

• Message-Passing

• Shared Address Space

2

• Message-Passing

– Most widely used for programming parallel

computers (clusters of workstations)

– Key attributes:

• Partitioned address space

• Explicit parallelization

– Process interactions

• Send and receive data

3

• Message-Passing
– Communications

• Sending and receiving messages
• Primitives

– send(buff, size, destination)
– receive(buff, size, source)
– Blocking vs non-blocking
– Buffered vs non-buffered

• Message Passing Interface (MPI)
– Popular message passing library
– ~125 functions

4

• Message-Passing

Workstation Workstation Workstation Workstation

Data

P4P3P2P1

send(buff1, 1024, p3) receive(buff3, 1024, p1)

5

• Shared Address Space
– Mostly used for programming SMP machines

(multicore chips)
– Key attributes

• Shared address space
– Threads
– Shmget/shmat UNIX operations

• Implicit parallelization

– Process/Thread communication
• Memory reads/stores

6

• Shared Address Space
– Communication

• Read/write memory
– EX: x++;

– Posix Thread API
• Popular thread API
• Operations

– Creation/deletion of threads
– Synchronization (mutexes, semaphores)
– Thread management

7

• Shared Address Space

Workstation

T3 T4T2T1

Data SMPRAM

8

• Synchronization

– Deadlock

– Livelock

– Fairness

• Efficiency

– Maximize parallelism

• Reliability

– Correctness

– Debugging

9

• Multicore processors are taking over,

manycore is coming

• The processor is the “new transistor”

• This is a “sea change” for HW designers

and especially for programmers

11

• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

12

• Is it good enough to just have multiple

programs running simultaneously?

• We want per-program performance gains!

Crysis, Crytek 2007

13

14

• Goal: to provide interleaved execution of several processes

to give an illusion of many simultaneously executing

processes.

• Computer can be a single-processor or multi-processor

machine.

• The OS must keep track of the state for each active process

and make sure that the correct information is properly

installed when a process is given control of the CPU.

• Many resource allocation issues to consider:

– How to give each process a chance to run?

– How is main memory allocated to processes?

– How are I/O devices scheduled among processes?

• A process is a “program” with its own address space.
– A process has at least one thread!

• A thread of execution is an independent sequential
computational task with its own control flow, stack,
registers, etc.
– There can be many threads in the same process sharing

the same address space

– There are several APIs for threads in several languages.
We will cover the PThread API in C. 15

• Threads/processes are run sequentially on

one core or simultaneously on multiple

cores
– The operating system schedules threads and

processes by moving them between states

– # threads running = # logical cores on CPU

– Many threads can be “ready” or “waiting”

Based on diagram from Silberschatz, Galvin, and Gagne16

• Is threading useful without multicore?

– Yes, because of I/O blocking!

• Canonical web server example:
global workQueue;

dispatcher() {

createThreadPool();

while(true) {

task = receiveTask();

if (task != NULL) {

workQueue.add(task);

workQueue.wake();

}

}

}

worker() {

while(true) {

task = workQueue.get();

doWorkWithIO(task);

}

}
17

• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

18

• To see how processes can be used in
application and how they are implemented, we
study how processes are created and
manipulated in UNIX.

• Important source of information on UNIX is
“man.”

• UNIX supports multiprogramming, so there will
be many processes in existence at any given
time.
– Processes are created in UNIX with the fork() system

call.

– When a process P creates a process Q, Q is called
the child of P and P is called the parent of Q. 19

• Parent creates a child process, child
processes can create its own process

• Forms a hierarchy

– UNIX calls this a process group

• Signals can be sent all processes of a
group

• Windows has no concept of process
hierarchy

– all processes are created equal

20

At the root of the family tree of processes in

a UNIX system is the special process init:

– created as part of the bootstrapping

procedure

– process-id = 1

– among other things, init spawns a child to

listen to each terminal, so that a user may log

on.

– do "man init” to learn more about it

21

UNIX provides a number of system calls for

process control including:

– fork - used to create a new process

– exec - to change the program a process is executing

– exit - used by a process to terminate itself normally

– abort - used by a process to terminate itself

abnormally

– kill - used by one process to kill or signal another

– wait - to wait for termination of a child process

– sleep - suspend execution for a specified time interval

– getpid - get process id

– getppid - get parent process id 22

23

