Lecture 28:
Data Structures

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 14, 2010

20.1 Introduction

We’ve studied fixed-size data structures such as one-dimensional arrays
and two-dimensional arrays.

This chapter introduces dynamic data structures that grow and shrink
during execution.

Linked lists are collections of data items logically “lined up in a
row”—insertions and removals are made anywhere in a linked list.

Stacks are important in compilers and operating systems: Insertions and
removals are made only at one end of a stack—its top.

Queues represent waiting lines; insertions are made at the back (also
referred to as the tail) of a queue and removals are made from the front
(also referred to as the head) of a queue.

Binary trees facilitate high-speed searching and sorting of data,
efficient elimination of duplicate data items, representation of file-
system directories and compilation of expressions into machine
language.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.2 Self-Referential Classes

A self-referential class contains a pointer
member that points to a class object of the
same class type.

« Sample Node class definition:

e class Node
{
public:
Node(int); // constructor
void setbata(int); // set data member
int getbata() const; // get data member
void setNextPtr(Node *); // set pointer to next Node
Node *getNextPtr() const; // get pointer to next Node
private:
int data; // data stored in this Node
Node *nextPtr; // pointer to another object of same type

}: // end class Node
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.2 Seli-Referential Classes (cont.)

Member nextPtr %oints to an object of t%pe Node—another object
of the same type as the one being declared here, hence the term “self-
referential class.”

Member nextPtr is referred to as a link—I.e., nextPtr can “tie” an
object of type Node to another object of the same type.

Self-referential class objects can be linked together to form useful data
structures such as lists, queues, stacks and trees.

Figure 20.1 illustrates two self-referential class objects linked together
to form a list.

Note that a slash—representing a null (0) pointer—is placed in the link
member of the second self-referential class object to indicate that the
link does not point to another object.

The slash is only for illustration purposes; it does not correspond to the
backslash character in C++.

A null pointer normally indicates the end of a data structure just as the
null character (' \O ') Indicates the end of a string.

o———p» 15 —» 10

. ©1992-2010 by Pearson Education, Inc. All Rights Reserved.
Fig. 20.1 | Two self-referential class objects linked together.

Common Programming Error 20.1
Not setting the link in the last node of a linked data
structure to null (0) is a (possibly fatal) logic error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.8 Dynamic Memory Allocation and
Data Structures

» Creating and maintaining dynamic data structures requires
dynamic memory allocation, which enables a program to
obtain more memory at execution time to hold new nodes.

« When that memory is no longer needed by the program, the
memory can be released so that it can be reused to allocate
other objects in the future.

» The limit for dynamic memory allocation can be as large as
the amount of available physical memory in the computer or
the amount of available virtual memory in a virtual memory
system.

« Often, the limits are much smaller, because available
memory must be shared among many programs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.3 Dynarmic Memory Allecation and
Daia Structures (cont.)

 The new operator takes as an argument the type of the
object being dynamically allocated and returns a pointer to
an object of that type.

» For example, the following statement allocates
sizeof (Node) bytes, runs the Node constructor and
assigns the new Node’s address to newPtr.

e // create Node with data 10
Node *newPtr = new Node(10);

» If no memory is available, new throws a bad_al loc
exception.

« The delete operator runs the Node destructor and
deallocates memory allocated with new—the memory Is
returned to the system so that the memory can be
reallocated in the future.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.3 Dynarmic Memory Allecation and
Daia Structures (cont.)

» To free memory dynamically allocated by the

preceding new, use the statement
e delete newPtr;

 Note that newPtr itself is not deleted: rather
the space newPtr points to is deleted.

* If pointer newPtr has the null pointer value
0, the preceding statement has no effect.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lisis

A linked list Is a linear collection of self-referential class
objects, called nodes, connected by pointer links—hence,
the term “linked” list.

A linked list 1s accessed via a pointer to the list’s first node.

Each subsequent node is accessed via the link-pointer
member stored in the previous node.

By convention, the link pointer in the last node of a list is
set to null (O) to mark the end of the list.

