Distributed File System

Outline

Motivation

System overview
System implementation
Ongoing work

Motivation

* Network storage have received great attention
* Asingle MDS in Current distributed/parallel FS

* Decentralized metadata management is
necessary

System Overview

e DHT-based metadata server cluster
— Chord, Chimera, CAN, Pastry

e User-space local file system
— FUSE

Software Stack

C owbuedmicoton 00

put(key, metadatai get (key) l T metadata
Distributed hash table (DHash)

lookup(key) l node IP address
(Chord)

eDHT distributes metadata storage over many nodes

System Architecture

. Chord Server
= user
- App Chord Client
f|Ierps DFS Server
: | glibc
E 6 7'y g“bc

VFS [« FUSE

: kernel

Lookup service

e Centralized
— Napster (centralized Database, O(N))

* Flooded queries

— Gnutella (worse case O(N))

* Routed queries
— Chord (O(logN))

Chord

Chord Implementation
— Distributed routing table
— Transport Layer:

implemented on top of the SFSlite asynchronous RPC
libraries over UDP

Chord Cont.

Chord IDs

— Chord ID Key identifier = SHA-1(key)
— Node and filesare assigned key in the same ID space

Node IDs Arranged in a circle with 2"-1(n=160)

Consistent hash

— filename and IP address can be uniformly distributed in the
ID space

— Nodes join and leave the network without disrupting the
network

How to map files IDs to node IDs?

Chord Hashes a Key to its Successor

Key ID Node ID K5, K10
K100 | N100 .
Circular
ID Space N32 | K11, K30

K65, K70

N60 | K33, K40, K52

e Successor: node with next highest ID

Basic Lookup

//////———* NS

N110
N99
“Key 50 is
\ At N60”
N8O

T\

N10

“Where is key 50?”
N\

N20\

)

N32

N40

N

N60

_

e Lookups find the ID’s predecessor
e Correct if successors are correct

Successor Lists Ensure Robust Lookup

5, 10, 20

N110

110, 5, 10 | N99

99, 110, 5

N8O

10, 20, 32
NS
N10 20, 32,40
N20 32,40, 60
N32 40, 60, 80
N40 | 60, 80, 99
NGO

e Each node remembers r successors
e Lookup can skip over dead nodes to find blocks

Chord “Finger Table” Accelerates
Lookups

Ya Yo

1/8

1/16
1/32
1/64
1/12

N8O

Chord lookups take O(log N) hops

N8O

N110 N1
N99

0

K19

N20

N60

N32

Lookup(K19)

Chord lookup algorithm properties

Interface: lookup(key) — IP address
Efficient: O(log N) messages per lookup

— N is the total number of servers
Scalable: O(log N) state per node
Robust: survives massive failures
Simple to analyze

Case Study

Finger table Key=430 =
(.13 S]g —> 135 4 p Hash (/temp/test/data.txt)
(135,273] =>273
- (273,5] =>538
Finger table P
(898,5] =>5 QE h'ﬂ Finger table
(5,135] =>135__ = __{\'Amdam (135,273] => 273
(135, 898] => 27 ID:5 “Server (273,538] => 538
538, 135] =>761
h'ﬂo : 898 N y QB
Metadata o ¢ ID:135 Metadata
Server ;' Server
DHT; Finger table

(273, 538] => 538
(538, 761] = 761
,g‘ 761, 273] => 898

IEW.. D : 761 ||):273h-IE

Metadata

Metadata, .
i ID : 538 S
Finger table [\"4 - 2
(761, 898] => 898 = Hash Key Hash Table
(898,5] =5 Metadata = 274
XXX

(5,761] =>135 Server
Finger table = |—|—,r¢
453 metadata

(538, 761] => 761 :
\ XXX

(761, 898] => 898 XX
898, 538]=>5 XXX
538

Name:/temp/test/data.txt
Inode number: 3

File size: 42591

File index: 119317

Source: “A reliable DHT-based Metadata server cluster”

Join & Leave the Ring

* Join
— Sent Join message via ID Finger table

— Until reach the node immediately preceding the
joining node in the Chord Ring

e Leave
— Move the metadata to successors
— Send out the leave message

DHash Replicates metadata/block at r

N110

N99

N8O

\/

Metadata/block
17

SUCCEeSSOorsS
N5
N10
N20
N40
N50
N68 | | N60

e Replicas are easy to find if successor fails
e Hashed node IDs ensure independent failure

Ongoing Work

* Have done
— Compiled Chord on Falkon
— Setup a Chord Ring on one node
— Get/put metadata

e Todo

— Setup a chord ring on multiple nodes
— Get/put metadata
— Implement local file system

Performance Evaluation

* Simple LAN Benchmark:
— Baseline: NFS

— System setup
* 8 DHash nodes at Falkon
* No DHash replication
* One active writer at Falkon01
* Whole-file read on open()
* Whole-file write on close()

— Performance indices
* Round-trip times, open/close, read/write, stat

