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Moore’s Law Is Alive And Well
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Device scaling continues for at least another 10 years
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Good Days Ended Nov. 2002

[Yelick09]

“Traditional” Moore’s Law: 2x transistors with every generation

“New” Moore’s Law:  2x cores with every generation



What Happened in Nov. 2002?
Chips Became Too Hot
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The New Cooking Sensation!
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But, Chips Are Physically Constrained,
and Constraints Don’t Scale

How to balance constraints and achieve peak performance?
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A Look at Technology Projections & Implications

• Use ITRS projections + first-order models/analysis

 Given a technology node, find highest-performance design

 Respect physical constraints

 Account for SW trends

 Amdahl’s Law

 Exponentially-increasing datasets
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How Many Cores/Cache Can We Power?
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Pin Bandwidth: Fewer Cores, More Cache
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Peak-Performing Designs
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Transistor Scaling: Many Cores, Huge Caches
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Need cache architectures for >>MB
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Why Are Caches Growing So Large?

• Increasing number of cores: cache grows commensurately

 Fewer but faster cores have the same effect

• Increasing datasets: faster than Moore’s Law!

• Power/thermal efficiency: caches are “cool”, cores are “hot”

 So, its easier to fit more cache in a power budget

• Limited bandwidth: large cache == more data on chip

 Off-chip pins are used less frequently
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So, caches are getting huge. Great! What’s the catch?
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Larger Caches Are Slower Caches

Does this affect the end performance?
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Impact of Slower Caches on Performance
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Cache Design Trends

Balance cache slice access with network latency

As caches become bigger, they get slower:

Divide the cache into smaller “slices”:
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Modern Caches: Distributed

Split cache into “slices”, distribute across die

L2 L2 L2 L2

L2 L2 L2 L2

core

core core core core



Modern Multi-Core Chips
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Multi-Core: Distributed System On Chip

• Similar structure

 Nodes in a cluster or a multiprocessor -> cores on a chip

 Physically distributed memory -> distributed cache

 Interconnect -> ditto, but on chip

• Similar challenges, albeit with different constants:

 Power, thermal, reliability, performance

• Also, some new challenges:

 Off-chip bandwidth: limited pins
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Data Placement Determines Performance
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Goal: place data on chip close to where they are used
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Terminology: Data Types
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Distributed shared L2
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Maximum capacity, but slow access (40+ cycles)

Can we do better?
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Unique location

for any block

(private or shared)
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L2

Distributed private L2: private data access
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Fast access to core-private data

What about accesses to shared data?

Private data:

allocate at

local L2 slice

On every access

allocate data

at local L2 slice
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L2

Distributed private L2: shared-RO access
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Wastes capacity due to replication

What about accesses to shared read-write data?
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Distributed private L2: shared-RW access
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Conventional Multi-Core Caches
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We want: high capacity (shared) + fast access (priv.)

PrivateShared

Address-interleave blocks

(sliceID = addr mod #slices)

+ High effective capacity

− Slow access

Each block cached locally

+ Fast access (local)

− Low capacity (replicas)

− Coherence: via indirection
(distributed directory)
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Where to Place the Data?
• Close to where they are used!

• Accessed by single core: migrate locally

• Accessed by many cores: replicate (?)

 If read-only, replication is OK

 If read-write, coherence a problem

 Low reuse: evenly distribute across sharers

sharers#

read-write

m
ig
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te

replicate

share

read-only
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Cache Access Classification Example
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Scientific/MP Apps

-20%

0%

20%

40%

60%

80%

100%

120%

-4 -2 0 2 4 6 8 10 12 14 16 18 20

Number of Sharers
%

 R
e
a
d

-W
ri

te
 B

lo
c
k
s

Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared

0%

% 0-20%

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10 12 14 16 18 20

Number of Sharers

%
 R

e
a
d

-W
ri

te
 B

lo
c
k
s

Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared
Instructions Data-Private Data-Shared

