

• We’ve studied fixed-size data structures such as one-dimensional arrays
and two-dimensional arrays.

• This chapter introduces dynamic data structures that grow and shrink
during execution.

• Linked lists are collections of data items logically ―lined up in a
row‖—insertions and removals are made anywhere in a linked list.

• Stacks are important in compilers and operating systems: Insertions and
removals are made only at one end of a stack—its top.

• Queues represent waiting lines; insertions are made at the back (also
referred to as the tail) of a queue and removals are made from the front
(also referred to as the head) of a queue.

• Binary trees facilitate high-speed searching and sorting of data,
efficient elimination of duplicate data items, representation of file-
system directories and compilation of expressions into machine
language.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• A self-referential class contains a pointer

member that points to a class object of the

same class type.

• Sample Node class definition:
• class Node
{
public:

Node(int); // constructor
void setData(int); // set data member
int getData() const; // get data member
void setNextPtr(Node *); // set pointer to next Node
Node *getNextPtr() const; // get pointer to next Node

private:
int data; // data stored in this Node
Node *nextPtr; // pointer to another object of same type

}; // end class Node
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Member nextPtr points to an object of type Node—another object
of the same type as the one being declared here, hence the term ―self-
referential class.‖

• Member nextPtr is referred to as a link—i.e., nextPtr can ―tie‖ an
object of type Node to another object of the same type.

• Self-referential class objects can be linked together to form useful data
structures such as lists, queues, stacks and trees.

• Figure 20.1 illustrates two self-referential class objects linked together
to form a list.

• Note that a slash—representing a null (0) pointer—is placed in the link
member of the second self-referential class object to indicate that the
link does not point to another object.

• The slash is only for illustration purposes; it does not correspond to the
backslash character in C++.

• A null pointer normally indicates the end of a data structure just as the
null character ('\0') indicates the end of a string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Creating and maintaining dynamic data structures requires
dynamic memory allocation, which enables a program to
obtain more memory at execution time to hold new nodes.

• When that memory is no longer needed by the program, the
memory can be released so that it can be reused to allocate
other objects in the future.

• The limit for dynamic memory allocation can be as large as
the amount of available physical memory in the computer or
the amount of available virtual memory in a virtual memory
system.

• Often, the limits are much smaller, because available
memory must be shared among many programs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• The new operator takes as an argument the type of the
object being dynamically allocated and returns a pointer to
an object of that type.

• For example, the following statement allocates
sizeof(Node) bytes, runs the Node constructor and
assigns the new Node’s address to newPtr.

• // create Node with data 10
Node *newPtr = new Node(10);

• If no memory is available, new throws a bad_alloc
exception.

• The delete operator runs the Node destructor and
deallocates memory allocated with new—the memory is
returned to the system so that the memory can be
reallocated in the future.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• To free memory dynamically allocated by the

preceding new, use the statement
•delete newPtr;

• Note that newPtr itself is not deleted; rather

the space newPtr points to is deleted.

• If pointer newPtr has the null pointer value

0, the preceding statement has no effect.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• A linked list is a linear collection of self-referential class
objects, called nodes, connected by pointer links—hence,
the term ―linked‖ list.

• A linked list is accessed via a pointer to the list’s first node.

• Each subsequent node is accessed via the link-pointer
member stored in the previous node.

• By convention, the link pointer in the last node of a list is
set to null (0) to mark the end of the list.

• Data is stored in a linked list dynamically—each node is
created as necessary.

• A node can contain data of any type, including objects of
other classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Stacks and queues are also linear data

structures and, as we’ll see, can be viewed as

constrained versions of linked lists.

• Trees are nonlinear data structures.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Lists of data can be stored in arrays, but linked lists provide
several advantages.

• A linked list is appropriate when the number of data
elements to be represented at one time is unpredictable.

• Linked lists are dynamic, so the length of a list can increase
or decrease as necessary.

• The size of a ―conventional‖ C++ array, however, cannot be
altered, because the array size is fixed at compile time.

• ―Conventional‖ arrays can become full.

• Linked lists become full only when the system has
insufficient memory to satisfy dynamic storage allocation
requests.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Linked lists can be maintained in sorted order

by inserting each new element at the proper

point in the list.