Data is stored in a linked list dynamically—each node is
created as necessary.

A node can contain data of any type, including objects of
other classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

 Stacks and queues are also linear data
structures and, as we’ll see, can be viewed as
constrained versions of linked lists.

e Trees are nonlinear data structures.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lisis (cont.)

Lists of data can be stored in arrays, but linked lists provide
several advantages.

A linked list Is appropriate when the number of data
elements to be represented at one time is unpredictable.

Linked lists are dynamic, so the length of a list can increase
or decrease as necessary.

The size of a “conventional” C++ array, however, cannot be
altered, because the array size is fixed at compile time.

“Conventional” arrays can become full.

Linked lists become full only when the system has
Insufficient memory to satisfy dynamic storage allocation
requests.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

;. Performance Tip 20. 1

An array can be declared to contain more elements than
the number of items expected, but this can waste memo-
ry. Linked lists can provide better memory utilization in
these situations. Linked lists allow the program to adapt
at runtime. Class template vector (Section 7.11) im-
plements a dynamically resizable array-based data struc-
ture.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lisis (cont.)

e Linked lists can be maintained in sorted order
by Inserting each new element at the proper
point in the list.

 EXxisting list elements do not need to be
moved.

 Pointers merely need to be updated to point to
the correct node.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Performance Tip 20.2
I Insertion and deletion in a sorted array can be time con-
suming—all the elements following the inserted or delet-
ed element must be shifted appropriately. A linked list

allows efficient insertion operations anywhere in the list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

- Performance Tip 20.3

The elements of an array are stored contiguously in mem-
ory. This allows immediate access to any element, because
an elements address can be calculated directly based on
its position relative to the beginning of the array. Linked
lists do not afford such immediate “direct access” to their
elements. So accessing individual elements in a linked list
can be considerably more expensive than accessing indi-
vidual elements in an array. The selection of a data
structure is typically based on the performance of specific
operations used by a program and the order in which the
data items are maintained in the data structure. For ex-
ample, it’s typically more efficient to insert an item in a
sorted linked list than a sorted array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lists (cont.)

 Linked-list nodes are not stored contiguously
In memory, but logically they appear to be
contiguous.

 Figure 20.2 illustrates a linked list with several
nodes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Performance Tip 20.4

Using dynamic memory allocation (instead of fixed-size
arrays) for data structures that grow and shrink at exe-
cution time can save memory. Keep in mind, however,
that pointers occupy space and that dynamic memory al-
location incurs the overbead of function calls.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

firstPtr lastPtr

I

Fig. 20.2 | A graphical representation of a list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Ooe~NGOWNbh WN =

// Fig. 20.3: ListNode.h

// Template ListNode class definition.
#ifndef LISTNODE H

#define LISTNODE H

// forward declaration of class List required to announce that class
// List exists so it can be used in the friend declaration at Tine 13
template< typename NODETYPE > class List;

template< typename NODETYPE >
class ListNode

{
friend class List< NODETYPE >; // make List a friend

public:

ListNode(const NODETYPE &); // constructor

NODETYPE getData() const; // return data in node
private:

NODETYPE data; // data

ListNode< NODETYPE > *nextPtr; // next node in Tist
}; // end class ListNode

Fig. 20.3 | ListNode class-template definition. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// constructor

template< typename NODETYPE>

ListNode< NODETYPE >::ListNode(const NODETYPE &info)
: data(info), nextPtr(0)

{
// empty body

} // end ListNode constructor

// return copy of data in node
template< typename NODETYPE >
NODETYPE ListNode< NODETYPE >::getData() const
{
return data;
} // end function getData

#endif

Fig. 20.3 | ListNode class-template definition. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lisis (cont.)

The primary L1 st functions are insertAtFront (lines 62—
74), insertAtBack (lines 77-89), removeFromFront
(lines 92-110) and removeFromBack (lines 113-140).
Function 1sEmpty (lines 143-147) is called a predicate function

— it does not alter the L1 st; rather, it determines whether the L1st is
empty (i.e., the pointer to the first node of the L1 st is null).

