
A Practical Failure Prediction with Location and Lead Time for Blue Gene/P

Ziming Zheng ∗, Zhiling Lan ∗, Rinku Gupta ‡, Susan Coghlan †, Peter Beckman ‡

∗Department of Computer Science, Illinois Institute of Technology
‡Mathematics and Computer Science Division, Argonne National Laboratory
†Argonne Leadership Computing Facility, Argonne National Laboratory

∗{zzheng11,lan}@iit.edu, ‡{rgupta,beckman}@mcs.anl.gov, †smc@alcf.anl.gov

Abstract

Analyzing, understanding and predicting failure is of
paramount importance to achieve effective fault manage-
ment. While various fault prediction methods have been
studied in the past, many of them are not practical for use in
real systems. In particular, they fail to address two crucial
issues: one is to provide location information (i.e., the com-
ponents where the failure is expected to occur on) and the
other is to provide sufficient lead time (i.e., the time interval
preceding the time of failure occurrence). In this paper, we
first refine the widely-used metrics for evaluating prediction
accuracy by including location as well as lead time. We,
then, present a practical failure prediction mechanism for
IBM Blue Gene systems. A Genetic Algorithm based method
is exploited, which takes into consideration the location and
the lead time for failure prediction. We demonstrate the ef-
fectiveness of this mechanism by means of real failure logs
and job logs collected from the IBM Blue Gene/P system at
Argonne National Laboratory. Our experiments show that
the presented method can significantly improve fault man-
agement (e.g., to reduce service unit loss by up to 52.4%)
by incorporating location and lead time information in the
prediction.

1 Introduction

Over the past decades, various prediction methods have
been studied. Representative research work includes asso-
ciation rule based methods [3], decision trees and Bayesian
networks[18]. All these methods examine correlations be-
tween past events and fatal events to learn fault patterns for
predicting potential failures in the future. As shown in Fig-
ure 1a, these methods analyze correlations among histori-
cal events to learn fault patterns and then examine events
occurring in a fixed time window (denoted as observation

(a)

(b)

Figure 1: Failure prediction (a)without location and lead time
information, (b) with location and lead time information

window) to predict whether a fatal event will occur in a near
future (denoted as prediction period). While these meth-
ods provide reasonable prediction accuracy, they ignore two
critical issues in their design, thereby being impractical to
use in real systems.

First, these methods do not provide location informa-
tion, i.e., the components where the failure will occur. For
a system composed of thousands or more components, lo-
cation information is critical since it can narrow down the
potential problematic parts and help system administrators
take appropriate actions on these components. For ex-
ample, without location information, it is difficult to de-
termine which application processes should be migrated
[22][15][21]). Even for reactive methods like checkpoint-
ing, predictions with location information will enable one to
checkpoint data on those failure-prone components, thereby
avoiding system-wide checkpointing which is significantly
time consuming [12].

Secondly, these methods do not guarantee sufficient lead
time, i.e., the time interval preceding the time of failure oc-



currence [19]. The time taken to perform fault tolerance
(such as taking a checkpoint or performing a process mi-
gration) could be very high in large-scale systems consist-
ing of hundred of thousands of nodes [12][13]. Hence, it
is important from practical usability perspective, that the
lead time be long enough to perform the desired action to
achieve fault tolerance. On one hand, predictions with high
accuracy but short lead time may be useless in practice be-
cause they cannot be used for effective failure management.
On the other hand, a very long lead time is not desirable
either since it tends to reduce prediction accuracy. How to
choose an appropriate lead time thus becomes a question of
crucial importance.

