


• Inheritance is a form of software reuse in which you create 
a class that absorbs an existing class’s data and behaviors 
and enhances them with new capabilities.

• You can designate that the new class should inherit the 
members of an existing class.

• This existing class is called the base class, and the new class 
is referred to as the derived class.

• A derived class represents a more specialized group of 
objects.

• A derived class contains behaviors inherited from its base 
class and can contain additional behaviors.

• A derived class can also customize behaviors inherited from 
the base class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



• A direct base class is the base class from which a 

derived class explicitly inherits.

• An indirect base class is inherited from two or more 

levels up in the class hierarchy.

• In the case of single inheritance, a class is derived 

from one base class.

• C++ also supports multiple inheritance, in which a 

derived class inherits from multiple (possibly 

unrelated) base classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



• C++ offers public, protected and private
inheritance.

• In this chapter, we concentrate on public inheritance and 
briefly explain the other two.

• In Chapter 20, Data Structures, we show how private
inheritance can be used as an alternative to composition.

• The third form, protected inheritance, is rarely used.

• With public inheritance, every object of a derived class is 
also an object of that derived class’s base class.

• However, base-class objects are not objects of their derived 
classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



• Often, an object of one class is an object of another class, as 
well.

– For example, in geometry, a rectangle is a quadrilateral (as are 
squares, parallelograms and trapezoids).

– Thus, in C++, class Rectangle can be said to inherit from class 
Quadrilateral.

– In this context, class Quadrilateral is a base class, and class 
Rectangle is a derived class.

– A rectangle is a specific type of quadrilateral, but it’s incorrect to 
claim that a quadrilateral is a rectangle—the quadrilateral could be 
a parallelogram or some other shape.

• Figure 12.1 lists several simple examples of base classes 
and derived classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7



• Because every derived-class object is an object of its base 
class, and one base class can have many derived classes, the 
set of objects represented by a base class typically is larger 
than the set of objects represented by any of its derived 
classes.

• A base class exists in a hierarchical relationship with its 
derived classes.

• Although classes can exist independently, once they’re 
employed in inheritance relationships, they become 
affiliated with other classes.

• A class becomes either a base class—supplying members to 
other classes, a derived class—inheriting its members from 
other classes, or both.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8



• Let’s develop a simple inheritance hierarchy with five 
levels (represented by the UML class diagram in Fig. 12.2).

• A university community has thousands of members.

• Employees are either faculty members or staff members.

• Faculty members are either administrators (such as deans 
and department chairpersons) or teachers.

• Some administrators, however, also teach classes.

• Note that we’ve used multiple inheritance to form class 
AdministratorTeacher.

• Also, this inheritance hierarchy could contain many other 
classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10



• Each arrow in the hierarchy (Fig. 12.2) represents an is-a 
relationship.
– As we follow the arrows in this class hierarchy, we can state ―an 
Employee is a CommunityMember‖ and ―a Teacher is a 
Faculty member.‖ CommunityMember is the direct base class 
of Employee, Student and Alumnus.

– CommunityMember is an indirect base class of all the other 
classes in the diagram.

• Starting from the bottom of the diagram, you can follow the 
arrows and apply the is-a relationship to the topmost base 
class.
– An AdministratorTeacher is an Administrator, is a 
Faculty member, is an Employee and is a 
CommunityMember. 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



• Consider the Shape inheritance hierarchy in Fig. 12.3.

• Begins with base class Shape.

• Classes TwoDimensionalShape and 
ThreeDimensionalShape derive from base class 
Shape—Shapes are either TwoDimensionalShapes 
or Three-DimensionalShapes.

• The third level of this hierarchy contains some more 
specific types of TwoDimensionalShapes and 
ThreeDimensionalShapes.

• As in Fig. 12.2, we can follow the arrows from the bottom 
of the diagram to the topmost base class in this class 
hierarchy to identify several is-a relationships.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13



• Chapter 3 introduced access specifiers public and private.