— Ifthe List isempty, true is returned; otherwise, false is returned.
Function print (lines 158-178) displays the L1st’s contents.

Utility function getNewNode (lines 150-155) returns a
dynamically allocated L1 stNode object.

— Called from functions insertAtFront and insertAtBack.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 20.4: List.h

// Template List class definition.
#ifndef LIST_H

#define LIST_H

#include <iostream>
#include "ListNode.h" // ListNode class definition
using namespace std;

template< typename NODETYPE >

class List

{

public:
List(); // constructor
~List(); // destructor
void insertAtFront(const NODETYPE &);
void insertAtBack(const NODETYPE &);
bool removeFromFront(NODETYPE &);
bool removeFromBack(NODETYPE &);
bool isEmpty() const;
void print() const;

Fig. 20.4 | List class-template definition. (Part | of 9.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

private:
ListNode< NODETYPE > *firstPtr; // pointer to first node
ListNode< NODETYPE > *1lastPtr; // pointer to last node

// utility function to allocate new node
ListNode< NODETYPE > *getNewNode(const NODETYPE &);
}; // end class List

// default constructor
template< typename NODETYPE >
List< NODETYPE >::List()

: firstPtr(0), TastPtr(0)
{

// empty body
} // end List constructor

Fig. 20.4 | List class-template definition. (Part 2 of 9.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

38 // destructor
39 template< typename NODETYPE >
40 List< NODETYPE >::~List()

41 {

42 if (lisEmpty()) // List is not empty

43 {

44 cout << "Destroying nodes ...\n";

45

46 ListNode< NODETYPE > *currentPtr = firstPtr;
47 ListNode< NODETYPE > *tempPtr;

48

49 while (currentPtr != 0) // delete remaining nodes
50 {

51 tempPtr = currentPtr;

52 cout << tempPtr->data << '\n';

53 currentPtr = currentPtr->nextPtr;

54 delete tempPtr;

55 } // end while

56 } // end if

57

58 cout << "Al1l nodes destroyed\n\n";

59 1} // end List destructor

60

Fig. 20.4 | List class-template definition. (Part 3 of 9.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

61 // insert node at front of Tist
62 template< typename NODETYPE >
63 void List< NODETYPE >::insertAtFront(const NODETYPE &value)

64 {

65 ListNode< NODETYPE > *newPtr = getNewNode(value); // new node
66

67 if (isEmpty()) // List is empty

68 firstPtr = lastPtr = newPtr; 0 o oo oo o0

69 else // List is not empty

70 { (a) FfirstPtr

71 newPtr->nextPtr = firstPtr; / 0 o0 o0 o oo o o
72 firstPtr = newPtr; // aim fir- o o0 j—>_7|j—> 11| : I
73 } // end else

74 } // end function insertAtFront

- R

Fig. 20.4 | List class-template definition. (Part 4 of)

(b) FirstPtr

Fig. 20.6 | Operation insertAtFront represented graphically.

76 // insert node at back of Tist
77 template< typename NODETYPE >
78 void List< NODETYPE >::insertAtBack(const NODETYPE &value)

79 {

80 ListNode< NODETYPE > *newPtr = getNewNode(value); // new node

81

82 if (isEmpty()) // List is empty

83 firstPtr = TastPtr = newPtr: // new 1list has onlv one node

84 else // List is not empty

85 {

86 TastPtr->nextPtr = newPtr; = = Prey T gtse ast node lastPir newPtr

87 lastPtr = newPtr; // new 1o 0 00 o

88 } // end else

89 1} // end function insertAtBack

90

Fig. 20.4 | List class-template definition. (P2t 5 0f 9) 12| : I ; 7|) I ” 11| >I 5| ;I
(b) firstNode TastPtr newPtr

J
~
~

~
~

RN
BEE—EE—EE BN

Fig. 20.7 | Operation insertAtBack represented graphically.

