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Abstract—As the scale of parallel systems continues to grow, fault management of these systems is becoming a critical challenge.

While existing research mainly focuses on developing or improving fault tolerance techniques, a number of key issues remain open. In

this paper, we propose runtime strategies for spare node allocation and job rescheduling in response to failure prediction. These

strategies, together with failure prediction and fault tolerance techniques, construct a runtime system called Fault-Aware Runtime

System (FARS). In particular, we propose a 0-1 knapsack model and demonstrate its flexibility and effectiveness for reallocating running

jobs to avoid failures. Experiments, by means of synthetic data and real traces from production systems, show that FARS has the

potential to significantly improve system productivity (i.e., performance and reliability).

Index Terms—High-performance computing, runtime strategies, fault tolerance, performance, reliability, 0-1 knapsack.
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1 INTRODUCTION

BY 2011, it is anticipated that researchers will be able to
access a rich mix of systems with some capable of

delivering sustained performance in excess of one petaflop/
s. Production systems with hundreds of thousands of
processors are being designed and deployed. Such a scale,
combined with the ever-growing system complexity, is
introducing a key challenge on fault management for high-
performance computing (HPC). Despite great efforts on
designing ultrareliable components, the increase in system
size and complexity has outpaced the improvement of
component reliability. Recent studies have pointed out that
the mean-time-between-failure (MTBF) of teraflops and
soon-to-be-deployed petaflop machines are only on the
order of 10-100 hours [30]. This situation is only likely to
deteriorate in the near future, thereby threatening the
promising productivity of large-scale systems [26].

The conventional method for fault tolerance is checkpoint-
ing, which periodically saves a snapshot of the system to a
stable storage and uses it for recovery in case of failure. Yet, it
does not prevent failure, and work loss is inevitable due to the
rollback process. An increasing interest in HPC is to explore
proactive techniques like process migration to avoid failures
by leveraging the research on failure prediction. For example,
object migration is proposed for AMPI-based applications to
avoid hardware failures [5]. The experiment with a Sweep3D
application has shown that object migration may only take
less than 2 seconds. In [21], live migration is explored on Xen
virtual machines, and the experiments with scientific
applications have shown that migration overhead is as low

as 30 seconds. In our own previous study [17], we have
demonstrated that timely process migrations can greatly
improve application performance—application execution
times—by up to 43 percent.

While process migration itself has been studied exten-
sively, a number of issues remain open in the design of
fault-aware runtime systems. Key issues include how to
allocate resources to accommodate proactive actions and
how to coordinate multiple jobs for an efficient use of the
resources in case of resource contention. Further, there is a
lack of systematic study of runtime fault management by
taking into account various factors including system work-
load, failure characteristics, and prediction accuracy. As an
example, a commonly asked question is, “Given that
prediction misses and false alarms are common in practice,
how much gain can a fault-aware runtime system provide?”

This study aims at filling the gap between failure
prediction and fault tolerance techniques by designing
runtime strategies for spare node allocation and job reschedul-
ing (i.e., reallocate running jobs to avoid failures). These
strategies, together with failure prediction and fault
tolerance techniques, construct a runtime system called
FARS (Fault-Aware Runtime System) for HPC.

The first runtime strategy is for spare node allocation. To
enable running jobs to avoid anticipated failures, spare
nodes are needed. As jobs in the queues also compete for
computing resources, a desirable runtime system should
make a balanced allocation of resources between failure
prevention and regular job scheduling. While static alloca-
tion by reserving a fixed number of nodes in prior is simple,
it does not adapt to the runtime dynamics inherent in
production environments. We propose a nonintrusive
allocation strategy that dynamically allocates spare nodes
for failure prevention.

The second runtime strategy is for job rescheduling.
Given the existence of failure correlations in large-scale
systems, simultaneous failures on multiple nodes are
possible. Selection of jobs for rescheduling becomes crucial
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when spare nodes are not sufficient to accommodate
migration requests originating from jobs. Previous research
generally assumed the availability of sufficient spare nodes.
But unfortunately, system resources are limited. Job
rescheduling in case of resource contention can significantly
impact the overall system productivity, given that jobs
have quite different characteristics. In this study, we present
a 0-1 knapsack model to address the job rescheduling
problem, and then demonstrate its flexibility and effective-
ness by presenting three job rescheduling strategies.

We evaluate FARS under a wide range of system settings
by using both synthetic data and real traces from produc-
tion systems. Considering that the often-used performance
metrics like system utilization rate are mainly designed to
measure system performance without giving much atten-
tion to failure, we choose a set of six metrics (including both
performance and reliability metrics) and a 6D Kiviat graph
for a comprehensive assessment of FARS. We also examine
the sensitivity of FARS to system load, node MTBF, and
prediction accuracy.