• A base class’s public members are accessible within its body and 
anywhere that the program has a handle (i.e., a name, reference or 
pointer) to an object of that class or one of its derived classes.

• A base class’s private members are accessible only within its body 
and to the friends of that base class.

• In this section, we introduce the access specifier protected.
• Using protected access offers an intermediate level of protection 

between public and private access.

• A base class’s protected members can be accessed within the body 
of that base class, by members and friends of that base class, and by 
members and friends of any classes derived from that base class.

• Derived-class member functions can refer to public and 
protected members of the base class simply by using the member 
names.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



• In this section, we use an inheritance hierarchy 

containing types of employees in a company’s payroll 

application to discuss the relationship between a base 

class and a derived class.

• Commission employees (who will be represented as 

objects of a base class) are paid a percentage of their 

sales, while base-salaried commission employees 

(who will be represented as objects of a derived class) 

receive a base salary plus a percentage of their sales.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



• CommissionEmployee’s class definition (Figs. 12.4–
12.5).

• CommissionEmployee’s public services include a 
constructor and member functions earnings and print.

• Also includes public get and set functions that 
manipulate the class’s data members firstName, 
lastName, socialSecurityNumber, grossSales
and commissionRate.
– These data members are private, so objects of other classes 

cannot directly access this data.

– Declaring data members as private and providing non-
private get and set functions to manipulate and validate the data 
members helps enforce good software engineering.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23



• The CommissionEmployee constructor definition 
purposely does not use member-initializer syntax in the first 
several examples of this section, so that we can demonstrate 
how private and protected specifiers affect member 
access in derived classes.

– Later in this section, we’ll return to using member-initializer lists in 
the constructors.

• Member function earnings calculates a 
CommissionEmployee’s earn-ings.

• Member function print displays the values of a 
CommissionEmployee object’s data members.

• Figure 12.6 tests class CommissionEmployee.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27



• We now discuss the second part of our 

introduction to inheritance by creating and 

testing (a completely new and independent) 

class BasePlusCommissionEmployee
(Figs. 12.7–12.8), which contains a first name, 

last name, social security number, gross sales 

amount, commission rate and base salary.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35



• The BasePlusCommissionEmployee header file (Fig. 12.7) 
specifies class BasePlusCommissionEmployee’s public
services, which include the BasePlusCommissionEmployee
constructor and member functions earnings and print.

• Lines 16–32 declare public get and set functions for the class’s 
private data members firstName, lastName, social-
SecurityNumber, grossSales, commissionRate and 
baseSalary.

• Note the similarity between this class and class Commission-
Employee (Figs. 12.4–12.5)—in this example, we won’t yet exploit 
that similarity.

• Class BasePlusCommissionEmployee’s earnings member 
function computes the earnings of a base-salaried commission 
employee.

• Figure 12.9 tests class BasePlusCommissionEmployee.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39



• Most of the code for class 
BasePlusCommissionEmployee (Figs. 12.7–12.8) is 
similar, if not identical, to the code for class 
CommissionEmployee (Figs. 12.4–12.5).

• In class BasePlusCommissionEmployee, private
data members firstName and lastName and member 
functions setFirstName, getFirstName, 
setLastName and getLastName are identical to those 
of class CommissionEmployee.

• Both classes contain private data members 
socialSecurityNumber, commissionRate and 
grossSales, as well as get and set functions to 
manipulate these members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40



• The BasePlusCommissionEmployee constructor is 
almost identical to that of class CommissionEmployee, 
except that BasePlusCommissionEmployee’s 
constructor also sets the baseSalary.

• The other additions to class 
BasePlusCommissionEmployee are private data 
member baseSalary and member functions 
setBaseSalary and getBase-Salary.