91 // delete node from front of Tlist
92 template< typename NODETYPE >
93 bool List< NODETYPE >::removeFromFront(NODETYPE &value)
94 {
95 if (isEmpty()) // List is empty
96 return false; // delete unsuccessful
97 else
98 {
99 ListNode< NODETYPE > *tempPtr = firstPtr; 0 o0 o o0
100
101 if (firstPtr == lastPtr) (a) firstPer lastptr
102 firstPtr = lastPtr = 0; // no nodes o+ val
103 else
104 firstPtr = firstPtr->nextPtr; // po ~ = o oo oo o0
105
106 value = tempPtr->data; // return data = = o0 12| S RS BRI |>I
107 delete tempPtr; // reclaim previous fror oo
108 return true; // delete successful (b) FirstPtr lastPtr
109 } // end else ;‘1
110 } // end function removeFromFront Tl
11 NN
12|o—=l= 7 —» 11 —_— 5|N
Fig. 20.4 | List class-template definition. (Part 6 of 9.) -

|

tempPtr

Fig. 20.8 | Operation removeFromFront represented graphically.

112 // delete node from back of Tist
113 template< typename NODETYPE >
114 bool List< NODETYPE >::removeFromBack(NODETYPE &value)

s {
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

if (isEmpty()) // List is empty

return false; // delete unsuccessful

else

{

ListNode< NODETYPE > *tempPtr = lastPtr; // hold tempPtr to delete

if (firstPtr == lastPtr) // List has one element
firstPtr = lastPtr = 0; // no nodes remain = cnova

else
{ (a) firstNode currentPtr

ListNode< NODETYPE > *currentPtr = firstPtr;

// locate second-to-last element
while (currentPtr->nextPtr != lastPtr) 12 - 7|

lastPtr

21N

—b-11|o—

currentPtr = currentPtr->nextPtr; // mov: o« o0 o0

(b) firstNode currentPtr

lastPtr = currentPtr; // remove last node ‘I e - I

currentPtr-s>nextPtr = 0; // this is now the - oo
} // end else

w e e

Fig. 20.4 | List class-template definition. (Part 7 of 9.)

lastPtr

tempPtr

ESErved:

©1992-2010 by Pearson Education, I1c. lu:u Ri
ig.

N
o
3%

—

Operation removeFromBack represented graphically.

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

value = tempPtr->data; // return value from old Tast node
delete tempPtr; // reclaim former last node
return true; // delete successful
} // end else
} // end function removeFromBack

// is List empty?
template< typename NODETYPE >
bool List< NODETYPE >::isEmpty() const
{
return firstPtr == 0;
} // end function isEmpty

// return pointer to newly allocated node

template< typename NODETYPE >

ListNode< NODETYPE > *List< NODETYPE >::getNewNode(
const NODETYPE &value)

{
return new ListNode< NODETYPE >(value);

} // end function getNewNode

Fig. 20.4 | List class-template definition. (Part 8 of 9.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

157 // display contents of List

158 template< typename NODETYPE >

159 void List< NODETYPE >::print() const
160 {
161
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

if (isEmpty()) // List is empty

{
cout << "The list is empty\n\n";
return;

Y // end if

ListNode< NODETYPE > *currentPtr = firstPtr;

"

cout << "The Tist is: ";

while (currentPtr != 0) // get element data
{

L) T

cout << currentPtr->data << ;
currentPtr = currentPtr->nextPtr;
} // end while

cout << "\n\n";

178 } // end function print

179

180 #endif

Fig. 20.4 | List class-template definition. (Part 9 of 9.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lisis (cont.)

 InFig. 20.5, Lines 69 and 73 create L1st
objects for types 1nt and doube,
respectively.

