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• Use multiple

– Datapaths

– Memory units

– Processing units
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• SIMD 

– Advantages

• Performs vector/matrix operations well

– EX: Intel’s MMX chip

– Disadvantages

• Too dependent on type of computation

– EX: Graphics

• Performance/resource utilization suffers if 

computations aren’t “embarrasingly parallel”.
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• MIMD 
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• MIMD 
– Advantages

• Can be built with off-the-shelf components
• Better suited to irregular data access patterns

– Disadvantages
• Requires more hardware (!sharing control unit)
• Store program/OS at each processor

• Ex: Typical commodity SMP machines we see 
today.
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• Task Communication

– Shared address space

• Use common memory to exchange data

• Communication and replication are implicit

– Message passing

• Use send()/receive() primitives to exchange data

• Communication and replication are explicit
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• Shared address space

– Uniform memory access (UMA)

• Access to a memory location is independent of 

which processing unit makes the request.

– Non-uniform memory access (NUMA)

• Access to a memory location depends on the 

location of the processing unit relative to the 

memory accessed.
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• Message passing

– Each processing unit has its own private 

memory

– Exchange of messages used to pass data

– APIs

• Message Passing Interface (MPI)

• Parallel Virtual Machine (PVM) 
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• Algorithm

– a sequence of finite instructions, often used 

for calculation and data processing.

• Parallel Algorithm

– An algorithm that which can be executed a 

piece at a time on many different processing 

devices, and then put back together again at 

the end to get the correct result
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• Challenges

– Identifying work that can be done 

concurrently.

– Mapping work to processing units.

– Distributing the work

– Managing access to shared data

– Synchronizing various stages of execution.
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• Models

– A way to structure a parallel algorithm by 

selecting decomposition and mapping 

techniques in a manner to minimize 

interactions.
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• Models

– Data-parallel

– Task graph

– Work pool

– Master-slave

– Pipeline

– Hybrid
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• Data-parallel

– Mapping of Work

• Static

• Tasks -> Processes

– Mapping of Data

• Independent data items assigned to processes 

(Data Parallelism)
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• Data-parallel
– Computation

• Tasks process data, synchronize to get new data 
or exchange results, continue until all data 
processed

– Load Balancing
• Uniform partitioning of data

– Synchronization
• Minimal or barrier needed at end of a phase

– Examples
• Ray Tracing
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• Data-parallel
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• Task graph

– Mapping of Work

• Static

• Tasks are mapped to nodes in a data dependency 

task dependency graph (Task parallelism)

– Mapping of Data

• Data moves through graph (Source to Sink)
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• Task graph
– Computation

• Each node processes input from previous node(s) and send 
output to next node(s) in the graph

– Load Balancing
• Assign more processes to a given task
• Eliminate graph bottlenecks

– Synchronization
• Node data exchange

– Examples
• Parallel Quicksort, Divide and Conquer approaches
• Scientific Applications that can be expressed in workflows 

(e.g. DAGs)

19



• Task graph
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• Work pool

– Mapping of Work/Data

• No desired pre-mapping

• Any task performed by any process

• Pull-model oriented

– Computation

• Processes work as data becomes available (or 

requests arrive)
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• Work pool

– Load Balancing

• Dynamic mapping of tasks to processes

– Synchronization

• Adding/removing work from input queue

– Examples

• Web Server

• Bag-of-tasks
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• Work pool
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• Master-slave

– Modification to Worker Pool Model

• One or more Master processes generate and 

assign work to worker processes\

• Push-model oriented

– Load Balancing

• A Master process can better distribute load to 

worker processes
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• Pipeline

– Mapping of work

• Processes are assigned tasks that correspond to 

stages in the pipeline

• Static

– Mapping of Data

• Data processed in FIFO order

– Stream parallelism
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• Pipeline
– Computation

• Data is passed through a succession of processes, 
each of which will perform some task on it

– Load Balancing
• Insure all stages of the pipeline are balanced 

(contain the same amount of work)

– Synchronization
• Producer/Consumer buffers between stages

– Ex: Processor pipeline, graphics pipeline
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• Pipeline
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