• Existing list elements do not need to be

moved.

• Pointers merely need to be updated to point to

the correct node.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Linked-list nodes are not stored contiguously

in memory, but logically they appear to be

contiguous.

• Figure 20.2 illustrates a linked list with several

nodes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• The primary List functions are insertAtFront (lines 62–
74), insertAtBack (lines 77–89), removeFromFront
(lines 92–110) and removeFromBack (lines 113–140).

• Function isEmpty (lines 143–147) is called a predicate function

– it does not alter the List; rather, it determines whether the List is
empty (i.e., the pointer to the first node of the List is null).

– If the List is empty, true is returned; otherwise, false is returned.

• Function print (lines 158–178) displays the List’s contents.

• Utility function getNewNode (lines 150–155) returns a
dynamically allocated ListNode object.

– Called from functions insertAtFront and insertAtBack.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• In Fig. 20.5, Lines 69 and 73 create List
objects for types int and double,

respectively.

• Lines 70 and 74 invoke the testList
function template to manipulate objects.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• The kind of linked list we’ve been discussing is a singly
linked list—the list begins with a pointer to the first node,
and each node contains a pointer to the next node ―in
sequence.‖

• This list terminates with a node whose pointer member has
the value 0.

• A singly linked list may be traversed in only one direction.

• A circular, singly linked list (Fig. 20.10) begins with a
pointer to the first node, and each node contains a pointer to
the next node.

• The ―last node‖ does not contain a 0 pointer; rather, the
pointer in the last node points back to the first node, thus
closing the ―circle.‖

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• A doubly linked list (Fig. 20.11) allows traversals both forward
and backward.

• Such a list is often implemented with two ―start pointers‖—one
that points to the first element of the list to allow front-to-back
traversal of the list and one that points to the last element to allow
back-to-front traversal.

• Each node has both a forward pointer to the next node in the list
in the forward direction and a backward pointer to the next node
in the list in the backward direction.

• If your list contains an alphabetized telephone directory, for
example, a search for someone whose name begins with a letter
near the front of the alphabet might begin from the front of the
list.

• Searching for someone whose name begins with a letter near the
end of the alphabet might begin from the back of the list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• In a circular, doubly linked list (Fig. 20.12),

the forward pointer of the last node points to

the first node, and the backward pointer of the

first node points to the last node, thus closing

the ―circle.‖

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Chapter 14, Templates, explained the notion of
a stack class template with an underlying array
implementation.

• In this section, we use an underlying pointer-
based linked-list implementation.

• A stack data structure allows nodes to be
added to the stack and removed from the stack
only at the top.

• For this reason, a stack is referred to as a last-
in, first-out (LIFO) data structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• One way to implement a stack is as a constrained version of
a linked list.

• In such an implementation, the link member in the last node
of the stack is set to null (zero) to indicate the bottom of the
stack.

• The primary member functions used to manipulate a stack
are push and pop.

• Function push inserts a new node at the top of the stack.

• Function pop removes a node from the top of the stack,
stores the popped value in a reference variable that is passed
to the calling function and returns true if the pop
operation was successful (false otherwise).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Stacks have many interesting applications.

• For example, when a function call is made, the called function must know
how to return to its caller, so the return address is pushed onto a stack.

• If a series of function calls occurs, the successive return values are pushed
onto the stack in last-in, first-out order, so that each function can return to
its caller.

• Stacks support recursive function calls in the same manner as conventional
nonrecursive calls.

• Section 6.11 discusses the function call stack in detail.

• Stacks provide the memory for, and store the values of, automatic variables
on each invocation of a function.

• When the function returns to its caller or throws an exception, the
destructor (if any) for each local object is called, the space for that
function’s automatic variables is popped off the stack and those variables
are no longer known to the program.

• Stacks are used by compilers in the process of evaluating expressions and
generating machine-language code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• We’ll take advantage of the close relationship
between lists and stacks to implement a stack
class primarily by reusing a list class.

• First, we implement the stack class through
private inheritance of the list class.

• Then we implement an identically performing
stack class through composition by including a
list object as a private member of a stack
class.