« Lines 70 and 74 invoke the testLi1st
function template to manipulate objects.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18

// Fig. 20.5: Fig21_05.cpp
// List class test program.
#include <iostream>

#include <string>

#include "List.h" // List class definition
using namespace std;

// display program instructions to user
void instructions()

{

cout << "Enter one of the following:\n"

<<
<<
<<
<<
<<

} // end

1
2
3
4
5

to
to
to
to
to

insert at beginning of Tist\n"
insert at end of Tlist\n"

delete from beginning of list\n
delete from end of Tist\n"

end list processing\n";

"

function instructions

Fig. 20.5 | Manipulating a linked list. (Part | of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// function to test a List
template< typename T >
void testList(List< T > &listObject, const string &typeName)

{

cout << "Testing a List of " << typeName <<
instructions(); // display instructions

values\n";

int choice; // store user choice
T value; // store input value

do // perform user-selected actions
{

cout << "7 ";

cin >> choice;

switch (choice)
{
case 1: // insert at beginning

cout << "Enter "
cin >> value;
TistObject.insertAtFront(value);
TistObject.print();
break;

mn LA}

<< typeName << ": ";

Fig. 20.5 | Manipulating a linked list. (Part 2 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

case 2: // insert at end

cout << "Enter " << typeName << ": ";
cin >> value;
TistObject.insertAtBack(value);
TistObject.print();
break;

case 3: // remove from beginning
if (TistObject.removeFromFront(value))

cout << value << "

TistObject.print();
break;
case 4: // remove from end
if (TistObject.removeFromBack(value))

cout << value << " removed from Tist\n";

TistObject.print();
break;
} // end switch
} while (choice < 5); // end do...while

cout << "End Tist test\n\n";
} // end function testList

Fig. 20.5 | Manipulating a linked list. (Part 3 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

removed from Tist\n";

66 int main(Q)

67 {
68
69
70
71
72
73
74

// test List of int values
List< int > integerlList;
testList(integerList, "integer”);

// test List of double values
List< double > doublelList;
testList(doubleList, "double");

75 1} // end main

Testing a List of integer values
Enter one of the following:

1 to
2 to
3 to
4 to
5 to
?1

insert at beginning of 1ist
insert at end of 1ist

delete from beginning of list
delete from end of Tist

end Tist processing

Enter integer: 1
The Tist is: 1

Fig. 20.5 | Manipulating a linked list. (Part 4 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

71

Enter integer: 2

The Tist is:

72

2

Enter integer:

1

3
13

134

Tist
3 4

The 1ist is: 2

? 2

Enter integer: 4
The 1ist is: 2
7?3

2 removed from
The Tist is: 1
7?3

1 removed from
3 4

The Tist is:

7 4

4 removed from

The Tist is:

3

Tist

Tist

Fig. 20.5 | Manipulating a linked list. (Part 5 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

? 4
3 removed from Tist
The Tist is empty

?5
End Tist test

Testing a List of double values
Enter one of the following:
1 to insert at beginning of Tist
2 to insert at end of Tist
3 to delete from beginning of 1list
4 to delete from end of list
5 to end list processing
71
Enter double: 1.1
The 1list is: 1.1

71
Enter double: 2.2
The 1list is: 2.2 1.1

7?2
Enter double: 3.3
The Tist is: 2.2 1.1 3.3

Fig. 20.5 | Manipulating a linked lis&1682rd1@byBrkarson Education, Inc. All Rights Reserved.

? 2
Enter double: 4.4
The Tist is: 2.2 1.1 3.3 4.4

é.z removed from list
The Tist is: 1.1 3.3 4.4

i.l removed from list
The 1ist is: 3.3 4.4

4.4 removed from list
The Tlist is: 3.3

Fig. 20.5 | Manipulating a linked list. (Part 7 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

? 4
3.3
The
7?5
End
A1l
A1l

removed from Tist
Tist is empty
Tist test

nodes destroyed

nodes destroyed

Fig. 20.5 | Manipulating a linked list. (Part 8 of 8.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lisis (cont.)

The kind of linked list we’ve been discussing is a singly
linked list—the list begins with a pointer to the first node,
and each node contains a pointer to the next node “in
sequence.”

This list terminates with a node whose pointer member has
the value 0.

A singly linked list may be traversed in only one direction.

