
Automatic Parallelism 

Discovery

Hongyu Gao



Introduction

D

A

CB

A

B

C

D

Sequential vs Parallel execution



Introduction

 Why do we need parallel execution?

 Ever increasing computation scale

 Limited computational power of a single core



Introduction

 A dilemma:

 Emerging need for parallel computing

 Difficulty of parallel programming

 A solution:

 Automatic parallel execution of sequential 
program



Related work

 Swift:

 “A system for the rapid and reliable 
specification, execution, and management of 
large-scale science and engineering workflows.”

 Seems like all we need?



Related work

 Drawbacks:

 Language limitation:

 Single assignment

 Scalability issue

 Proposed solution:

 Dependency graph generation 

+ execution engine



Dependency graph generation

 A directed acyclic graph

 A node:

The smallest block of code that is scheduled for 
parallel execution

 An edge:

A node depends on the completion of another 
node before it can be executed

A B



An example

divide_raw_input(in_file, in_file_1, …, in_file_MAPSIZE)

for (i = 0; i<MAPSIZE ; i++):

Map(in_file_i, intermed_file_i_1, …, 
intermed_file_i_REDUCESIZE)

for (i = 0; i<REDUCESIZE ; i++):

Reduce(intermed_file_1_i, …, intermed_file_MAPSIZE_i, 
out_file_i)

Combine_output(out_file_1, …, out_file_REDUCESIZE, out_file)



An example



Task execution

 A node (task) can be executed if:

 It has no in-edge

 All nodes that it depends on have been 
completed



Task execution

 A set of nodes ready to be executed

 A dependency factor for each node

 Update the dependency factor upon the 
completion of every node

 Update the “ready set”

 O(E) time complexity



Further optimization

 Pipeline the graph building and the task 
execution

 A window of size n on the dependency graph 
will be enforced while the execution is working

 Address the scalability issue



Questions?



Thank you!