The importance of fault location information and lead
time for fault management is further demonstrated via our
analysis of the RAS (Reliability, Availability, and Ser-
viceability) log data collected from the IBM Blue Gene/P
(named ‘Intrepid’) system at ANL over a period of few
months (Refer to Section 2.2 for additional details). Out of
a total of 520 reported fatal events, about 71% of them were
reported at a single midplane or rack of the Blue Gene/P
system. In other words, most of fatal events were found to
occur within a single midplane or rack, rather than being
dispersed throughout the entire system. Such information,
indicating location of the event, can be very useful for fault
management. For instance, instead of invoking a system-
wide checkpoint, one may need to checkpoint only on a
midplane or rack. Studies show that a system-wide check-
pointing on such a system may take up to 1500 seconds
[6][13], whereas a midplane- or rack-level checkpointing
may only take about 120 seconds, thereby saving valuable
processing cycles and reducing I/O traffic. Further analy-
sis of the RAS logs revealed that typically a long stream
of warnings are often present before the occurrence of fa-
tal event [25]. This indicates that for many fatal events, the
system does provide some warnings ahead of time and the
time interval between the first warnings and the fatal event
could be the lead time for failure prediction.

In this study, we first refine the traditional metrics (i.e.,
precision and recall) for evaluating prediction accuracy by
including location as well as lead time information in the
definitions. A prediction is considered correct (or true pos-
itive) only if it correctly pinpoints the location with a suf-
ficient lead time. Next, we present a Genetic Algorithms
(GA) based prediction method for practical use in Blue
Gene systems. The refined metrics are used during both
the training phase and the testing phase. As shown in Fig-
ure 1b, our method analyzes the events occurring during
the observation window, and aims to predict whether a fail-
ure will occur after the lead time at a specific location. Our
method differs significantly from other existing methods (il-
lustrated in Figure 1a) because we incorporate the location
and lead time information for failure prediction. The granu-

larity of the location may be fine-grained (e.g., node-level)
or coarse-grained (e.g., rack-level). For Blue Gene systems,
typically the midplane is the minimum unit for job schedul-
ing [21], so in this study we focus on prediction at the mid-
plane and rack-level.

Compared to other predictive techniques like association
rule based methods [3][18], GA has two main advantages.
First, while it may be difficult for some predictive meth-
ods to consider location or lead time during their training
phase, GA contains various interacting parts which can be
carefully designed to directly address prediction accuracy,
location and lead time together [11]. Second, without gen-
erating a large number of candidate rules, GA can converge
rapidly, with a high probability, to the rules with optimal
or suboptimal accuracy [3][11]. Note that the main objec-
tive of this study is to show the importance of incorporating
location and lead time information for practical failure pre-
diction. We believe other predictive methods may be aug-
mented similarly by incorporating location and lead time
for failure forecasting.

Further, to demonstrate the effectiveness and practical
use of our method, we evaluate it with the actual RAS logs
and job logs collected from the ‘Intrepid’ system at ANL.
Our experiments show that our GA-based method can sig-
nificantly improve fault tolerance (e.g., to reduce service
unit loss by up to 52.4%), as compared to the GA-based
method that does not consider the location and lead time in-
formation. Moreover, in terms of the extended prediction
metrics, our GA-based method can substantially boost pre-
diction accuracy, especially with regards to precision.

2 Background

2.1 Blue Gene/P Architecture

IBM Blue Gene/P is a scalable, low-power high perfor-
mance computing system. It is scalable to the upwards of
80 racks with a peak performance above 1 petaflop. In
each rack, there are 2 midplanes, which consists of 512
quad core PowerPC450 compute nodes, 1 service card and
4 link cards. Compute nodes are connected into a 3-D torus
for collective communication. In Blue Gene/P, 64 com-
pute nodes are served by an I/O node. A tree network is
used to connect compute nodes to dedicated I/O nodes. The
I/O nodes are connected through a 10-Gigabit Ethernet net-
work to 136 file servers, that in turn, connect to back-end
InfiniBand-based storage. More details of the system archi-
tecture is available in [1].

