

Local Resource Management 2

SDSC

TACC

UC/ANL

NCSA

ORNL

PU

IU

PSC

NCAR

2007

(504

TF)

2008

(~1PF

)Tennesse

eLONI/

LSU

• Clouds are a large-scale distributed computing paradigm driven by:
1. economies of scale

2. virtualization

3. dynamically-scalable resources

4. delivered on demand over the Internet

• Grids tend to be composed of multiple clusters, and are typically

loosely coupled, heterogeneous, and geographically dispersed

• Supercomputers are highly-tuned computer clusters using

commodity processors combined with custom network interconnects

and customized operating system

• Computer clusters using commodity processors, network

interconnects, and operating systems.

• HTC: High-Throughput Computing

– Typically applied in clusters and grids

– Loosely-coupled applications with sequential jobs

– Large amounts of computing for long periods of times

– Measured in operations per month or years

• HPC: High-Performance Computing

– Synonymous with supercomputing

– Tightly-coupled applications

– Implemented using Message Passing Interface (MPI)

– Large of amounts of computing for short periods of time

– Usually requires low latency interconnects

– Measured in FLOPS 3Local Resource Management

• Bridge the gap between HPC and HTC

• Applied in clusters, grids, and supercomputers

• Loosely coupled apps with HPC orientations

• Many activities coupled by file system ops

• Many resources over short time periods

– Large number of tasks, large quantity of computing,

and large volumes of data

[MTAGS08 Workshop] Workshop on Many-Task Computing on Grids and Supercomputers 2008

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[MTAGS08] “Many-Task Computing for Grids and Supercomputers”
4Local Resource Management

Number of Tasks

Input
Data
Size

Hi

Med

Low

1 1K 1M

HPC
(Heroic

MPI
Tasks)

HTC/MTC
(Many Loosely
Coupled Tasks)

MapReduce/MTC
(Data Analysis,

Mining)

MTC
(Big Data and
Many Tasks)

• Resource provisioning

• Job scheduling

– FIFO

– Priority support

– Multiple queues

– Back-filling

– Advanced Reservations

– Accounting

5Local Resource Management

• SGE

– HTC, HPC, Sun Grid Engine

• PBS

– HTC, HPC, originated from NASA

• LSF

– HTC, HPC, IBM

• Cobalt

– HPC, BlueGene

• Condor

– HTC, HPC, open source, free

• Falkon

– MTC, HTC, open source, free, part of my dissertation

• GRAM

– An abstraction for other LRMs
6Local Resource Management

7

• Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

• Combines three components:
– a streamlined task dispatcher

– resource provisioning through multi-level scheduling
techniques

– data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

• Integration into Swift to leverage many applications
– Applications cover many domains: astronomy, astro-physics,

medicine, chemistry, economics, climate modeling, etc
[SciDAC09] “Extreme-scale scripting: Opportunities for large task-parallel applications on petascale computers”

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[Globus07] “Falkon: A Proposal for Project Globus Incubation”

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Available Resources

(GRAM4)

Provisioned Resources

text

Executor

1

Wait Queue

Executor

i

Executor

n

Dynamic

Resource

Provisioning

User

Local Resource Management

8

• Falkon is a real system

– Late 2005: Initial prototype, AstroPortal

– January 2007: Falkon v0

– November 2007: Globus incubator project v0.1

• http://dev.globus.org/wiki/Incubator/Falkon

– February 2009: Globus incubator project v0.9

• Implemented in Java (~20K lines of code) and C

(~1K lines of code)

– Open source: svn co https://svn.globus.org/repos/falkon

• Source code contributors (beside myself)

– Yong Zhao, Zhao Zhang, Ben Clifford, Mihael Hategan
[Globus07] “Falkon: A Proposal for Project Globus Incubation”

[CLUSTER10] “Middleware Support for Many-Task Computing”