• Class BasePlusCommissionEmployee’s print
member function is nearly identical to that of class 
CommissionEmployee, except that 
BasePlusCommissionEmployee’s print also 
outputs the value of data member baseSalary.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41



• We literally copied code from class 
CommissionEmployee and pasted it into class 
BasePlusCommissionEmployee, then 
modified class 
BasePlusCommissionEmployee to include 
a base salary and member functions that 
manipulate the base salary.

• This ―copy-and-paste‖ approach is error prone 
and time consuming.

• Worse yet, it can spread many physical copies of 
the same code throughout a system, creating a 
code-maintenance nightmare.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44



• Now we create and test a new BasePlusCommissionEmployee
class (Figs. 12.10–12.11) that derives from class 
CommissionEmployee (Figs. 12.4–12.5).

• In this example, a BasePlus-CommissionEmployee object is a 
CommissionEmployee (because inheritance passes on the 
capabilities of class CommissionEmployee), but class 
BasePlusCommission-Employee also has data member 
baseSalary (Fig. 12.10, line 23).

• The colon (:) in line 11 of the class definition indicates inheritance.

• Keyword public indicates the type of inheritance.

• As a derived class (formed with public inheritance), 
BasePlusCommissionEmployee inherits all the members of class 
CommissionEmployee, except for the constructor—each class 
provides its own constructors that are specific to the class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45



• Destructors, too, are not inherited

• Thus, the public services of 
BasePlusCommissionEmployee include its 
constructor and the public member functions inherited 
from class CommissionEmployee—although we cannot 
see these inherited member functions in 
BasePlusCommissionEmployee’s source code, 
they’re nevertheless a part of derived class 
BasePlusCommissionEmployee.

• The derived class’s public services also include member 
functions setBaseSalary, getBaseSalary, 
earnings and print.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52



• Figure 12.11 shows BasePlusCommissionEmployee’s 
member-function implementations.

• The constructor introduces base-class initializer syntax, which 
uses a member initializer to pass arguments to the base-class 
constructor.

• C++ requires that a derived-class constructor call its base-class 
constructor to initialize the base-class data members that are 
inherited into the derived class.

• If BasePlusCommissionEmployee’s constructor did not 
invoke class CommissionEmployee’s constructor explicitly, 
C++ would attempt to invoke class CommissionEmployee’s 
default constructor—but the class does not have such a 
constructor, so the compiler would issue an error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55



• The compiler generates errors for line 33 of Fig. 12.11 because base 
class CommissionEmployee’s data members commissionRate
and grossSales are private—derived class 
BasePlusCommissionEmployee’s member functions are not 
allowed to access base class CommissionEmployee’s private
data.

• We used red text in Fig. 12.11 to indicate erroneous code.

• The compiler issues additional errors in lines 40–43 of BasePlus-
Commission-Employee’s print member function for the same 
reason.

• C++ rigidly enforces restrictions on accessing private data 
members, so that even a derived class (which is intimately related to its 
base class) cannot access the base class’s private data.

• We purposely included the erroneous code in Fig. 12.11 to emphasize 
that a derived class’s member functions cannot access its base class’s 
private data.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56



• The errors in BasePlusCommissionEmployee could 

have been prevented by using the get member functions 

inherited from class CommissionEmployee.

• For example, line 33 could have invoked 

getCommissionRate and getGrossSales to access 

CommissionEmployee’s private data members 

commissionRate and grossSales, respectively.

• Similarly, lines 40–43 could have used appropriate get 

member functions to retrieve the values of the base class’s 

data members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57



• Notice that we #include the base class’s 
header file in the derived class’s header file (line 
8 of Fig. 12.10).

• This is necessary for three reasons.
– The derived class uses the base class’s name in line 10, 

so we must tell the compiler that the base class exists.
– The compiler uses a class definition to determine the 

size of an object of that class. A client program that 
creates an object of a class must #include the class 
definition to enable the compiler to reserve the proper 
amount of memory for the object.

– The compiler must determine whether the derived 
class uses the base class’s inherited members properly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58



• In Section 3.8, we discussed the linking process 
for creating an executable GradeBook
application.

