Lecture 26:
Recursion,

Arrays, and Vectors

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 11, 2010

6.20 Example Using Recuirsion:
Filbonacci Series

The Fibonacci series
e 0, 1+ 1+ 24 32 5.1 8-+ 13- 21- ..

begins with 0 and 1 and has the property that each
subsequent Fibonacci number is the sum of the previous
two Fibonacci numbers.

The series occurs In nature and, in particular, describes a
form of spiral.

The ratio of successive Fibonacci numbers converges on a
constant value of 1.618....

This number, too, frequently occurs in nature and has been
called the golden ratio or the golden mean.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

6.20 Example Using Recursion:
Filbonacci Series (cont.)

 The Fibonacci series can be defined
recursively as follows:

e fibonacci (0) 0

fibonacci (1) 1
fibonacci(n) = fibonacci(n - 1) +
fibonacci(n - Z2)

« The program of Fig. 6.30 calculates the nth
Fibonacci number recursively by using
function f7bonacci.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

oo ~NSUNhE WN -

WIN=OC

14
15
16
17
18
19
20

// Fig. 6.30: fig06_30.cpp

// Testing the recursive fibonacci function.
#include <iostream>

using namespace std;

unsigned Tong fibonacci(unsigned Tong); // function prototype

int main()
{
// calculate the fibonacci values of 0 through 10
for (int counter = 0; counter <= 10; counter++)
cout << "fibonacci(" << counter << ") ="
<< fibonacci(counter) << endl;

// display higher fibonacci values

cout << "fibonacci(20) = " << fibonacci(20) << endl;
cout << "fibonacci(30) = " << fibonacci(30) << endl;
cout << "fibonacci(35) = " << fibonacci(35) << endl;

} // end main

Fig. 6.30 | Demonstrating function fibonacci. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21 // recursive function fibonacci
22 unsigned long fibonacci(unsigned long number)

23 {

24 if ¢ (number == 0) || C number == 1)) // base cases

25 return number;

26 else // recursion step

27 return fibonacci(number - 1) + fibonacci(number - 2);

28 1} // end function fibonacci

fibonacci (
fibonacci (
fibonacci (
fibonacci (
fibonacci (
fibonacci(
fibonacci(
fibonacci(
fibonacci (
fibonacci(
fibonacci(
fibonacci (
fibonacci (
fibonacci (

WwWwNhNRPRPROoNoOOUVA, WNEO
(AL ANV AW AN A A A
| | | | | | R | A | A |

1O OO
LN N

COuUTWNRERO

13

21

34
55
6765
832040
9227465

Fig. 6.30 | Demonstrating function fibonacci. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Example Using Recursion:
Filbonacci Series (cont.)

Figure 6.31 shows how function fibonacci would
evaluate fibonacci (3).

This figure raises some interesting issues about the order in
which C++ compilers evaluate the operands of operators.

This Is a separate issue from the order in which operators
are applied to their operands, namely, the order dictated by
the rules of operator precedence and associativity.

Most programmers simply assume that operands are
evaluated left to right.

C++ does not specify the order in which the operands of
most operators (including +) are to be evaluated.

Therefore, you must make no as-sumption about the order
In which these calls execute.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

fibonacci(3) I
—
return fibonacci(2) I + fibonacci(1)
-~ ~

- N
return fibonacci(1) + fibonacci(0) return 1 I
~ ~ ~ —~
return 1 I return 0 I

Fig. 6.31 | Set of recursive calls to function fibonacci.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

<53 Performance Tip 6.8
227 Avoid Fibonacci-style recursive programs that result in
an exponential “explosion” of calls.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

6.21 Reecursion vs. lteration

e Both Iteration and recursion are based on a control
statement: Iteration uses a repetition structure;
recursion uses a selection structure.