‘Intrepid’ is a 40-rack Blue Gene/P system at ANL.
It consists 40,960 compute nodes with a total of 163,840
cores, which offers a peak performance of 556 TFlops. It
ranks the #8 on the latest TOP500 supercomputer list (as of
Nov. 2009)[2].



Table 1: Summary of the RAS log and job log from the Blue Gene/P system.
Log Name Days Start Date End Date Log Size No. of Records
RAS 81 2008-03-11 2008-05-31 3.5 GB 2715668
Job 31 2008-05-01 2008-05-31 4.5 MB 14108

Table 2: An example of RAS events from the Blue Gene/P
RECID 13718190
MSG ID CARD 0411
COMPONENT CARD
SUBCOMPONENT PALOMINO S
ERRCODE DetectedClockCardErrors
SEVERITY FATAL
EVENT TIME 2008-04-14-15.08.12.285324
LOCATION R-04-M0-S
MESSAGE An error(s) was detected ...

Table 3: An example of job records from the Blue Gene/P
Submission Time 05/01/2008 00:00:43
Job ID 8935
Job Name XXX
Queuing Time 1209614949.07
Starting Time 1209618043.1
End Time 1209621636.96
Location R10-R11

2.2 Understanding RAS Logs

The IBM Blue Gene/P Core Monitoring and Control
System (CMCS) is responsible for monitoring the hardware
components, including the compute nodes, I/O nodes and
various networks. Monitored information is reported by
CMCS as RAS (Reliability, Availability and Serviceability)
event messages. RAS messages are stored in back-end DB2
databases and the event stream from the back-end databases
is utilized to provide efficient failure prediction facility.

All analysis and studies in this paper have been con-
ducted using the RAS logs and job submission logs col-
lected from the ‘Intrepid’ system. Evaluation of the pro-
posed GA-based method has also been performed using
these logs. Table 1 summarizes these logs.

An example of event record from ‘Intrepid’ is shown
in Table 2. The raw RAS log was found to contain a
large amount of redundant records. In order to analyze
the RAS event information effectively, we first applied pre-
processing techniques [25] on the logs to remove the redun-
dant records. The pre-processing stage was used to com-
bine the sequence of redundant or correlated records into
one event, and to keep track of various attributes such as the
start time, end time, count, and location list for each event.
All this information is essential for incorporating the loca-
tion and lead time information for failure prediction.

The job log on ‘Intrepid’ was collected by the COBALT

[21] job scheduler. An example of a job record from In-
trepid is shown in Table 3. By examining the location and
time information in both the RAS log and the job log, one
can determine which jobs were interrupted by fatal events.

3 Refining Prediction Metrics

Precision and recall are two widely-used metrics to mea-
sure prediction accuracy. Precision is defined as the propor-
tion of correct predictions to all the predictions made, and
recall is the proportion of correct predictions to the number
of failures.

Depending on whether we consider the location and lead
time information, the meaning of correct prediction may
be different. Without considering location and lead time,
the calculation of precision and recall is simple. However,
when location and lead time are involved, more complicated
cases should be considered to define these metrics. For in-
stance, if the rule correctly predicts the occurrence of a fail-
ure but at a wrong location, it can lead to both a false posi-
tive at the wrong location and a false negative at the actual
location. If the rule states that a failure will occur through-
out the entire system, but actually only at several midplanes,
then other midplanes will get false alarms. Furthermore, the
lead time of a rule may be shorter than the time required for
a fault management action. In this case, the rule is useless
and the prediction should be considered as a false negative.

To address the above problems, we refine the term of true
positive (TP ), false negative (FN ) and false positive (FP ) as
follows:

• TP : denotes prediction result that accurately gives a
positive reading of a fatal event that will occur during
the Wfatal prediction period with the correct location.
Furthermore, the prediction provides a lead time Wlead

which is larger than a predefined threshold.

• FN : denotes an incorrect prediction which erroneously
fails to detect something when, in fact, it is present.
It may occur at a failure-prone location when (1) the
prediction fails to give a warning, or (2) the prediction
gives a warning, but does not provide a sufficient lead
time, or (3) the prediction gives a warning, but lists a
wrong location.