• The linking process is similar for a program that 
uses classes in an inheritance hierarchy.

• The process requires the object code for all 
classes used in the program and the object code 
for the direct and indirect base classes of any 
derived classes used by the program.

• The code is also linked with the object code for 
any C++ Standard Library classes used in the 
classes or the client code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59



• To enable class 

BasePlusCommissionEmployee to directly 

access CommissionEmployee data members 

firstName, lastName, 

socialSecurityNumber, grossSales and 

commissionRate, we can declare those members 

as protected in the base class.

• A base class’s protected members can be 

accessed by members and friends of the base class 

and by members and friends of any classes derived 

from that base class.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 61



• Class CommissionEmployee (Figs. 12.12–

12.13) now declares data members 

firstName, lastName, 

socialSecurityNumber, grossSales
and commissionRate as protected
(Fig. 12.12, lines 32–37) rather than 

private.

• The member-function implementations in 

Fig. 12.13 are identical to those in Fig. 12.5.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 62



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 63



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 64



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 65



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 66



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 67



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68



• The version of class BasePlusCommissionEmployee in 
Figs. 12.14–12.15 inherits from class CommissionEmployee
in Figs. 12.12–12.13.

• Objects of class BasePlusCommissionEmployee can 
access inherited data members that are declared protected in 
class CommissionEmployee (i.e., data members 
firstName, lastName, socialSecurityNumber, 
grossSales and commissionRate).

• As a result, the compiler does not generate errors when compiling 
the BasePlusCommissionEmployee earnings and 
print member-function definitions in Fig. 12.15 (lines 30–34 
and 37–45, respectively).

• Objects of a derived class also can access protected members 
in any of that derived class’s indirect base classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 69



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 70



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 71



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 72



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 73



• Figure 12.16 uses a BasePlusCommissionEmployee
object to perform the same tasks that Fig. 12.9 performed on an 
object of the first version of class 
BasePlusCommissionEmployee (Figs. 12.7–12.8).

• The code and outputs of the two programs are identical.
• The code for class BasePlusCommissionEmployee, which 

is 71 lines, is considerably shorter than the code for the 
noninherited version of the class, which is 152 lines, because the 
inherited version absorbs part of its functionality from 
CommissionEmployee, whereas the noninherited version 
does not absorb any functionality.

• Also, there is now only one copy of the 
CommissionEmployee functionality declared and defined in 
class CommissionEmployee.
– Makes the source code easier to maintain, modify and debug.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 74



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 75



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 76



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 77



• Inheriting protected data members slightly 

increases performance, because we can 

directly access the members without incurring 

the overhead of calls to set or get member 

functions.

• In most cases, it’s better to use private data 

members to encourage proper software 

engineering, and leave code optimization 

issues to the compiler.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 78



• Using protected data members creates two serious 
problems.
– The derived-class object does not have to use a member function to 

set the value of the base class’s protected data member.

– Derived-class member functions are more likely to be written so 
that they depend on the base-class implementation. Derived classes 
should depend only on the base-class services (i.e., non-private
member functions) and not on the base-class implementation.

• With protected data members in the base class, if the 
base-class implementation changes, we may need to modify 
all derived classes of that base class.

• Such software is said to be fragile or brittle, because a small 
change in the base class can ―break‖ derived-class 
implementation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 79



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 80



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 81



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 82



• We now reexamine our hierarchy once more, this time using the best 
software engineering practices.

• Class CommissionEmployee (Figs. 12.17–12.18) now declares data 
members firstName, lastName, socialSecurityNumber, 
grossSales and commissionRate as private (Fig. 12.17, 
lines 32–37) and provides public member functions 
setFirstName, getFirstName, setLastName, 
getLastName, setSocialSecurityNumber, 
getSocialSecurityNumber, setGrossSales, 
getGrossSales, setCommissionRate, 
getCommissionRate, earnings and print for manipulating 
these values.