A circular, singly linked list (Fig. 20.10) begins with a
pointer to the first node, and each node contains a pointer to
the next node.

The “last node” does not contain a 0 pointer; rather, the
pointer in the last node points back to the first node, thus
closing the “circle.”

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

firstPtr

e

Fig. 20.10 | Circular, singly linked list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lists (cont.)

A doubly linked list (Fig. 20.11) allows traversals both forward
and backward.

Such a list 1s often implemented with two “start pointers”—one
that points to the first element of the list to allow front-to-back
traversal of the list and one that points to the last element to allow
back-to-front traversal.

Each node has both a forward pointer to the next node in the list
In the forward direction and a backward pointer to the next node
In the list in the backward direction.

If your list contains an alphabetized telephone directory, for
example, a search for someone whose name begins with a letter
Pe?r the front of the alphabet might begin from the front of the
ISt.

Searching for someone whose name begins with a letter near the
end of the alphabet might begin from the back of the list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

firstPtr TastPtr

0 o et — o

Fig. 20.11 | Doubly linked list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.4 Linked Lists (cont.)

» In a circular, doubly linked list (Fig. 20.12),
the forward pointer of the last node points to
the first node, and the backward pointer of the
first node points to the last node, thus closing
the “circle.”

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

firstPtr lastPtr

s s s

Fig. 20.12 | Circular, doubly linked list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.5 Stacks

Chapter 14, Templates, explained the notion of
a stack class template with an underlying array
Implementation.

In this section, we use an underlying pointer-
based linked-list implementation.

A stack data structure allows nodes to be
added to the stack and removed from the stack
only at the top.

For this reason, a stack Is referred to as a last-
In, first-out (LIFQO) data structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.9 Stacks (cont.)

One way to implement a stack Is as a constrained version of
a linked list.

In such an implementation, the link member in the last node
of the stack is set to null (zero) to indicate the bottom of the
stack.

The primary member functions used to manipulate a stack
are push and pop.

Function push inserts a new node at the top of the stack.

Function pop removes a node from the top of the stack,
stores the popped value in a reference variable that is passed
to the calling function and returns true if the pop
operation was successful (false otherwise).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.9 Stacks (cont.)

Stacks have many interesting applications.

For example, when a function call is made, the called function must know
how to return to its caller, so the return address is pushed onto a stack.

If a series of function calls occurs, the successive return values are pushed
onto the stack in last-in, first-out order, so that each function can return to
its caller.

Stacks support recursive function calls in the same manner as conventional
nonrecursive calls.

Section 6.11 discusses the function call stack in detail.

Stacks provide the memory for, and store the values of, automatic variables
on each invocation of a function.

When the function returns to its caller or throws an exception, the
destructor (if any) for each local object is called, the space for that
function’s automatic variables 1s popped off the stack and those variables
are no longer known to the program.

Stacks are used by compilers in the process of evaluating expressions and
generating machine-language code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.5 Stacks (cont.)

We’ll take advantage of the close relationship
between lists and stacks to implement a stack
class primarily by reusing a list class.

First, we iImplement the stack class through
private inheritance of the list class.

Then we imﬁlement an identically performing
stack class through composition by including a
|IIS'[object as a private member of a stack
class.

All of the data structures in this chapter, including
these two stack classes, are implemented as
templates to encourage further reusability.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.9 Stacks (cont.)

« The program of Figs. 20.13-20.14 creates a Stack
class template (Fig. 20.13) primarily through
private inheritance (line 9) of the L1st class
template of Fig. 20.4.

« We want the Stack to have member functions push
(lines 13-16), pop (lines 19-22), 1sStackEmpty
(lines 25-28) and printStack (lines 31-34).

— These are essentially the ThsertAtFront,
removeFromFront, 1sEmpty and print functions of
the L1 st class template.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.9 Stacks (cont.)

Of course, the L1 st class template contains other member
functions (i.e., insertAtBack and removeFromBack) that
we would not want to make accessible through the pub1ic
interface to the Stack class.