0

Cache Access Clustering

Accesses naturally form 3 clusters

Server Appsmigrate

locally

share (addr-interleave)

replicate 

R/W

m
ig
ra
te

replicate

share

R/O

sharers#%
 R

W
 B

lo
c
k
s
 i

n
 B

u
b

b
le

%
 R

W
 B

lo
c
k
s
 i

n
 B

u
b

b
le



Instruction Replication
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Distribute in cluster of neighbors, replicate across

• Instruction working set too large for one cache slice
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Reactive NUCA in a nutshell

• Classify accesses

 private data: like private scheme (migrate)

 shared data: like shared scheme (interleave)

 instructions: controlled replication (middle ground)

To place cache blocks, we first need to classify them
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Classification Granularity

• Per-block classification

 High area/power overhead (cut L2 size by half)

 High latency (indirection through directory)

• Per-page classification (utilize OS page table)

 Persistent structure

 Core accesses the page table for every access anyway (TLB)

 Utilize already existing SW/HW structures and events

 Page classification is accurate (<0.5% error)

Classify entire data pages, page table/TLB for bookkeeping



• Instructions classification: all accesses from L1-I (per-block)

• Data classification: private/shared per-page at TLB miss

 Page classification is accurate (<0.5% error)

Classification Mechanisms
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Page Table and TLB Extensions
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vpage ppageL2 idP/S/I

2 bits log(n)

vpage ppageP/STLB entry:

1 bit

Page granularity allows simple + practical HW

Page table entry:

• Persistent structure, ideal for “directory”

• Core accesses the page table for every access anyway (TLB)

 Pass information from the “directory” to the core

• Utilize already existing SW/HW structures and events 
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Data Class Bookkeeping and Lookup

offsetPhysical Addr.:

vpage ppageL2 id

vpage ppageL2 idS

cache indextag

Page table entry:

Page table entry:

vpage ppagePTLB entry:

L2 id

vpage ppageSTLB entry:

P

• private data: place in local L2 slice

• shared data: place in aggregate L2 (addr interleave)



each slice caches the same blocks

on behalf of any cluster
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Balance access latency with capacity constraints

Equal capacity pressure at overlapped slices
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Coherence: No Need for HW Mechanisms at L2

Fast access, eliminates HW overhead, SIMPLE

core core core core

L2 L2 L2 L2
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L2 L2 L2 L2

core core core core

L2 L2 L2 L2
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Private data: local sliceShared data: addr-interleave

• Reactive NUCA placement guarantee

 Each R/W datum in unique & known location
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Evaluation

Delivers robust performance across workloads

Shared: same for Web, DSS; 17% for OLTP, MIX

Private: 17% for OLTP, Web, DSS; same for MIX









ASR (A)

Shared (S)

R-NUCA (R)

Ideal (I)
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Reactive NUCA: Fast >>MB Caches

• Data may exhibit arbitrarily complex behaviors

 ...but few that matter!

• Learn the behaviors at run time for placement

 Make the common case fast

• Fast!

 Near-optimal placement (within 5% of ideal)

 Robust (matches best alternative, or 17% better; up to 32%)

 Nearest-neighbor communication → scalable

• Transparent to the user, simple design, negligible overhead

• BONUS: simplify hardware

 Eliminate HW coherence at L2



Concluding Remarks

• The old multiprocessor/cluster is now within a single chip

• Still a distributed system

• Similar challenges, with new constants

 Lecture focused on performance via data placement

 Similar challenge: HPC systems strive to privatize data

 R-NUCA strives to use “private caches”

 New constants: latency, bandwidth, 

 Single OS image allows for many simplifications

• Research opportunity: map ideas from old domain to new
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“Multicore: This is the one which will have the biggest 
impact on us. We have never had a problem to solve like 
this. A breakthrough is needed in how applications are 
done on multicore devices.” 

– Bill Gates

“It’s time we rethink some of the basics of computing. It’s 
scary and lots of fun at the same time.” 

– Burton Smith

Multicore Research Brings Opportunities and 
Challenges