• FP : denotes an incorrect prediction which erroneously
detects something when, in fact, it is not present. It



may occur at a failure-free location when (1) the pre-
diction gives a warning, or (2) the prediction gives a
warning at the location, whereas the failure actually
occurs at a different location.

Note that TP , FN and FP are measured and counted
per location. For example, if the fault predictor generates a
warning about a failure across the entire system, then all the
midplanes get a FP except for the failed midplane. Based
on these terms, precision and recall can be defined by con-
sidering location and lead time, i.e. precision = TP

TP +FP

and recall = TP

TP +FN
.

4 GA-based Prediction Method

4.1 Prediction Rule

The objective is to use non-fatal events preceding a fa-
tal event to predict whether the fatal event will occur after
a specific lead time at the specific location. Our methodol-
ogy involves training phase followed by a testing phase (to
verify the rules learnt during the training phase).

During the training phase, for each fatal event, we iden-
tify the set of non-fatal events preceding it within the ob-
servation window Tobs. Our method intends to generate a
set of prediction rules. Prediction rules are in the format of
< ei, ej , ..., ek >→ f where ei is a non-fatal event and f
is a fatal event. Suppose during the training phase, there are
M instances satisfying the rule of < e1, e2, ..., ek >→ f .
We calculate the lead time for each instance as the time in-
terval between the fatal event and the latest non-fatal event.
That is, for each instance m, its lead time Wm

lead is es-
timated as min(T f − T ei), where T f is the start time
of the fatal event f and T ei is the start time of the non-
fatal event ei. Consequently, we estimate the lead time for
< ei, ej , ..., ek >→ f as the average value of the lead times

of M instances, i.e., Wlead =
∑M

m=1 W m
lead

M .
For each predication rule, we also need to give a possi-

ble failure location. For the Blue Gene series of machines,
the midplane is the minimum unit for job scheduling [21].
Hence, a fault action can only be conducted at the level of
midplane, rack or across the entire system. As a result, our
prediction is also provided at these levels. Again, suppose
during our training phase, there are M instances satisfying
the rule of < e1, e2, ..., ek >→ f . For each non-fatal event
ei, we count the number of instances where ei has the same
location as f . The location of the non-fatal event ê which
has the maximum number will be selected as the location
for the predicted failure. In case of a tie, we will randomly
choose one.

In short, a prediction rule with a lead time and a location
(i.e., < e1, e2, ..., ek >→ f, location, Wlead) means that
during the testing phase, when we observe the occurrence of

e1, e2, ..., ek within the observation window Tobs, we may
anticipate that the fatal event f will possibly occur at the
specified location after the lead time of Wlead.

4.2 Rule Generation

Genetic algorithm (GA) is a widely used technique for
optimization problems [17]. It starts from an initial pop-
ulation of randomly generated individuals. During each
successive generation, multiple individuals are stochasti-
cally selected from the current population based on a fit-
ness function, and then are modified via genetic operations
like crossover and mutation to construct a new population.
The new population is then used in the next generation. The
algorithm terminates when a satisfactory fitness level has
been reached.

In our GA-based method, an initial population contain-
ing some candidate rules is selected, and then the Michigan
encoding method is adopted to transform these rules into
genetic individuals, where each rule is represented as an ar-
ray of bits [17]. We chose the Michigan encoding due to its
low computation cost of fitness function [23]. Initialization
generates the first population of individuals for evolution.
The population can be randomly initialized. However, it is
possible that many non-fatal events are uncorrelated with
fatal events, thereby resulting in a poorly fitted population.
A poor population may cause a slow convergence or a trap-
ping at a local optima.