• Workload

• 160K CPUs

• 1M tasks

• 60 sec per task

• 2 CPU years in 453 sec

• Throughput: 2312 tasks/sec

• 85% efficiency

Local Resource Management

http://dev.globus.org/wiki/Incubator/Falkon
https://svn.globus.org/repos/falkon

9

[TPDS09] “Middleware Support for Many-Task Computing”, under preparation

Local Resource Management

10

Provisioner

Dispatcher

1

Executor

1

Cobalt

Client
Executor

256

Dispatcher

N

Executor

1

Executor

256

Login Nodes

(x10)

I/O Nodes

(x640)

Compute Nodes

(x40K)

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

Local Resource Management

High-speed local disk

Falkon

11

Slower distributed

storage

ZeptOS

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

Local Resource Management

12

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C
5760 CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

BlueGene/P, C
163840 CPUs
640 services

604

2534

3186

1758

3071

T
h

ro
u

g
h

p
u

t
(t

a
s
k
s

/s
e
c
)

Executor Implementation and Various Systems

System Comments
Throughput

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22
[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

Local Resource Management

13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 1024 4096 16384 65536 163840

E
ff

ic
ie

n
c
y

Number of Processors

256 seconds
128 seconds
64 seconds
32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
ff

ic
ie

n
c
y

Number of Processors

32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

Local Resource Management

14

0

1

2

3

4

5

first-

available

without I/O

first-

available

with I/O

max-

compute-util

max-cache-

hit

good-

cache-

compute

C
P

U
 T

im
e
 p

e
r

T
a
s
k
 (

m
s

)

0

1000

2000

3000

4000

5000

T
h

ro
u

g
h

p
u

t
(t

a
s
k
s

/s
e
c
)

Task Submit
Notification for Task Availability
Task Dispatch (data-aware scheduler)
Task Results (data-aware scheduler)
Notification for Task Results
WS Communication
Throughput (tasks/sec)

[DIDC09] “Towards Data Intensive Many-Task Computing”, under review

• 3GHz dual CPUs

• ANL/UC TG with
128 processors

• Scheduling window
2500 tasks

• Dataset

• 100K files

• 1 byte each

• Tasks

• Read 1 file

• Write 1 file

Local Resource Management

15

• Wide range of analyses

– Testing, interactive analysis,

production runs

– Data mining

– Parameter studies
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

Local Resource Management

Improvement:

up to 90% lower end-to-end run time

16

B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

Local Resource Management

Improvement:

up to 57% lower end-to-end run time

Within 4% of MPI

• Determination of free

energies in aqueous solution

– Antechamber – coordinates

– Charmm – solution

– Charmm - free energy

17

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

Local Resource Management

Improvement:

up to 88% lower end-to-end run time

5X more scalable

Local

Resource

Manageme

18

• Classic benchmarks for MapReduce

– Word Count

– Sort

• Swift and Falkon performs similar or better than

Hadoop (on 32 processors)
Sort

42

85

733

25

83

512

1

10

100

1000

10000

10MB 100MB 1000MB

Data Size

T
im

e
 (

s
e
c

)
Swift+Falkon

Hadoop

Word Count

221

1143
1795

863

4688
7860

1

10

100

1000

10000

75MB 350MB 703MB

Data Size

T
im

e
 (

s
e

c
)

Swift+PBS

Hadoop

19

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

200000

400000

600000

800000

1000000

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s
/s

e
c

)

T
a

s
k

s
 C

o
m

p
le

te
d

N
u

m
b

e
r

o
f

P
ro

c
e

s
s

o
rs

Time (sec)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

• CPU Cores: 130816

• Tasks: 1048576

• Elapsed time: 2483 secs

• CPU Years: 9.3

Speedup: 115168X (ideal 130816)

Efficiency: 88%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

Local Resource Management

start

report

DOCK6

Receptor

(1 per protein:

defines pocket

to bind to)

ZINC
3-D

structures

ligands complexes

NAB script

parameters

(defines flexible

residues,

#MDsteps)

Amber Score:

