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Motivation

* Network storage have received great attention
* Asingle MDS in Current distributed/parallel FS

* Decentralized metadata management is
necessary



System Overview

e DHT-based metadata server cluster
— Chord, Chimera, CAN, Pastry

e User-space local file system
— FUSE



Software Stack
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eDHT distributes metadata storage over many nodes
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Lookup service

e Centralized
— Napster (centralized Database, O(N))

* Flooded queries

— Gnutella (worse case O(N))

* Routed queries
— Chord (O(logN))



Chord

Chord Implementation
— Distributed routing table
— Transport Layer:

implemented on top of the SFSlite asynchronous RPC
libraries over UDP



Chord Cont.

Chord IDs

— Chord ID Key identifier = SHA-1(key)
— Node and filesare assigned key in the same ID space

Node IDs Arranged in a circle with 2"-1(n=160)

Consistent hash

— filename and IP address can be uniformly distributed in the
ID space

— Nodes join and leave the network without disrupting the
network

How to map files IDs to node IDs?



Chord Hashes a Key to its Successor
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e Successor: node with next highest ID



Basic Lookup
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e Lookups find the ID’s predecessor
e Correct if successors are correct



Successor Lists Ensure Robust Lookup
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e Each node remembers r successors
e Lookup can skip over dead nodes to find blocks



Chord “Finger Table” Accelerates
Lookups
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Chord lookups take O(log N) hops
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Chord lookup algorithm properties

Interface: lookup(key) — IP address
Efficient: O(log N) messages per lookup

— N is the total number of servers
Scalable: O(log N) state per node
Robust: survives massive failures
Simple to analyze



Case Study
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Name:/temp/test/data.txt
Inode number: 3

File size: 42591

File index: 119317

Source: “A reliable DHT-based Metadata server cluster”



Join & Leave the Ring

* Join
— Sent Join message via ID Finger table

— Until reach the node immediately preceding the
joining node in the Chord Ring

e Leave
— Move the metadata to successors
— Send out the leave message



DHash Replicates metadata/block at r
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e Replicas are easy to find if successor fails
e Hashed node IDs ensure independent failure




Ongoing Work

* Have done
— Compiled Chord on Falkon
— Setup a Chord Ring on one node
— Get/put metadata

e Todo

— Setup a chord ring on multiple nodes
— Get/put metadata
— Implement local file system



Performance Evaluation

* Simple LAN Benchmark:
— Baseline: NFS

— System setup
* 8 DHash nodes at Falkon
* No DHash replication
* One active writer at Falkon01
* Whole-file read on open()
* Whole-file write on close()

— Performance indices
* Round-trip times, open/close, read/write, stat



