
Distributed File System

Chen Jin

Outline

• Motivation

• System overview

• System implementation

• Ongoing work

Motivation

• Network storage have received great attention

• A single MDS in Current distributed/parallel FS

• Decentralized metadata management is
necessary

System Overview

• DHT-based metadata server cluster

– Chord, Chimera, CAN, Pastry

• User-space local file system

– FUSE

Software Stack

Distributed hash table

Distributed application

get (key) metadata

node node node….

put(key, metadata)

Lookup service

lookup(key) node IP address

(DFS)

(DHash)

(Chord)

•DHT distributes metadata storage over many nodes

System Architecture

App

FUSE

DFS Server

Internet

DHT
Node

DHT
Node

DHT
Nodekernel

user
Chord Server

Chord Client

VFS

glibc
glibc

file ops

Lookup service

• Centralized

– Napster (centralized Database, O(N))

• Flooded queries

– Gnutella (worse case O(N))

• Routed queries

– Chord (O(logN))

Chord

• Chord Implementation

– Distributed routing table

– Transport Layer:

implemented on top of the SFSlite asynchronous RPC
libraries over UDP

Chord Cont.

• Chord IDs
– Chord ID Key identifier = SHA-1(key)

– Node and filesare assigned key in the same ID space

• Node IDs Arranged in a circle with 2n-1(n=160)

• Consistent hash
– filename and IP address can be uniformly distributed in the

ID space

– Nodes join and leave the network without disrupting the
network

• How to map files IDs to node IDs?

Chord Hashes a Key to its Successor

• Successor: node with next highest ID

N32

N10

N100

N80

N60

Circular
ID Space

K33, K40, K52

K11, K30

K5, K10

K65, K70

K100

Key ID Node ID

Basic Lookup

• Lookups find the ID’s predecessor
• Correct if successors are correct

N32

N10

N5

N20

N110

N99

N80

N60

N40

“Where is key 50?”

“Key 50 is
At N60”

Successor Lists Ensure Robust Lookup

• Each node remembers r successors
• Lookup can skip over dead nodes to find blocks

N32

N10

N5

N20

N110

N99

N80

N60

N40

10, 20, 32

20, 32, 40

32, 40, 60

40, 60, 80

60, 80, 99
99, 110, 5

110, 5, 10

5, 10, 20

Chord “Finger Table” Accelerates
Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

Chord lookups take O(log N) hops

N32

N10

N20

N110

N99

N80

N60

Lookup(K19)

K19

Chord lookup algorithm properties

• Interface: lookup(key)  IP address

• Efficient: O(log N) messages per lookup

– N is the total number of servers

• Scalable: O(log N) state per node

• Robust: survives massive failures

• Simple to analyze

Source: “A reliable DHT-based Metadata server cluster”

Case Study

Join & Leave the Ring

• Join

– Sent Join message via ID Finger table

– Until reach the node immediately preceding the
joining node in the Chord Ring

• Leave

– Move the metadata to successors

– Send out the leave message

DHash Replicates metadata/block at r
successors

N40

N10

N5

N20

N110

N99

N80

N60

N50

Metadata/block
17

N68

• Replicas are easy to find if successor fails
• Hashed node IDs ensure independent failure

Ongoing Work

• Have done

– Compiled Chord on Falkon

– Setup a Chord Ring on one node

– Get/put metadata

• To do

– Setup a chord ring on multiple nodes

– Get/put metadata

– Implement local file system

Performance Evaluation

• Simple LAN Benchmark:
– Baseline: NFS

– System setup
• 8 DHash nodes at Falkon

• No DHash replication

• One active writer at Falkon01

• Whole-file read on open()

• Whole-file write on close()

– Performance indices
• Round-trip times, open/close, read/write, stat