 Both iteration and recursion involve repetition:
Iteration explicitly uses a repetition structure;
recursion achieves repetition through repeated
function calls.

 |teration and recursion both involve a termination
test: Iteration terminates when the loop-continuation
condition fails; recursion terminates when a base case
IS recognized.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

6.21 Recursion vs. lteration (cont.)

* Iteration with counter-controlled repetition and recursion
both gradually approach termination: Iteration modifies a
counter until the counter assumes a value that makes the
loop-continuation condition fail; recursion produces simpler
versions of the original problem until the base case Is
reached.

 Both it-eration and recursion can occur infinitely: An
Infinite loop occurs with iteration if the loop-continuation
test never becomes false; infinite recursion occurs if the
recursion step does not reduce the problem during each
recursive call in a manner that converges on the base case.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

Ooe~NGOWNbh WN =

10
11
12
13
14
15
16

// Fig. 6.32: fig06_32.cpp

// Testing the iterative factorial function.
#include <iostream>

#include <iomanip>

using namespace std;

unsigned Tong factorial(unsigned Tong); // function prototype
int main(Q)

// calculate the factorials of 0 through 10
0; counter <= 10; counter++)
cout << setw(2) << counter << "! =
<< endl;
} // end main

for (int counter
<< factorial(counter)

Fig. 6.32 | Iterative factorial solution. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17
18
19

// iterative function factorial

unsigned Tong factorial(unsigned long number)

{

20 unsigned long result = 1;

21

22 // iterative factorial calculation
23 for (unsigned Tong i = number; i >= 1; i--)
24 result *= 1i;

25

26 return result;

27 1} // end function factorial

0! =1

1! =1

2! =2

3! = 6

41 = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

Fig. 6.32 | Iterative factorial solution. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12

Software Engineering Observation 6.15

Any problem that can be solved recursively can also be
solved iteratively (nonrecursively). A recursive approach
is normally chosen when the recursive approach more
naturally mirrors the problem and results in a program
that is easier to understand and debug. Another reason

to choose a recursive solution is that an iterative solution
1s not apparent.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

<53 Performance Tip 6.9
22| Avoid using recursion in performance situations. Recur-
sive calls take time and consume additional memory.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

7.7 Searching Arrays with Linear Search

« QOften it may be necessary to determine whether an array
contains a value that matches a certain key value.
— Called searching.

« The linear search compares each element of an array with a
search key (line 36).

— Because the array 1s not in any particular order, it’s just as likely
that the value will be found in the first element as the last.

— On average, therefore, the program must compare the search key
with half the elements of the array.

» To determine that a value is not in the array, the program
must compare the search key to every element of the array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 7.18: fig07_18.cpp

2 // Linear search of an array.

3 #include <iostream>

4 using namespace std;

5

6 1int linearSearch(const int [], int, int); // prototype
7

8 1int main(Q)

9 {

10 const int arraySize = 100; // size of array a
11 int a[arraySize]; // create array a

12 int searchKey; // value to locate in array a
13

14 for (int i = 0; i < arraySize; 1i++)

15 al 1] =2*1; // create some data

16

17 cout << "Enter integer search key: ";

18 cin >> searchKey;

19
20 // attempt to locate searchKey in array a
21 int element = linearSearch(a, searchKey, arraySize);
22

Fig. 7.18 | Linear search of an array. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// display results

if (element != -1)
cout << "Found value in element " << element << endl;
else

cout << "Value not found" << endl;
Y // end main

// compare key to every element of array until location is
// found or until end of array 1is reached; return subscript of
// element if key 1is found or -1 if key not found
int linearSearch(const int array[], int key, int sizeOfArray)
{

for (int j = 0; j < sizeOfArray; j++)

if (array[j 1 == key) // if found,
return j; // return location of key

return -1; // key not found
Y // end function linearSearch

Enter integer search key: 36
Found value in element 18

Fig. 7.18 | Linear search of an array. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Enter integer search key: 37
Value not found

Fig. 7.18 | Linear search of an array. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.8 Sorting Arrays with Insertion Sort

 Sorting data

— placing the data into some particular order such as
ascending or descending

— an intriguing prob-lem that has attracted some of
the most intense research efforts in the field of
computer science.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

<55 Performance Tip 7.3

P2 Simple algorithms can perform poorly. Their virtue is
that they re easy to write, test and debug. More complex
algorithms are sometimes needed to realize optimal per-
formance.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.6 Sorting Arrays with Insertion Sort

(eont.)