• Derived class BasePlusCommissionEmployee (Figs. 12.19–
12.20) inherits CommissionEmployee’s member functions and can 
access the private base-class members via the inherited non-
private member functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 83



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 84



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 85



• In the CommissionEmployee constructor 

implementation (Fig. 12.18, lines 8–15), we use member 

initializers to set the values of members firstName, 

lastName and socialSecurityNumber.

• We show how derived-class 

BasePlusCommissionEmployee (Figs. 12.19–12.20) 

can invoke non-private base-class member functions 

(setFirstName, getFirstName, setLastName, 

getLastName, setSocialSecurityNumber and 

getSocialSecurityNumber) to manipulate these data 

members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 86



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 87



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 88



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 89



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 90



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 91



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 92



• Class BasePlusCommissionEmployee
(Figs. 12.19–12.20) has several changes to its 

member-function implementations (Fig. 12.20) 

that distinguish it from the previous version of 

the class (Figs. 12.14–12.15).

• Member functions earnings (Fig. 12.20, 

lines 30–33) and print (lines 36–44) each 

invoke getBaseSalary to obtain the base 

salary value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 93



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 94



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 95



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 96



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 97



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 98



• Class BasePlusCommissionEmployee’s earnings
function (Fig. 12.20, lines 30–33) redefines class 

CommissionEmployee’s earnings to calculate the 

earnings of a base-salaried commission employee. It also 

calls CommissionEmployee’s earnings function.

– Note the syntax used to invoke a redefined base-class member 

function from a derived class—place the base-class name and the 

binary scope resolution operator (::) before the base-class 

member-function name.

– Good software engineering practice: If an object’s member function 

performs the actions needed by another object, we should call that 

member function rather than duplicating its code body.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 99



• BasePlusCommissionEmployee’s 

print function (Fig. 12.20, lines 36–44) 

redefines class CommissionEmployee’s 

print to output the appropriate base-salaried 

commission employee information. It also 

calles Commission-Employee’s print.

• By using inheritance and by calling member 

functions that hide the data and ensure 

consistency, we’ve efficiently and effectively 

constructed a well-engineered class.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 100



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 101



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 102



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 103



• We now continue our study of OOP by explaining and 
demonstrating polymorphism with inheritance hier-archies.

• Polymorphism enables us to ―program in the general‖ rather than 
―program in the specific.‖
– Enables us to write programs that process objects of classes that are 

part of the same class hierarchy as if they were all objects of the 
hierarchy’s base class. 

• Polymorphism works off base-class pointer handles and base-
class reference handles, but not off name handles.

• Relying on each object to know how to ―do the right thing‖ in 
response to the same function call is the key concept of 
polymorphism.

• The same message sent to a variety of objects has ―many forms‖ 
of results—hence the term polymorphism.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 104



• With polymorphism, we can design and 

implement systems that are easily extensible.

– New classes can be added with little or no 

modification to the general portions of the 

program, as long as the new classes are part of the 

inheritance hierarchy that the program processes 

generically.

– The only parts of a program that must be altered to 

accommodate new classes are those that require 

direct knowledge of the new classes that you add 

to the hierarchy.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 105



• With polymorphism, one function can cause different actions to 
occur, depending on the type of the object on which the function 
is invoked.

• If class Rectangle is derived from class Quadrilateral, 
then a Rectangle object is a more specific version of a 
Quadrilateral object.
– Any operation that can be performed on an object of class 
Quadrilateral also can be performed on an object of class 
Rectangle.

– Such operations also can be performed on other kinds of 
Quadrilaterals, such as Squares, Parallelograms and 
Trapezoids.

• Polymorphism occurs when a program invokes a virtual
function through a base-class pointer or reference.
– C++ dynamically (i.e., at execution time) chooses the correct function 

for the class from which the object was instantiated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 106



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 107



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 108



109©1992-2010 by Pearson Education, Inc. All Rights Reserved.