To overcome this problem, event correlation is adopted
to select some elite individuals, mixed with randomly gen-
erated individuals, as the initial population. In particu-
lar, we calculate Pearson’s correlation between a non-fatal
event and a fatal event [8], and then select the pair with
a high Pearson’s correlation value as our elite individual.
These elite individuals can help fast convergence and avoid
local optima.

Fitness function is the most important component of GA.
It is used to evaluate each individual and determine the
search direction. In this study, we choose the following fit-
ness function: fitness = (w1 · recall + w2 · precision) ·
Wlead Here, w1 and w2 are user defined weights (between
0 and 1). If w1 > w2, then the method tends to a searching
direction which maximizes recall, and vice versa. Note that
the refined metrics recall and precision presented in Sec-
tion 3 are used here. It is clear that our method aims to select
the individuals with high accuracy. In addition, a large lead
time is preferred here, which will provide sufficient time for
possible fault management.

Three genetic operations, namely selection, crossover,
and mutation, are used to evolve the population. Selec-
tion involves choosing some individuals from the popula-
tion based on their fitness values. Typically individuals with
higher values are more likely to be selected. The one-point



(a) (b)

Figure 2: (a) Precision (b) Recall

crossover operation breeds new individuals from two se-
lected parents by copying some bits from each parent. The
mutation operation makes small random changes to a single
bit in a genetic sequence from its original state. In general,
crossover produces elite children, whereas mutation main-
tains genetic diversity [11].

5 Experiments

In our experiments, a real RAS log and a job log col-
lected from the ‘Intrepid’ system are studied (see Table 1).
We first pre-process the RAS log using the method pre-
sented in our previous work [25]. For the purpose of train-
ing and testing, we split the RAS log into two parts: the
log events in first 50 days with 430 fatal events are used for
training, and log events in the last 31 days with the rest 190
fatal events is used for testing. The job log is collected in the
same period of 31 days as the testing part of the RAS log,
which is used to examine the impact of failure prediction
results on fault management.

As mentioned earlier, the main objective of this study is
to show the importance of incorporating location and lead
time information for practical failure prediction. Toward
this end, we compare our GA-based method (denoted as
GA-1) as against a standard GA method which uses a fit-
ness function of (w1 · recall + w2 · precision) (denoted as
GA-2). Note that the standard GA method uses the tradi-
tional prediction metrics without considering location and
lead time.

Our evaluation is divided into two parts: (1) Examining
prediction accuracy between GA-1 and GA-2; and (2) Ex-
amining their impact on service unit loss (SUL).

5.1 Prediction Accuracy

In our experiments, we set the lower bound of lead time
at 120 seconds to train our GA-based method (GA-1). This
generates 37 rules - 10 rules providing midplane-level loca-
tions, 7 rules giving rack-level locations, and 20 rules with-
out any specific location information. GA-2 generates 41
rules without location and lead time information.

To study the impact of lead time on prediction accuracy,
we vary the lead time from 0 to 600 seconds for testing.
Figure 2 presents prediction accuracy by using GA-1 and
GA-2. Here, we use the refined metrics defined in Section 3
for evaluation. As we can see, overall trend shows that both
precision and recall decrease with a growing lead time.
This is due to the fact that an increasing lead time means
that more precursor events cannot be used for prediction.
For both GA-1 and GA-2, this scenario will introduce more
false negatives.

When lead time is set as 0 for testing, GA-2 provides
better recall over GA-1. This is because GA-2 only pro-
vides prediction on system-level, and some results of GA-1
on midplane- or rack-level will inevitably introduce more
false negatives. As lead time increases, GA-1 outperforms
GA-2 in recall. The main reason is that GA-2 is prone to
rely on non-fatal events immediately preceding fatal events
for prediction. When lead time increases, many of these
precursor non-fatal events may be discarded because these
non-fatal events are too close to the fatal events. Thereby
we will see more false negatives. On the other hand, GA-1
explicitly incorporates lead time in its fitness function dur-
ing the training phase, hence it is less sensitive to the growth
of lead time.