Insertion sort—a simple, but inefficient, sorting
algorithm.

The first iteration of this algorithm takes the second
element and, 1f 1t’s less than the first element, swaps it

with the first element (i.e., the program inserts the
second element In front of the first element).

The second iteration looks at the third element and
Inserts it into the correct position with respect to the
first two elements, so all three elements are in order.

At the i™" iteration of this algorithm, the first i elements
In the original array will be sorted.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18

// Fig. 7.19: fig07_19.cpp

// This program sorts an array's values into ascending order.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int arraySize = 10; // size of array a
int data[arraySize] = { 34, 56, 4, 10, 77, 51, 93, 30, 5, 52 };
int 1insert; // temporary variable to hold element to insert

cout << "Unsorted array:\n";
// output original array

for (int i = 0; i < arraySize; i++)
cout << setw(4) << datal[i];

Fig. 7.19 | Sorting an array with insertion sort. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// insertion sort
// loop over the elements of the array
for (int next = 1; next < arraySize; next++)

{
insert = datal[next]; // store the value in the current element
int moveltem = next; // initialize Tocation to place element
// search for the Tocation in which to put the current element
while ((moveltem > 0) && (data[moveItem - 1] > insert))
{
// shift element one slot to the right
data[moveltem] = data[moveltem - 1];
moveltem--;
} // end while
data[moveltem] = insert; // place inserted element into the array
} // end for

Fig. 7.19 | Sorting an array with insertion sort. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

38 cout << "\nSorted array:\n";

39

40 // output sorted array

41 for (int i = 0; i < arraySize; i++)
42 cout << setw(4) << datal[i 1];

43

44 cout << endl;

45 } // end main

Unsorted array:

34 56 4 10 77 51 93 30 5 52
Sorted array:

4 5 10 30 34 51 52 56 77 93

Fig. 7.19 | Sorting an array with insertion sort. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

[3] 7/

Multidimensional Arrays

Arrays with two dimensions (i.e., subscripts) often represent
tal:iles of values consisting of information arranged in rows and
columns.

To identify a particular table element, we must specify two
subscripts.

—]%iy convention, the first identifies the element’s row and the second
identifies the element’s column.

Often called two-dimensional arrays or 2-D arrays.

Arrays with two or more dimensions are known as
multidimensional arrays.
Figure 7.20 illustrates a two-dimensional array, a.

— The array contains three rows and four columns, so it’s said to be a 3-
by-4 array.

— In general, an array with m rows and n columns is called an m-by-n
array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Row |

Column 0 Column | Column 2 Column 3
Rowo al 0 J[L 0] afl0]1l 1] alo0]Jl 2] alo0]J[3]
al1100]1 af1]101]1 al110271 alf11[3]
Row2 a[2][0] af[2]1[1]1 al 210271 al[2 1[3]

Column subscript
Row subscript
Array name

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Fig. 7.20 | Two-dimensional array with three rows and four columns.

7.9 Multidimensional Arrays (cont.)

A multidimensional array can be initialized in
Its declaration much like a one-dimensional
array.

The values are grouped by row in braces.

If there are not enough initializers for a given
row, the remaining elements of that row are
initialized to O.

Figure 7.21 demonstrates initializing two-
dimensional arrays in declarations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 7.21: fig07_21.cpp

2 // Initializing multidimensional arrays.

