
http://creativecommons.org/licenses/by/2.5


• Models

– A way to structure a parallel algorithm by 

selecting decomposition and mapping 

techniques in a manner to minimize 

interactions.

2



• Models

– Data-parallel

– Task graph

– Work pool

– Master-slave

– Pipeline

– Hybrid

3



• Data-parallel

– Mapping of Work

• Static

• Tasks -> Processes

– Mapping of Data

• Independent data items assigned to processes 

(Data Parallelism)

4



• Data-parallel
– Computation

• Tasks process data, synchronize to get new data 
or exchange results, continue until all data 
processed

– Load Balancing
• Uniform partitioning of data

– Synchronization
• Minimal or barrier needed at end of a phase

– Examples
• Ray Tracing

5



• Data-parallel

P

P

P

P

P

D D

D D

D

O

O

O

O

O

6



• Task graph

– Mapping of Work

• Static

• Tasks are mapped to nodes in a data dependency 

task dependency graph (Task parallelism)

– Mapping of Data

• Data moves through graph (Source to Sink)

7



• Task graph
– Computation

• Each node processes input from previous node(s) and send 
output to next node(s) in the graph

– Load Balancing
• Assign more processes to a given task
• Eliminate graph bottlenecks

– Synchronization
• Node data exchange

– Examples
• Parallel Quicksort, Divide and Conquer approaches
• Scientific Applications that can be expressed in workflows 

(e.g. DAGs)

8



• Task graph

P

P P

P

P

P

D

D

D

O

O

9



• Work pool

– Mapping of Work/Data

• No desired pre-mapping

• Any task performed by any process

• Pull-model oriented

– Computation

• Processes work as data becomes available (or 

requests arrive)

10



• Work pool

– Load Balancing

• Dynamic mapping of tasks to processes

– Synchronization

• Adding/removing work from input queue

– Examples

• Web Server

• Bag-of-tasks

11



• Work pool

P

Work Pool

P
P

P
P

In
p
u
t q

u
eu

e

O
u
tp

u
t q

u
eu

e

12



• Master-slave

– Modification to Worker Pool Model

• One or more Master processes generate and 

assign work to worker processes\

• Push-model oriented

– Load Balancing

• A Master process can better distribute load to 

worker processes

13



• Pipeline

– Mapping of work

• Processes are assigned tasks that correspond to 

stages in the pipeline

• Static

– Mapping of Data

• Data processed in FIFO order

– Stream parallelism

14



• Pipeline
– Computation

• Data is passed through a succession of processes, 
each of which will perform some task on it

– Load Balancing
• Insure all stages of the pipeline are balanced 

(contain the same amount of work)

– Synchronization
• Producer/Consumer buffers between stages

– Ex: Processor pipeline, graphics pipeline

15



• Pipeline

P

In
p
u
t q

u
eu

e

O
u
tp

u
t q

u
eu

e

P P

b
u
ffer

b
u
ffer

16



• Message-Passing

• Shared Address Space

17



• Message-Passing

– Most widely used for programming parallel 

computers (clusters of workstations)

– Key attributes:

• Partitioned address space

• Explicit parallelization

– Process interactions

• Send and receive data

18



• Message-Passing
– Communications

• Sending and receiving messages
• Primitives

– send(buff, size, destination)
– receive(buff, size, source)
– Blocking vs non-blocking
– Buffered vs non-buffered

• Message Passing Interface (MPI)
– Popular message passing library
– ~125 functions

19



• Message-Passing

Workstation Workstation Workstation Workstation

Data

P4P3P2P1

send(buff1, 1024, p3) receive(buff3, 1024, p1)

20



• Shared Address Space
– Mostly used for programming SMP machines 

(multicore chips)
– Key attributes

• Shared address space
– Threads
– Shmget/shmat UNIX operations

• Implicit parallelization

– Process/Thread communication
• Memory reads/stores

21



• Shared Address Space
– Communication

• Read/write memory
– EX: x++;

– Posix Thread API
• Popular thread API
• Operations

– Creation/deletion of threads
– Synchronization (mutexes, semaphores)
– Thread management

22



• Shared Address Space

Workstation

T3 T4T2T1

Data SMPRAM

23



• Synchronization

– Deadlock

– Livelock

– Fairness

• Efficiency

– Maximize parallelism

• Reliability

– Correctness

– Debugging

24



25