GA-1 significantly outperforms GA-2 with respect to
precision. The figure shows that GA-2 can only achieve
about 0.1 on precision, while GA-1 can provide up to four
times improvement on precision. The major reason is that
GA-2 leads to 12 false alarms at the system level. Based
on our refined metrics, GA-2 totally generates 960 false
positives on the 80 midplanes. On the other hand, GA-1
only generates 5 false alarms at the system level, 7 at the
midplane-level, and 3 at the rack-level. As a result, num-
ber of false positives introduced by GA-1 is much less than
GA-2. However, precision is not high even with GA-1. The
reason is that not every rule generated by GA-1 includes
specific location information. As a result, there are non-
trivial amount of false positives.

5.2 Impact on Fault Management

Our next goal is to examine the impact on fault manage-
ment by using different predictive methods. Service unit
loss (SUL) is a widely used metric to measure the amount
of system resource loss caused by failure [21]. It is de-
fined as product of wasted wall clock hours and number
of CPUs. This metric directly indicates the computing cy-
cles lost due to failure and checkpointing overhead. Check-
point and restart is commonly used in the field of high per-
formance computing for fault management. On ‘Intrepid’,
IBM Checkpoint library is available for user-level check-
pointing. Hence, we chose it as our fault management strat-
egy.



By cross examining the RAS log and the job log, we
identified the jobs interrupted by fatal events, i.e., the jobs
with the end time close to a fatal event occurring in the same
location. Without prediction, these jobs will have to restart
from scratch and their execution hours would be wasted. By
using GA-1 or GA-2, a job will perform a checkpoint when
a warning is reported from the predictor. In this study, SUL
consists of three parts: (1) false negative which leads to a
job termination (FN ), (2) false positive which stops the job
to issue a useless checkpointing (FP ), (3) the overhead of
successful checkpointing (CKP ). We examine these SUL
parts in our experiments (see Figure 3).

In our experiments, we estimate checkpoint overhead
Ockp as Ockp = n×size

B(n) [12][13]. Here, n is the number of
nodes used by the application, size is checkpoint image size
per node, and B(n) is the available bandwidth for check-
point on n nodes. In terms of size, since the job log does
not provide information regarding checkpoint size for each
job, we estimate size based on memory utilization. Accord-
ing to [13], typically HPC applications use 10-50% memory
per compute node. In ‘Intrepid’, each node is equipped with
2 GB memory. Thus, we estimate that their checkpoint im-
ages range from 200MB to 1 GB per node for the jobs in
the job log. We consider three possible cases for the check-
point images size per node (for all the nodes): (1) Images
are 200-400MB per node for all the jobs (Case 1); (2) Im-
ages are about 400-800MB per node for all the jobs (Case
2); (3) Images are 0.8-1G per node for all the jobs (Case 3).

To calculate the B(n), we first analyze the job log and
get the number of nodes in each job. If a midplane- or rack-
level prediction is provided, then checkpoint is issued per
application and we calculate B(n) according to application
size n. If n < 16, 384 (i.e., 16 racks), then Ockp varies
from 120 to 600 seconds as size increases from 200 MB to
1 GB; if n > 16, 384, Ockp is ranging between 240 to 1200
seconds. The reason is that B(n) scales roughly linear with
n at first but becomes to level off at about 25 GB/sec when
n = 16, 384 [6]. If the prediction does not provide any
location information, a system-wide checkpoint is invoked.
In this case, Ockp per application varies from 300 to 1500
seconds with the growth of size. They are higher than the
numbers listed in the previous case due to the bandwidth
contention between different applications.

