Exascale Many-Task Computing with a Billion Processors

Ioan Raicu

Center for Ultra-scale Computing and Information Security Department of Electrical Engineering & Computer Science Northwestern University

EECS 395 / EECS 495 Hot Topics in Distributed Systems: Data-Intensive Computing March 11th, 2010

$\mathsf{HPC} \leftarrow \mathsf{MTC} \rightarrow \mathsf{HTC}$

HPC: High-Performance Computing

- Synonymous with supercomputing
- Tightly-coupled applications
- Implemented using Message Passing Interface (MPI), needs low latency networks

Input

Measured in FLOPS

HTC: High-Throughput Computing Data Size

- Typically applied in clusters and grids
- Loosely-coupled applications with sequential Med
- Measured in operations per month or years

MTC: Many-Task Computing

- Bridge the gap between HPC and HTC
- Applied in clusters, grids, and supercomputer
- Loosely coupled apps with HPC orientations
- Many activities coupled by file system ops
- Many resources over short time periods

Projected Growth Trends

Top500 Projected Development,

http://www.top500.org/lists/2008/11/performance_development

Storage Performance Trends

- Single Node Disk Performance
 - 2002 (2-cores): 70GB SCSI, 100MB/s (~50MB/core)
 - 2010 (8-cores)
 - 2TB SATA, 140MB/s (~18MB/core)
 - 256GB SSD, 260MB/s (~33MB/core)
 - 1TB SSD (RAID), 870MB/s (~109MB/core)
 - 10TB SATA (RAID), 1424MB/s (~178MB/core)
- Network Attached Storage
 - 2002 (2K-cores): BG/L, GPFS, 1GB/s (~0.5MB/core, 100X reduction)
 - 2010 (160K-cores): BG/P, GPFS, 65GB/s (~0.4MB/core, 438X reduction)
 - 2011 (1.2M-threads): Bluewaters needs ~480GB/s to sustain ~0.4MB/thread
 - 2018 (100M-threads): Exascale needs ~40TB/s to sustain ~0.4MB/thread

State of the Art Storage Systems: Parallel File Systems

State of the Art Storage Systems: Distributed File Systems

Combine State of the Art Storage Systems

Why is all this important?

- In general
 - Support for data intensive applications
- HPC
 - OS booting
 - Application loading
 - Check-pointing
- HTC
 - Inter-process communication
- MTC
 - Metadata operations
 - Inter-process communication

MTC Applications

Climate modeling

Prior Work

- Falkon
 - Centralized
 - Scales to O(10K cores), O(1M running tasks)
 - Naïve decentralization
 - Scales to O(160K cores), O(1M running tasks)
 - Issues with load balancing
- Data Diffusion
 - Centralized in-memory metadata and scheduling
 - Scales to O(4K cores), 20GB/s, TB of data
- Swift
 - Centralized, in memory
 - Scales to O(16K cores) and O(500K task graphs)

10

Proposed Work

- Develop theoretical and practical aspects of building efficient and scalable support for MTC
- Build a new distributed data-aware execution fabric that will support HPC, MTC, and HTC
 - Scale to at least millions of processors and petabytes of storage
 - Verify through simulations scalability to a billion processors
- Support interactive HPC applications

Proposed Work (cont)

- Clients submit computational jobs into the execution fabric to any compute node
- The fabric will:
 - Guarantee jobs will execute at least once
 - Optimize data movement
 - Be elastic
 - Support job dependencies
 - Employ work stealing for low cost scalable load balancing

Proposed Work (cont)

- Data will be automatically replicated
- Data access semantic
 - POSIX compliance for generality
 - Relaxed semantics to increase scalability
 - Eventual consistency on data modifications
 - Write-once read-many data access patterns
- Distributed metadata management
 - Employ structured distributed hash tables
 - Can scale logarithmically with system size
 - Can create network topology aware overlays

Questions