• All of the data structures in this chapter, including
these two stack classes, are implemented as
templates to encourage further reusability.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• The program of Figs. 20.13–20.14 creates a Stack
class template (Fig. 20.13) primarily through

private inheritance (line 9) of the List class

template of Fig. 20.4.

• We want the Stack to have member functions push
(lines 13–16), pop (lines 19–22), isStackEmpty
(lines 25–28) and printStack (lines 31–34).

– These are essentially the insertAtFront,

removeFromFront, isEmpty and print functions of

the List class template.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Of course, the List class template contains other member
functions (i.e., insertAtBack and removeFromBack) that
we would not want to make accessible through the public
interface to the Stack class.

• So when we indicate that the Stack class template is to inherit
from the List class template, we specify private inheritance.

• This makes all the List class template’s member functions
private in the Stack class template.

• When we implement the Stack’s member functions, we then
have each of these call the appropriate member function of the
List class—push calls insertAtFront (line 15), pop calls
removeFromFront (line 21), isStackEmpty calls
isEmpty (line 27) and printStack calls print (line 33)—
this is referred to as delegation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• The explicit use of the this pointer on lines 27
and 33 is required so the compiler can resolve
identifiers in template definitions properly.

• A dependent name is an identifier that depends on
a template parameter.

• For example, the call to removeFromFront
(line 21) depends on the argument data which
has a type that is dependent on the template
parameter STACKTYPE.

• Resolution of dependent names occurs when the
template is instantiated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• In contrast, the identifier for a function that takes no
arguments like isEmpty or print in the List
superclass is a non-dependent name.

• Such identifiers are normally resolved at the point where the
template is defined.

• If the template has not yet been instantiated, then the code
for the function with the non-dependent name does not yet
exist and some compilers will generate compilation errors.

• Adding the explicit use of this-> in lines 27 and 33
makes the calls to the base class’s member functions
dependent on the template parameter and ensures that the
code will compile properly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Another way to implement a Stack class template is by
reusing the List class template through composition.

• Figure 20.15 is a new implementation of the Stack class
template that contains a List< STACKTYPE > object
called stackList (line 38).

• This version of the Stack class template uses class List
from Fig. 20.4.

• To test this class, use the driver program in Fig. 20.14, but
include the new header file—Stackcomposition.h in
line 6 of that file.

• The output of the program is identical for both versions of
class Stack.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• A queue is similar to a supermarket checkout line—

the first person in line is serviced first, and other

customers enter the line at the end and wait to be

serviced.

• Queue nodes are removed only from the head of the

queue and are inserted only at the tail of the queue.

• For this reason, a queue is referred to as a first-in,

first-out (FIFO) data structure.

• The insert and remove operations are known as

enqueue and dequeue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Queues have many applications in computer systems.

• Computers that have a single processor can service

only one user at a time.

• Entries for the other users are placed in a queue.

• Each entry gradually advances to the front of the

queue as users receive service.

• The entry at the front of the queue is the next to

receive service.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Queues are also used to support print spooling.

• For example, a single printer might be shared by all

users of a network.

• Many users can send print jobs to the printer, even

when the printer is already busy.

• These print jobs are placed in a queue until the printer

becomes available.

• A program called a spooler manages the queue to

ensure that, as each print job completes, the next print

job is sent to the printer.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Information packets also wait in queues in computer
networks.

• Each time a packet arrives at a network node, it must be
routed to the next node on the network along the path to the
packet’s final destination.

• The routing node routes one packet at a time, so additional
packets are enqueued until the router can route them.

• A file server in a computer network handles file access
requests from many clients throughout the network.

• Servers have a limited capacity to service requests from
clients.

• When that capacity is exceeded, client requests wait in
queues.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

• Queues are used in distributed systems, such as

clusters, clouds, grids, and supercomputers

– Local resource managers (e.g. Condor / LSF / SGE /

PBS / Cobalt / Falkon) have queues for jobs, which

are then dispatched out to remote compute resources

for processing

– Amazon (a cloud example) has the Simple Queuing

Service

• Ideal to load balance across many

threads/processes/nodes/clusters

– Decouples producers from consummers

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68

69©1992-2010 by Pearson Education, Inc. All Rights Reserved.