Figure 3 compares the amount of SUL brought by us-
ing GA-1, GA-2, and without failure prediction. As com-
pared to the situation without any failure prediction, GA-1
reduced SUL by 52.4% for Case 1, whereas GA-2 only re-
duced it by 25.1%. The major difference lies on the amount
of SUL caused by FP . On analyzing the logs, we found that
only 21.6% of the fatal events will actually interrupt the jobs
since other fatal events occur in the components which are
not running any productive jobs. As a result, with the lo-
cation information provided by GA-1, we can significantly

Figure 3: The service unit loss (CPU*Seconds).

avoid meaningless checkpointing. Meanwhile, GA-1 gener-
ates 7 less false alarms on the whole system than the GA-2
predictor, which significantly reduce overall checkpointing
overhead.

In Case 2, again as compared to the situation without
failure prediction, GA-1 reduces SUL by 26.6% but GA-
2 increases it by 18.6%. Obviously the benefit brought
by failure prediction decreases. With GA-1, the amount
of SUL caused by CKP and FP increases as the growth
of checkpoint image. For GA-2, since it does not provide
location information, any possible false alarm will invoke
a system-wide checkpoint, thereby causing a significant
overhead. The overhead eventually eliminates the benefit
brought by failure prediction. Meanwhile, 12% of predic-
tions have a lead time less than 300 seconds (i.e., the min-
imum overhead for conducting an application-level check-
point). As a result, these predictions cannot be effectively
used by checkpointing.

Both GA-1 and GA-2 cannot help much in Case 3. The
main reason is that not all the rules provide the location in-
formation, which will lead to extreme high checkpointing
overhead. With GA-2, the amount of SUL caused by FN

also significantly increases as the growth of checkpoint im-
age. This essentially means that when system-wide check-
pointing has a high overhead, failure prediction is not a
good idea unless it is accompanied by location information.

6 Related Work

Considerable research has been performed on failure
prediction methods based on system logs. Take several ex-
amples, Sahoo et al. evaluate the time-series, the rule-based
classification and Bayesian network methods to predict fail-
ure events in a 350-node IBM cluster [18]. In [7], several
statistical based techniques are studied for failure forecast-
ing in a Blue Gene/L system. In our own previous work
[3], we present a dynamic meta-learning prediction engine
in large-scale systems. In [9], Liang et al. mention the
usability of prediction methods for Blue Gene/L systems.
In [19], Salfner et al. consider lead time in their Hidden



Semi-Markov Models for failure prediction in a commer-
cial telecommunication system, without addressing the lo-
cation issue. Research presented in this paper distinguishes
itself from the above research by emphasizing on generat-
ing usable rules for failure prediction by addressing predic-
tion accuracy, location, and lead time problems together. A
widely used approach to address fault location is to develop
fault propagation models (FPMs), such as causality graphs
or dependency graphs [20]. However, this requires a pri-
ori knowledge about the system structure and dependencies
among different components. This information is hard to
obtain and maintain in large-scale systems.

Research in this paper is inspired by the work of Weiss
[23], which explores a genetic-based method for failure
prediction in a telecommunication equipments. Our work
fundamentally distinguishes from [23] in two key aspects.
First, the above method is applied to predict failure in
telecommunication equipments, in which the location in-
formation is not a big concern. In contrast, our research
focuses on failure prediction in large-scale systems, where
the location information is critical for effective fault man-
agement. Second, the lead time is explicitly considered in
our fitness function to guarantee enough time for fault tol-
erance actions like checkpointing.

7 Conclusions

In this paper, we have presented a practical failure pre-
diction method for high performance computing systems.
It provides a holistic approach to address prediction accu-
racy, location, and lead time together. We have evaluated it
with the logs collected from the IBM Blue Gene/P system
at ANL. Experimental results have shown that our method
can substantially boost prediction accuracy, especially with
regards to refined precision as against the method without
considering location and lead time. Furthermore it can re-
duce service unit loss caused by failure by up to 52.4%.

Acknowledgment

Zhiling Lan is supported in part by US National Science
Foundation grants CNS-0834514, CNS-0720549, and CCF-
0702737. The CIFTS project is supported in part by the
Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department
of Energy, under Contract DE-AC02-06CH11357.