So when we indicate that the Stack class template is to inherit
from the L1 st class template, we specify private inheritance.

This makes all the L1 st class template’s member functions
private inthe Stack class template.

When we implement the Stack’s member functions, we then
have each of these call the appropriate member function of the
List class—push calls insertAtFront (line 15), pop calls
removeFromFront (line 21), 1sStackEmpty calls
1sEmpty (line 27) and printStack calls print (line 33)—
this is referred to as delegation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 20.13: Stack.h

2 // Template Stack class definition derived from class List.
3 #ifndef STACK_H

4 #define STACK_H

5

6 #include "List.h" // List class definition

7

8 template< typename STACKTYPE >

9 <class Stack : private List< STACKTYPE >

10 {

Il public:

12 // push calls the List function insertAtFront
13 void push(const STACKTYPE &data)

14 {

15 insertAtFront(data);

16 } // end function push

17

18 // pop calls the List function removeFromFront
19 bool pop(STACKTYPE &data)
20 {
21 return removeFromFront(data);
22 } // end function pop
23

Fig. 20.13 | stack class-template definition. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

24 // isStackEmpty calls the List function isEmpty
25 bool isStackEmpty() const

26 {

27 return this->isEmpty();

28 } // end function isStackEmpty

29

30 // printStack calls the List function print
31 void printStack() const

32 {

33 this->print();

34 } // end function print

35 }; // end class Stack

36

37 #endif

Fig. 20.13 | Stack class-template definition. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.5 Stacks (cont.)

The explicit use of the th1s pointer on lines 27
and 33 Is required so the compiler can resolve
Identifiers in template definitions properly.

A dependent name Is an identifier that depends on
a template parameter.

For example, the call to removeFromFront
(line 21) depends on the argument data which
nas a type that is dependent on the template
parameter STACKTYPE.

Resolution of dependent names occurs when the
template is instantiated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.9 Stacks (cont.)

In contrast, the identifier for a function that takes no
arguments like 1sEmpty or printinthe L1st
superclass iIs a non-dependent name.

Such identifiers are normally resolved at the point where the
template is defined.

If the template has not yet been instantiated, then the code
for the function with the non-dependent name does not yet
exist and some compilers will generate compilation errors.

Adding the explicit use of this-> in lines 27 and 33
makes the calls to the base class’s member functions
dependent on the template parameter and ensures that the
code will compile properly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 20.14: Fig2l_14.cpp

// Template Stack class test program.
#include <iostream>

#include "Stack.h"™ // Stack class definition
using namespace std;

int main()
{
Stack< int > intStack; // create Stack of ints

cout << "processing an integer Stack" << endl;

// push integers onto intStack
for (int i =0; i < 3; i4++)

{
intStack.push(i);
intStack.printStack();
} // end for

int popInteger; // store int popped from stack

Fig. 20.14 | A simple stack program. (Part | of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// pop integers from intStack

while (!intStack.isStackEmpty())

{
intStack.pop(popInteger);
cout << popInteger << " popped from stack” << endl;
intStack.printStack();

} // end while

Stack< double > doubleStack; // create Stack of doubles
double value = 1.1;

cout << "processing a double Stack" << endl;

// push floating-point values onto doubleStack
for (int j = 0; j < 33 j++)

{
doubTeStack.push(value);
doubleStack.printStack();
value += 1.1;

} // end for

Fig. 20.14 | A simple stack program. (Part 2 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43
44
45
46
47
48
49
50
51
52

doubTe popDouble; // store double popped from stack

// pop floating-point values from doubleStack

while (!doubleStack.isStackEmpty())

{
doubTleStack.pop(popDouble);
cout << popDouble << " popped from stack" << endl;
doubleStack.printStack();

} // end while

} // end main

Fig. 20.14 | A simple stack program. (Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

processing an integer Stack
The Tist is: O

The 1ist is: 1 0
The Tist is: 2 10

2 popped from stack
The Tist is: 1 0

1 popped from stack
The 1list is: 0

0 popped from stack
The Tlist is empty

processing a double Stack
The 1ist is: 1.1

The Tist is: 2.2 1.1

Fig. 20.14 | A simple stack program. (Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

ATl
Al1

Tist is: 3.3 2.2 1.1

popped from stack
Tist is: 2.2 1.1

popped from stack
Tist is: 1.1

popped from stack
Tist is empty

nodes destroyed

nodes destroyed

Fig. 20.14 | A simple stack program. (Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.9 Stacks (cont.)

