


• Standard sequential architecture

CPU
RAM

BUS

Bottlenecks

2



• Use multiple

– Datapaths

– Memory units

– Processing units

3



• SIMD 

– Single instruction stream, multiple data 

stream Processing 

Unit

Control

Unit

In
terco

n
n
ect

Processing 

Unit

Processing 

Unit

Processing 

Unit

Processing 

Unit
4



• SIMD 

– Advantages

• Performs vector/matrix operations well

– EX: Intel’s MMX chip

– Disadvantages

• Too dependent on type of computation

– EX: Graphics

• Performance/resource utilization suffers if 

computations aren’t “embarrasingly parallel”.

5



• MIMD 

– Multiple instruction stream, multiple data 

stream
Processing/Control 

Unit

Processing/Control 

Unit

Processing/Control 

Unit

Processing/Control 

Unit

In
terco

n
n
ect

6



• MIMD 
– Advantages

• Can be built with off-the-shelf components
• Better suited to irregular data access patterns

– Disadvantages
• Requires more hardware (!sharing control unit)
• Store program/OS at each processor

• Ex: Typical commodity SMP machines we see 
today.

7



• Task Communication

– Shared address space

• Use common memory to exchange data

• Communication and replication are implicit

– Message passing

• Use send()/receive() primitives to exchange data

• Communication and replication are explicit

8



• Shared address space

– Uniform memory access (UMA)

• Access to a memory location is independent of 

which processing unit makes the request.

– Non-uniform memory access (NUMA)

• Access to a memory location depends on the 

location of the processing unit relative to the 

memory accessed.

9



• Message passing

– Each processing unit has its own private 

memory

– Exchange of messages used to pass data

– APIs

• Message Passing Interface (MPI)

• Parallel Virtual Machine (PVM) 

10



• Algorithm

– a sequence of finite instructions, often used 

for calculation and data processing.

• Parallel Algorithm

– An algorithm that which can be executed a 

piece at a time on many different processing 

devices, and then put back together again at 

the end to get the correct result

11



• Challenges

– Identifying work that can be done 

concurrently.

– Mapping work to processing units.

– Distributing the work

– Managing access to shared data

– Synchronizing various stages of execution.

12



• Models

– A way to structure a parallel algorithm by 

selecting decomposition and mapping 

techniques in a manner to minimize 

interactions.

13



• Models

– Data-parallel

– Task graph

– Work pool

– Master-slave

– Pipeline

– Hybrid

14



• Data-parallel

– Mapping of Work

• Static

• Tasks -> Processes

– Mapping of Data

• Independent data items assigned to processes 

(Data Parallelism)

15



• Data-parallel
– Computation

• Tasks process data, synchronize to get new data 
or exchange results, continue until all data 
processed

– Load Balancing
• Uniform partitioning of data

– Synchronization
• Minimal or barrier needed at end of a phase

– Examples
• Ray Tracing

16



• Data-parallel

P

P

P

P

P

D D

D D

D

O

O

O

O

O

17



• Task graph

– Mapping of Work

• Static

• Tasks are mapped to nodes in a data dependency 

task dependency graph (Task parallelism)

– Mapping of Data

• Data moves through graph (Source to Sink)

18



• Task graph
– Computation

• Each node processes input from previous node(s) and send 
output to next node(s) in the graph

– Load Balancing
• Assign more processes to a given task
• Eliminate graph bottlenecks

– Synchronization
• Node data exchange

– Examples
• Parallel Quicksort, Divide and Conquer approaches
• Scientific Applications that can be expressed in workflows 

(e.g. DAGs)

19



• Task graph

P

P P

P

P

P

D

D

D

O

O

20



• Work pool

– Mapping of Work/Data

• No desired pre-mapping

• Any task performed by any process

• Pull-model oriented

– Computation

• Processes work as data becomes available (or 

requests arrive)

21



• Work pool

– Load Balancing

• Dynamic mapping of tasks to processes

– Synchronization

• Adding/removing work from input queue

– Examples

• Web Server

• Bag-of-tasks

22



• Work pool

P

Work Pool

P
P

P
P

In
p
u
t q

u
eu

e

O
u
tp

u
t q

u
eu

e

23



• Master-slave

– Modification to Worker Pool Model

• One or more Master processes generate and 

assign work to worker processes\

• Push-model oriented

– Load Balancing

• A Master process can better distribute load to 

worker processes

24



• Pipeline

– Mapping of work

• Processes are assigned tasks that correspond to 

stages in the pipeline

• Static

– Mapping of Data

• Data processed in FIFO order

– Stream parallelism

25



• Pipeline
– Computation

• Data is passed through a succession of processes, 
each of which will perform some task on it

– Load Balancing
• Insure all stages of the pipeline are balanced 

(contain the same amount of work)

– Synchronization
• Producer/Consumer buffers between stages

– Ex: Processor pipeline, graphics pipeline

26



• Pipeline

P

In
p
u
t q

u
eu

e

O
u
tp

u
t q

u
eu

e

P P

b
u
ffer

b
u
ffer

27



28