References

[1] Blue Gene Team, “Overview of the IBM Blue Gene/P
project,” IBM Journal of Research and Development, 2008.

[2] Top500 supercomputing sites http://top500.org/.

[3] J. Gu, Z. Zheng, Z. Lan, J. White, and B. Park. Dynamic
meta-learning for failure prediction in large-scale systems:
A case study. Proc. of ICPP, 2008.

[4] R. Gupta, P. Beckman, B.-H. Park, E. Lusk, and P. Hargrove.
CiFTS: A coordinated infrastructure for fault-tolerant sys-
tems. Proc. of ICPP, 2009.

[5] Z. Lan and Y. Li. Adaptive fault management of parallel
applications for high performance computing. IEEE Trans.
on Computers, 57(12):1647–1660, 2008.

[6] S. Lang, P. Carns, K. Harms, and W. Allcock. I/O perfor-
mance challenges at leadership scale. Proc. of Supercom-
puting, 2009.

[7] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramanium, and
R. Sahoo. Blue Gene/L failure analysis and prediction mod-
els. Proc. of DSN, 2006.

[8] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. An adaptive
semantic filter for Blue Gene/L failure log analysis systems.
Workshop on SMTPS, 2007.

[9] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. Failure predic-
tion in IBM Blue Gene/L event logs. Proc. of ICDM, 2007.

[10] C. Lim, N. Singh, and S. Yajnik. A log mining approach
to failure analysis of enterprise telephony systems. Proc. of
DSN, 2008.

[11] T. Mitchell. Machine learning. McGraw-Hill Companies,
Inc, 1997.

[12] H. Naik, R. Gupta, and P. Beckman. Analyzing checkpoint-
ing trends for applications on the IBM Blue Gene/P system.
Workshop on P2S2 in conjunction with ICPP, 2009.

[13] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, and
M. Varela. Modeling the impact of checkpoints on next-
generation systems. Proc. of MSST, 2007.

[14] A. Oliner, L. Rudolph, and R. Sahoo. Cooperative check-
pointing: A robust approach to large-scale systems reliabil-
ity. Proc. of ICS, 2006.

[15] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Siva-
subramaniam. Fault-aware job scheduling for Blue Gene/L
systems. Proc. of IPDPS, 2004.

[16] A. Oliner and J. Stearly. What supercomputers say: A study
of five system logs. Proc. of DSN, 2007.

[17] M. Sagger, A. Agrawal, and A. Lad. Optimization of associ-
ation rule mining using improved genetic algorithms. Proc.
of SMC, 2004.

[18] R. Sahoo and A. Oliner et al. Critical event prediction
for proactive management in large-scale computer clusters.
Proc. of SIGKDD, 2003.



[19] F. Salfner and M. Malek. Using hidden semi-markov models
for effective online failure prediction. Proc. of SRDS, 2007.

[20] M. Steinder and A. Sethi. A survey of fault localization
techniques in computer networks. Science of Computer Pro-
gramming, 53(2), 2004.

[21] W. Tang, Z. Lan, N. Desai, and D. Buettner. Fault-aware
utility-based job scheduling on Blue Gene/P systems. Proc.
of Cluster, 2009.

[22] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Proactive
process-level live migration in HPC environments. Proc. of
Supercomputing, 2008.

[23] G. Weiss. Timeweaver: A genetic algorithm for identify-
ing predictive patterns in sequences of events. Genetic and
Evolutionary Computation Conference, 1999.

[24] Z. Zheng, R. Gupta, Z. Lan, and S. Coghlan. FTB-enabled
failure prediction for Blue Gene/P systems. Proc. of Super-
Computing (research poster), 2009.

[25] Z. Zheng, Z. Lan, B. Park, and A. Geist. System log pre-
processing to improve failure prediction. Proc. of DSN,
2009.


