


• The program of Figs. 20.16–20.17 creates a Queue
class template (Fig. 20.16) through private
inheritance (line 9) of the List class template 

(Fig. 20.4).

• The Queue has member functions enqueue (lines 

13–16), dequeue (lines 19–22), isQueueEmpty
(lines 25–28) and printQueue (lines 31–34).

• These are essentially the insertAtBack, 

removeFromFront, isEmpty and print
functions of the List class template.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



• The List class template contains other member functions that 
we do not want to make accessible through the public interface 
to the Queue class.

• So when we indicate that the Queue class template is to inherit 
the List class template, we specify private inheritance.

• This makes all the List class template’s member functions 
private in the Queue class template.

• When we implement the Queue’s member functions, we have 
each of these call the appropriate member function of the list 
class—enqueue calls insertAtBack (line 15), dequeue
calls removeFromFront (line 21), isQueueEmpty calls 
isEmpty (line 27) and printQueue calls print (line 33).

• As with the Stack example in Fig. 20.13, this delegation 
requires explicit use of the this pointer in isQueueEmpty
and printQueue to avoid compilation errors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10



• Linked lists, stacks and queues are linear data 

structures.

• A tree is a nonlinear, two-dimensional data 

structure.

• Tree nodes contain two or more links.

• This section discusses binary trees

(Fig. 20.18)—trees whose nodes all contain 

two links (none, one or both of which may be 

null).
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



• For this discussion, refer to nodes A, B, C and D in Fig. 20.18.

• The root node (node B) is the first node in a tree.

• Each link in the root node refers to a child (nodes A and D).

• The left child (node A) is the root node of the left subtree (which contains 
only node A), and the right child (node D) is the root node of the right 
subtree (which contains nodes D and C).

• The children of a given node are called siblings (e.g., nodes A and D are 
siblings).

• A node with no children is a leaf node (e.g., nodes A and C are leaf nodes).

• Computer scientists normally draw trees from the root node down—the 
opposite of how trees grow in nature.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



• A binary search tree (with no duplicate node values) 

has the characteristic that the values in any left 

subtree are less than the value in its parent node, and 

the values in any right subtree are greater than the 

value in its parent node.

• Figure 20.19 illustrates a binary search tree with 9 

values.

• Note that the shape of the binary search tree that 

corresponds to a set of data can vary, depending on 

the order in which the values are inserted into the 

tree.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



• The program of Figs. 20.20–20.22 creates a binary 
search tree and traverses it (i.e., walks through all its 
nodes) three ways—using recursive inorder, preorder
and postorder traversals.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27



• The TreeNode class template (Fig. 20.20) definition declares 

Tree<NODETYPE> as its friend (line 13).

– This makes all member functions of a given specialization of class 

template Tree (Fig. 20.21) friends of the corresponding specialization 

of class template TreeNode, so they can access the private
members of TreeNode objects of that type.

– Because the TreeNode template parameter NODETYPE is used as the 

template argument for Tree in the friend declaration, TreeNodes

specialized with a particular type can be processed only by a Tree
specialized with the same type (e.g., a Tree of int values manages 

TreeNode objects that store int values).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28



• Class template Tree (Fig. 20.21) has as private data 
rootPtr (line 20), a pointer to the tree’s root node.

• Lines 15–18 declare the public member functions 
insertNode (that inserts a new node in the tree) and 
preOrderTraversal, inOrderTraversal and 
postOrderTraversal, each of which walks the tree in 
the designated manner.

• Each of these member functions calls its own recursive 
utility function to perform the appropriate operations on the 
internal representation of the tree, so the program is not 
required to access the underlying private data to perform 
these functions.

• Remember that the recursion requires us to pass in a pointer 
that represents the next subtree to process.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29



• The Tree constructor initializes rootPtr to zero to indicate that the 
tree is initially empty.

• The Tree class’s utility function insertNodeHelper (lines 45–66) 
is called by insertNode (lines 37–41) to recursively insert a node 
into the tree.

• A node can only be inserted as a leaf node in a binary search tree.

• If the tree is empty, a new TreeNode is created, initialized and 
inserted in the tree (lines 51–52). 

• If the tree is not empty, the program compares the value to be inserted 
with the data value in the root node.

• If the insert value is smaller (line 55), the program recursively calls 
insertNodeHelper (line 56) to insert the value in the left subtree.

• If the insert value is larger (line 60), the program recursively calls 
insertNodeHelper (line 61) to insert the value in the right subtree.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30



• If the value to be inserted is identical to the data 
value in the root node, the program prints the 
message " dup" (line 63) and returns without 
inserting the duplicate value into the tree.