3 #include <iostream>

4 using namespace std;

5

6 void printArray(const int []J[3]); // prototype

7 const int rows = 2;

8 const int columns = 3;

9

10 int main()

11 {

12 int arrayl[rows][columns 1 ={ {1, 2, 3}, {4, 5, 6 } };
13 int array2[rows][columns 1 = { 1, 2, 3, 4, 5 };
14 int array3[rows][columns 1 ={ {1, 2}, {4 1} };
15

16 cout << "Values 1in arrayl by row are:" << endl;

17 printArray(arrayl);

18

19 cout << "\nValues in array2 by row are:" << endl;
20 printArray(array2);
21
22 cout << "\nValues 1in array3 by row are:" << endl;
23 printArray(array3);
24 1} // end main

Fig. 7.21 | Initializing multidimensional arrays. (Part | of 3.)
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25
26
27
28
29
30
31
32
33
34
35
36
37
38

// output array with two rows and three columns
void printArray(const int a[][columns])
{
// Tloop through array's rows
for (int i = 0; i < rows; i++)
{
// loop through columns of current row
for (int j = 0; j < columns; j++)
cout << al 1 J[L J 1 << " '3

cout << endl; // start new line of output
} // end outer for
} // end function printArray

Fig. 7.21 | Initializing multidimensional arrays. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Values in arrayl by row are:
123
456

Values in array2 by row are:
123
450

Values in array3 by row are:
12
4 0

OO m

Fig. 7.21 | Initializing multidimensional arrays. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.11 Introduction to C++ Standard
Library Class Template vector

C++ Standard Library class template vector represents a more
robust type of array featuring many additional capabilities.

C-style pointer-based arrays have great potential for errors and
are not flexible

— A program can easily “walk off” either end of an array, because C++
does not check whether subscripts fall outside the range of an array.

— Two ar-rays cannot be meaningfully compared with equality operators
or relational operators.

— When an array is passed to a general-purpose function designed to
handle arrays of any size, the size of the array must be passed as an
additional argument.

— One array cannot be assigned to another with the assignment
operator(s).
Class template vector allows you to create a more powerful
and less error-prone alternative to arrays.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.11 Introduction to C++ Standard
Lilbrary Class Template vector (cont.)

» The program of Fig. 7.25 demonstrates
capabilities provided by class template
vector that are not available for C-style
pointer-based arrays.

» Standard class template vector is defined in

header <vector> and belongs to namespace
std.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Ooe~NGOWNbh WN =

10
11
12
13
14
15
16
17
18
19
20

// Fig. 7.25: fig07_25.cpp

// Demonstrating C++ Standard Library class template vector.
#include <iostream>

#include <iomanip>

#include <vector>

using namespace std;

void outputVector(const vector< int > &); // display the vector

void inputVector(vector< int > &); // input values into the vector

int main()

{

vector< int > integersl(7); // 7-element vector< int >
vector< int > integers2(10); // 10-element vector< int >

// print integersl size and contents

cout << "Size of vector integersl is << integersl.size()
<< "\nvector after initialization:" << endl;

outputVector(integersl);

Fig. 7.25 | C++ Standard Library class template vector. (Part | of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// print integers2 size and contents

cout << "\nSize of vector integers2 is " << integers2.size()
<< "\nvector after initialization:" << endl;

outputVector(integers2);

// input and print integersl and integers2
cout << "\nEnter 17 integers:" << endl;
inputVector(integersl);

inputVector(integers2);

cout << "\nAfter 1input, the vectors contain:\n"
<< "integersl:" << endl;

outputVector(integersl);

cout << "integers2:" << endl;

outputVector(integers2);

// use inequality (!=) operator with vector objects
cout << "\nEvaluating: integersl != integers2"” << endl;

if (integersl != integers2)
cout << "integersl and integersZ2 are not equal'" << endl;

Fig. 7.25 | C++ Standard Library class template vector. (Part 2 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

// create vector integers3 using integersl as an
// initializer; print size and contents
vector< int > integers3(integersl); // copy constructor

cout << "\nSize of vector integers3 is " << integers3.size()
<< "\nvector after initialization:" << endl;
outputVector(integers3);

