

• Each element is printed by dereferencing the

iterator much as you’d dereference a pointer,

and the iterator is advanced one position using

operator ++.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

• Class string provides member functions rend and

rbegin for accessing individual string characters

in reverse from the end of a string toward the

beginning.

• Member functions rend and rbegin return

reverse_iterators or const_reverse_iterators
(based on whether the string is non-const or

const).

• We’ll use iterators and reverse iterators more in

Chapter 22.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

• A recursive function is a function that calls itself, either directly,
or indirectly (through another function).

• Recursive problem-solving approaches have a number of
elements in common.
– A recursive function is called to solve a problem.

– The function actu-ally knows how to solve only the simplest case(s), or
so-called base case(s).

– If the func-tion is called with a base case, the function simply returns a
result.

– If the function is called with a more complex problem, it typically
divides the problem into two conceptual pieces—a piece that the
function knows how to do and a piece that it does not know how to do.

– This new problem looks like the original, so the function calls a copy of
itself to work on the smaller problem—this is referred to as a recursive
call and is also called the recursion step.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

• The recursion step often includes the key-word

return, because its result will be combined

with the portion of the problem the function

knew how to solve to form the result passed

back to the original caller, possibly main.

• The recursion step executes while the original

call to the function is still ―open,‖ i.e., it has

not yet finished executing.

• The recursion step can result in many more

such recursive calls.©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

• The factorial of a nonnegative integer n, written
n! (and pronounced “n factorial”), is the product

• n · (n – 1) · (n – 2) · … · 1

• with 1! equal to 1, and 0! defined to be 1.

• The factorial of an integer, number, greater than
or equal to 0, can be calculated iteratively
(nonrecursively) by using a loop.

• A recursive definition of the factorial function is
arrived at by observing the follow-ing algebraic
relationship:

• n! = n · (n – 1)!

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

44©1992-2010 by Pearson Education, Inc. All Rights Reserved.

