


• The Fibonacci series
• 0, 1, 1, 2, 3, 5, 8, 13, 21, …

• begins with 0 and 1 and has the property that each 
subsequent Fibonacci number is the sum of the previous 
two Fibonacci numbers.

• The series occurs in nature and, in particular, describes a 
form of spiral.

• The ratio of successive Fibonacci numbers converges on a 
constant value of 1.618….

• This number, too, frequently occurs in nature and has been 
called the golden ratio or the golden mean.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



• The Fibonacci series can be defined 

recursively as follows:

•fibonacci(0) = 0

fibonacci(1) = 1

fibonacci(n) = fibonacci(n – 1) + 

fibonacci(n – 2)

• The program of Fig. 6.30 calculates the nth 

Fibonacci number recursively by using 

function fibonacci.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



• Figure 6.31 shows how function fibonacci would 
evaluate fibonacci(3).

• This figure raises some interesting issues about the order in 
which C++ compilers evaluate the operands of operators.

• This is a separate issue from the order in which operators 
are applied to their operands, namely, the order dictated by 
the rules of operator precedence and associativity.

• Most programmers simply assume that operands are 
evaluated left to right.

• C++ does not specify the order in which the operands of 
most operators (including +) are to be evaluated.

• Therefore, you must make no as-sumption about the order 
in which these calls execute.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8



• Both iteration and recursion are based on a control 

statement: Iteration uses a repetition structure; 

recursion uses a selection structure.

• Both iteration and recursion involve repetition: 

Iteration explicitly uses a repetition structure; 

recursion achieves repetition through repeated 

function calls.

• Iteration and recursion both involve a termination 

test: Iteration terminates when the loop-continuation 

condition fails; recursion terminates when a base case 

is recognized.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



• Iteration with counter-controlled repetition and recursion 

both gradually approach termination: Iteration modifies a 

counter until the counter assumes a value that makes the 

loop-continuation condition fail; recursion produces simpler 

versions of the original problem until the base case is 

reached.

• Both it-eration and recursion can occur infinitely: An 

infinite loop occurs with iteration if the loop-continuation 

test never becomes false; infinite recursion occurs if the 

recursion step does not reduce the problem during each 

recursive call in a manner that converges on the base case.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



• Often it may be necessary to determine whether an array 

contains a value that matches a certain key value.

– Called searching.

• The linear search compares each element of an array with a 

search key (line 36).

– Because the array is not in any particular order, it’s just as likely 

that the value will be found in the first element as the last.

– On average, therefore, the program must compare the search key 

with half the elements of the array.

• To determine that a value is not in the array, the program 

must compare the search key to every element of the array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



• Sorting data

– placing the data into some particular order such as 

ascending or descending

– an intriguing prob-lem that has attracted some of 

the most intense research efforts in the field of 

computer science.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



• Insertion sort—a simple, but inefficient, sorting 
algorithm.

• The first iteration of this algorithm takes the second 
element and, if it’s less than the first element, swaps it 
with the first element (i.e., the program inserts the 
second element in front of the first element).

• The second iteration looks at the third element and 
inserts it into the correct position with respect to the 
first two elements, so all three elements are in order.

• At the ith iteration of this algorithm, the first i elements 
in the original array will be sorted. 

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



• Arrays with two dimensions (i.e., subscripts) often represent 
tables of values consisting of information arranged in rows and 
columns.

• To identify a particular table element, we must specify two 
subscripts.
– By convention, the first identifies the element’s row and the second 

identifies the element’s column.

• Often called two-dimensional arrays or 2-D arrays.
• Arrays with two or more dimensions are known as 

multidimensional arrays.
• Figure 7.20 illustrates a two-dimensional array, a.

– The array contains three rows and four columns, so it’s said to be a 3-
by-4 array.

– In general, an array with m rows and n columns is called an m-by-n 
array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



• A multidimensional array can be initialized in 

its declaration much like a one-dimensional 

array.

• The values are grouped by row in braces.

• If there are not enough initializers for a given 

row, the remaining elements of that row are 

initialized to 0.

• Figure 7.21 demonstrates initializing two-

dimensional arrays in declarations.
©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



• C++ Standard Library class template vector represents a more 
robust type of array featuring many additional capabilities.

• C-style pointer-based arrays have great potential for errors and 
are not flexible
– A program can easily ―walk off‖ either end of an array, because C++ 

does not check whether subscripts fall outside the range of an array.

– Two ar-rays cannot be meaningfully compared with equality operators 
or relational operators.

– When an array is passed to a general-purpose function designed to 
handle arrays of any size, the size of the array must be passed as an 
additional argument.

– One array cannot be assigned to another with the assignment 
operator(s).

• Class template vector allows you to create a more powerful 
and less error-prone alternative to arrays.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



• The program of Fig. 7.25 demonstrates 

capabilities provided by class template 

vector that are not available for C-style 

pointer-based arrays.

• Standard class template vector is defined in 

header <vector> and belongs to namespace 

std.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



©1992-2010 by Pearson Education, Inc. All Rights Reserved.



• By default, all the elements of a vector object are set to 
0.

• vectors can be defined to store any data type.

• vector member function size obtain the number of 
elements in the vector.

• You can use square brackets, [], to access the elements in a 
vector.

• vector objects can be compared with one another using 
the equality operators.

• You can create a new vector object that is initialized with 
the contents of an existing vector by using its copy 
constructor.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



• You can use the assignment (=) operator with 

vector objects.

• As with C-style pointer-based arrays, C++ does not 

perform any bounds checking when vector
elements are accessed with square brackets.

• Standard class template vector provides bounds 

checking in its member function at, which ―throws 

an exception‖ (see Chapter 16, Exception Handling) 

if its argument is an invalid subscript.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



43©1992-2010 by Pearson Education, Inc. All Rights Reserved.