// use overloaded assignment (=) operator
cout << "\nAssigning integers2 to integersl:" << endl;
integersl = integers2; // assign integers2 to integersl

cout << "integersl:" << endl;
outputVector(integersl);
cout << "integers2:" << endl;
outputVector(integers2);

// use equality (==) operator with vector objects
cout << "\nEvaluating: integersl == integers2"” << endl;

if (integersl == integers2)
cout << "integersl and integersZ2 are equal” << endl;

Fig. 7.25 | C++ Standard Library class template vector. (Part 3 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

66
67
68
69
70
71
72
73
74
75
76
77
78
79

// use square brackets to create rvalue

cout << "\nintegersl[5] 1s

<< integersl[5];

// use square brackets to create lvalue
cout << "\n\nAssigning 1000 to integersl[5]" << endl;

integersl[5] = 1000;

cout << "integersl:" << endl;
outputVector(integersl);

// attempt to use out-

cout << "\nAttempt to

of-range subscript

assign 1000 to integersl.at(15)" << endl;

integersl.at(15) = 1000; // ERROR: out of range

} // end main

Fig. 7.25 | C++ Standard Library class template vector. (Part 4 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

80 // output vector contents
81 void outputVector(const
82 {

vector< int > &array)

83 size_t i; // declare control variable
84

85 for (i =0; i < array.size(); i++)
86 {

87 cout << setw(12) << array[1];
88

89 ifCCi+1)%4=0)// 4 numbers per row of output
90 cout << endl;

91 } // end for

92

93 if (1% 4 1=0)

94 cout << endl;

95 1} // end function outputVector

96
97 // input vector contents

98 void inputVector(vector< int > &array)

99 {
100 for (size_t i =03 1
101 cin >> array[i];

< array.size(); i++)

102 } // end function inputVector

Fig. 7.25 | C++ Standard Library class template vector. (Part 5 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Size of vector integersl is 7
vector after initialization:
0 0
0 0

Size of vector integers2 is 10

vector after initialization:

0 0
0 0
0 0

Enter 17 integers:
1234567891011 12 13

After input, the vectors cont
integersl:

1 2
5 6
integers2:
8 9
12 13
16 17

0 0
0

0 0
0 0

14 15 16 17
ain:

3 4
7
10 11
14 15

Fig. 7.25 | C++ Standard Library class template vector. (Part 6 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Evaluating: integersl != integers2
integersl and integers2 are not equal

Size of vector integers3 is 7
vector after initialization:

1 2 3
5 6 7
Assigning integers2 to integersl:
integersl:
8 9 10
12 13 14
16 17
integers2:
8 9 10
12 13 14
16 17
Evaluating: integersl == integers2

integersl and integers2 are equal

integersl1l[5] is 13

11
15

11
15

Fig. 7.25 | C++ Standard Library class template vector. (Part 7 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Assigning 1000 to integersl[5]

integersl:
8 9 10 11
12 1000 14 15
16 17

Attempt to assign 1000 to integersl.at(15)

abnormal program termination

Fig. 7.25 | C++ Standard Library class template vector. (Part 8 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.11 Introduction to C++ Standard
Library Class Template vector (cont.)

« By default, all the elements of a vector object are set to
0.

e vectors can be defined to store any data type.

e vector member function size obtain the number of
elements in the vector.

 You can use square brackets, [], to access the elements in a
vector.

e vector objects can be compared with one another using
the equality operators.

* You can create a new vector object that is initialized with
the contents of an existing vector by using its copy
constructor.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

7.11 Introduction to C++ Standard
Library Class Template vector (cont.)

* You can use the assignment (=) operator with
vector objects.

* As with C-style pointer-based arrays, C++ does not
perform any bounds checking when vector
elements are accessed with square brackets.

 Standard class template vector provides bounds
checking in its member function at, which “throws
an exception” (see Chapter 16, Exception Handling)
If its argument is an invalid subscript.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43