1. AmberizeLigand

3. AmberizeComplex

5. RunNABScript

end

BuildNABScript

NAB

Script

NAB

Script

Template

Amber prep:

2. AmberizeReceptor

4. perl: gen nabscript

FRED

Receptor

(1 per protein:

defines pocket

to bind to)

Manually prep

DOCK6 rec file

Manually prep

FRED rec file

1
protein
(1MB)

6
GB
2M

structures
(6 GB)

DOCK6FRED
~4M x 60s x 1 cpu

~60K cpu-hrs

Amber
~10K x 20m x 1 cpu

~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu

~500K cpu-hrs
GCMC

PDB
protein

descriptions

Select best ~5KSelect best ~5K

For 1 target:

4 million tasks

500,000 cpu-hrs

(50 cpu-years)20

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

Local Resource Management

21

CPU cores: 118784

Tasks: 934803

Elapsed time: 2.01 hours

Compute time: 21.43 CPU years

Average task time: 667 sec

Relative Efficiency: 99.7%

(from 16 to 32 racks)

Utilization:

• Sustained: 99.6%

• Overall: 78.3%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

Local Resource Management

22

• Purpose

– On-demand “stacks” of

random locations within

~10TB dataset

• Challenge

– Processing Costs:

• O(100ms) per object

– Data Intensive:

• 40MB:1sec

– Rapid access to 10-10K

“random” files

– Time-varying load

AP Sloan
Data

+

+

+

+

+

+

=

+

 Locality Number of Objects Number of Files

1 111700 111700

1.38 154345 111699

2 97999 49000

3 88857 29620

4 76575 19145

5 60590 12120

10 46480 4650

20 40460 2025

30 23695 790
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

[TG06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”

Local Resource Management

• AstroPortal

– Makes it really easy for astronomers to create

stackings of objects from the Sloan Digital Sky

Servey (SDSS) dataset

23Local Resource Management

• Throughput

– 10X higher than GPFS

• Reduced load
– 1/10 of the original GPFS load

• Increased scalability
• 8X

http://www.eecs.northwestern.edu/~iraicu/projects/Falkon/astro_portal.htm

• There is more to HPC than tightly coupled MPI, and more to
HTC than embarrassingly parallel long jobs

– MTC: Many-Task Computing

– Addressed real challenges in resource management in large scale
distributed systems to enable MTC

– Covered many domains (via Swift and Falkon): astronomy, medicine,
chemistry, molecular dynamics, economic modelling, and data analytics

• Identified that data locality is critical at large-scale data diffusion

– Integrated streamlined task dispatching with data aware scheduling

– Heuristics to maximize real world performance

– Suitable for varying, data-intensive workloads

– Proof of O(NM) Competitive Caching

24Local Resource Management

25

• Embarrassingly Happily parallel apps are trivial to run

– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”

– Total computational requirements can be enormous

– Individual tasks may be tightly coupled

– Workloads frequently involve large amounts of I/O

– Make use of idle resources from “supercomputers” via backfilling

– Costs to run “supercomputers” per FLOP is among the best

• Loosely coupled apps do not require specialized system software

– Their requirements on the job submission and storage systems can be extremely large

• Shared/parallel file systems are good for all applications

– They don’t scale proportionally with the compute resources

– Data intensive applications don’t perform and scale well

– Growing compute/storage gap

Local Resource Management

#1 Technology Internship in the Nation

Business Week’s “Best Places to Start”

It’s all about options.
Your very own Microsoft Recruiter (Alicia!) will be on campus this week!

Bring yourself (and pony up your resume, if you have it) to her anytime Fri 1/22.

That’s it. You’re done. You’ve applied to Microsoft.

Nice.

In front of the Engineering Career Center…

9am – 11 am

Free Donuts, yum.

FRIDAY, JAN. 22

Career Fair (Norris Univ. Center)

2 pm – 6 pm

Free Micro-stuff, cool.

26

http://www.seadragon.com/
http://www.getpivot.com/