Another way to implement a Stack class template is by
reusing the L1 st class template through composition.

Figure 20.15 is a new implementation of the Stack class
template that contains a L1st< STACKTYPE > object
called stackL1st (line 38).

This version of the Stack class template uses class L1st
from Fig. 20.4.

To test this class, use the driver program in Fig. 20.14, but
include the new header file—Stackcomposition.hin
line 6 of that file.

The output of the program is identical for both versions of
class Stack.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

1 // Fig. 20.15: Stackcomposition.h

2 // Template Stack class definition with composed List object.
3 #ifndef STACKCOMPOSITION_H

4 #define STACKCOMPOSITION_H

5

6 #include "List.h" // List class definition

7

8 template< typename STACKTYPE >

9 <class Stack

0o {

Il public:

12 // no constructor; List constructor does initialization

13

14 // push calls stackList object's insertAtFront member function
15 void push(const STACKTYPE &data)

16 {

17 stackList.insertAtFront(data);

18 } // end function push

19
20 // pop calls stackList object's removeFromFront member function
21 bool pop(STACKTYPE &data)
22 {
23 return stackList.removeFromFront(data);
24 } // end function pop

Fig. 20.15 | Stack class template with a composed List object. (Part | of 2.)
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// isStackEmpty calls stackList object's isEmpty member function

bool isStackEmpty() const

{

return stackList.isEmpty();
} // end function isStackEmpty

// printStack calls stackList object's print member function
void printStack() const

{
stackList.print();

} // end function printStack

private:

List< STACKTYPE > stackList; // composed List object

}; // end class Stack

#endif

Fig. 20.15 | Stack class template with a composed Li st object. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.6 Queues

A queue is similar to a supermarket checkout line—
the first person in line is serviced first, and other
customers enter the line at the end and walit to be
serviced.

Queue nodes are removed only from the head of the
gueue and are inserted only at the tail of the queue.

For this reason, a queue is referred to as a first-in,
first-out (FIFO) data structure.

The insert and remove operations are known as
enqueue and dequeue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.6 Queues (cont.)

Queues have many applications in computer systems.

Computers that have a single processor can service
only one user at a time.

Entries for the other users are placed in a queue.

Each entry gradually advances to the front of the
queue as USers receive service.

The entry at the front of the queue is the next to
receive service.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.6 Queues (cont.)

Queues are also used to support print spooling.

For example, a single printer might be shared by all
users of a network.

Many users can send print jobs to the printer, even
when the printer is already busy.

These print jobs are placed in a queue until the printer
becomes available.

A program called a spooler manages the queue to
ensure that, as each print job completes, the next print
job Is sent to the printer.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.6 Queues (cont.)

Information packets also wait in queues in computer
networks.

Each time a packet arrives at a network node, it must be
routed to the next node on the network along the path to the
packet’s final destination.

The routing node routes one packet at a time, so additional
packets are enqueued until the router can route them.

A file server in a computer network handles file access
requests from many clients throughout the network.

Servers have a limited capacity to service requests from
clients.

When that capacity Is exceeded, client requests wait In
queues.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20.6 Queues (cont.)

* Queues are used In distributed systems, such as
clusters, clouds, grids, and supercomputers

— Local resource managers (e.g. Condor / LSF / SGE /
PBS / Cobalt / Falkon) have queues for jobs, which
are then dispatched out to remote compute resources
for processing

— Amazon (a cloud example) has the Simple Queuing
Service

 |deal to load balance across many
threads/processes/nodes/clusters

— Decouples producers from consummers

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

69