• insertNode passes the address of rootPtr to 
insertNodeHelper (line 40) so it can modify 
the value stored in rootPtr (i.e., the address of 
the root node).

• To receive a pointer to rootPtr (which is also a 
pointer), insertNodeHelper’s first argument 
is declared as a pointer to a pointer to a 
TreeNode.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31



• Member functions inOrderTraversal
(lines 88–92), preOrderTraversal (lines 

69–73) and postOrderTraversal (lines 

107–111) traverse the tree and print the node 

values.

• For the purpose of the following discussion, 

we use the binary search tree in Fig. 20.23.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33



• Function inOrderTraversal invokes utility function 
inOrderHelper to perform the inorder traversal of the 
binary tree.

• The steps for an inorder traversal are:
– Traverse the left subtree with an inorder traversal. (This is 

performed by the call to inOrderHelper at line 100.)

– Process the value in the node—i.e., print the node value (line 101).

– Traverse the right subtree with an inorder traversal. (This is 
performed by the call to inOrderHelper at line 102.)

• The value in a node is not processed until the values in its 
left subtree are processed, because each call to 
inOrderHelper immediately calls inOrderHelper
again with the pointer to the left subtree.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34



• The inorder traversal of the tree in Fig. 20.23 

is
•6 13 17 27 33 42 48

• Note that the inorder traversal of a binary 

search tree prints the node values in ascending 

order.

• The process of creating a binary search tree 

actually sorts the data—thus, this process is 

called the binary tree sort.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35



• Function preOrderTraversal invokes utility function 
preOrderHelper to perform the preorder traversal of the 
binary tree.

• The steps for an preorder traversal are:
– Process the value in the node (line 81).
– Traverse the left subtree with a preorder traversal. (This is performed 

by the call to preOrderHelper at line 82.)
– Traverse the right subtree with a preorder traversal. (This is performed 

by the call to preOrderHelper at line 83.)

• The value in each node is processed as the node is visited.
• After the value in a given node is processed, the values in the left 

subtree are processed.
• Then the values in the right subtree are processed.
• The preorder traversal of the tree in Fig. 20.23 is

• 27 13 6 17 42 33 48

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36



• Function postOrderTraversal invokes utility 
function postOrderHelper to perform the postorder 
traversal of the binary tree.

• The steps for a postorder traversal are:
– Traverse the left subtree with a postorder traversal. (This is 

performed by the call to postOrderHelper at line 120.)

– Traverse the right subtree with a postorder traversal. (This is 
performed by the call to postOrderHelper at line 121.)

– Process the value in the node (line 122). 

• The value in each node is not printed until the values of its 
children are printed.

• The postOrderTraversal of the tree in Fig. 20.23 is
• 6 17 13 33 48 42 27

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37



• The binary search tree facilitates duplicate 

elimination.

• As the tree is being created, an attempt to insert a 

duplicate value will be recognized, because a 

duplicate will follow the same ―go left‖ or ―go right‖ 

decisions on each comparison as the original value 

did when it was inserted in the tree.

• Thus, the duplicate will eventually be compared with 

a node containing the same value.

• The duplicate value may be discarded at this point.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38



• Searching a binary tree for a value that matches a key value is also fast.

• If the tree is balanced, then each branch contains about half the number 
of nodes in the tree.

• Each comparison of a node to the search key eliminates half the nodes.

• This is called an O(log n) algorithm (Big O notation is discussed in 
Chapter 19).

• So a binary search tree with n elements would require a maximum of 
log2 n comparisons either to find a match or to determine that no match 
exists.

• This means, for example, that when searching a (balanced) 1000-
element binary search tree, no more than 10 comparisons need to be 
made, because 210 > 1000.

• When searching a (balanced) 1,000,000-element binary search tree, no 
more than 20 comparisons need to be made, because 220 > 1,000,000.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39



• In the exercises, algorithms are presented for several other 
binary tree operations such as deleting an item from a 
binary tree, printing a binary tree in a two-dimensional tree 
format and performing a level-order traversal of a binary 
tree.

• The level-order traversal of a binary tree visits the nodes of 
the tree row by row, starting at the root node level.

• On each level of the tree, the nodes are visited from left to 
right.

• Other binary tree exercises include allowing a binary search 
tree to contain duplicate values, inserting string values in a 
binary tree and determining how many levels are contained 
in a binary tree.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40



41©1992-2010 by Pearson Education, Inc. All Rights Reserved.