Preliminary results show that FARS can substantially
reduce job response time, job slowdown caused by failure,
job failure rate, and work loss, as well as slightly improve
system utilization and job throughput. For a moderately
loaded system, FARS is capable of improving its produc-
tivity (i.e., performance and reliability) by more than
30 percent as against the case without it. Our experiments
demonstrate the effectiveness of FARS as long as the failure
predictor can capture 25 percent of failure events with a
false alarm rate lower than 75 percent.

FARS complements existing research on checkpointing
and job scheduling by reallocating running jobs to avoid
failures in response to failure prediction. It can be easily
integrated with job schedulers and checkpointing tools to
jointly address the fault management challenge in HPC. The
proposed 0-1 knapsack model provides a flexible method to
address the job rescheduling problem, from which new
rescheduling strategies can be easily derived.

The remainder of this paper is organized as follows:
Section 2 gives an overview of FARS. A dynamic strategy
for spare node allocation is described in Section 3. Section 4
formalizes the rescheduling problem as a 0-1 knapsack
model and presents three rescheduling strategies. Section 5
describes our evaluation methodology, followed by experi-
mental results in Section 6. Section 7 briefly discusses
related work. Finally, Section 8 summarizes this paper and
presents future work.

2 PROBLEM DESCRIPTION

Consider a system with N compute nodes. User jobs are
submitted to the system through a batch scheduler. For
example, first-come, first-serve (FCFS) scheduling is com-
monly used by batch schedulers in HPC [20]. A job may be a
sequential application or a parallel application. A job
request is generally described by a three-parameter tuple
fai; ti; nig, where ai is job arrival time, ti is job execution
time, and ni is job size in terms of number of compute nodes.

The job scheduler is responsible for allocating inactive
jobs (i.e., jobs in the queues) to compute nodes. Once a job is
allocated, it is termed as an active job. FARS is responsible

for fault management of active jobs in response to failure

prediction. Here, a failure is defined as an unexpected event

in system hardware or software that stops a running

application immediately. In case of parallel applications

like tighly-coupled MPI applications [4], a single node

failure usually aborts the entire application. Failed nodes

are excluded from the pool of compute nodes until the

problem is repaired. Active jobs are supposed to be

checkpointed by application-initiated or system-initiated

checkpointing tools [3], [11], [37]. Fig. 1 gives an overview

of FARS.
FARS may be triggered in two ways: 1) predefined,

where FARS is invoked at predefined points set by system

administrators and 2) event-triggered, where FARS is

alerted by the failure predictor when a worrisome event

occurs. This paper assumes predefined mechanism for the

convenience of study.
FARS periodically consults the failure predictor for the

status of each compute node during the next interval.

Regardless of prediction techniques, prediction result can

be either categorical where the predictor forecasts whether a

failure event will occur or not, or numerical where the

predictor estimates failure probability. Numerical results

can be easily converted to categorical results via threshold

based splitting; hence in this paper, we uniformly describe

failure prediction as a process that periodically estimates

whether a node will fail during the next interval. Such a

prediction mechanism is generally measured by two

metrics: precision and recall as described in Table 1.
Upon each invocation, FARS identifies the set of nodes

that are likely to fail in the next interval based on failure

prediction. Suppose that Ns out of N nodes are predicted

to be failure-prone (denoted as suspicious nodes), and

fjsi j1 � i � Jsg is the set of active jobs residing on these

suspicious nodes (denoted as suspicious jobs).
The objective of FARS is to dynamically reallocate

suspicious jobs so as to minimize failure impact on system

productivity. Toward this end, runtime strategies are devel-

oped for allocating spare nodes and reallocating suspicious

jobs. Based on these runtime strategies, process migration

support can be applied to transfer application processes away

from failure-prone nodes to healthy spare nodes.
Before presenting our strategies, we present our nomen-

clature in Table 1.
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Fig. 1. Overview of FARS. User jobs are submitted through the job

scheduler, while FARS is responsible for managing active jobs (i.e.,

running jobs) in the presence of failure. The dark shaded boxes indicate

the major contributions of this study: spare node allocation (Section 3)

and job rescheduling (Section 4).
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3 SPARE NODE ALLOCATION

Spare nodes for failure prevention can be allocated either
statically or dynamically. Static allocation, which reserves a
fixed set of nodes, is commonly used in existing studies due
to its simplicity [29]. Static allocation is simple. However, it
is difficult, if not impossible, to determine an optimal
reservation at a prior time. An excessive allocation can lead
to low system productivity due to less resources for regular
job scheduling, while a conservative allocation can under-
mine the effectiveness of FARS because of insufficient spare
nodes for process migration. Further, system load tends to
change dynamically during operation, and static allocation
does not adapt to these changes.

We propose a dynamic allocation strategy, which is
based on a key observation in HPC.

3.1 Observation

After examining a number of job logs that are shared on the
public domain [13] or are collected from production
systems, we have observed that idle nodes are common in
production systems, even in the systems under high load.

In Table 2, we list the statistics of idle nodes from
10 production systems. This list contains a variety of systems
with different scales, utilization rates, and architectures.
Production systems typically consist of a collection of
compute nodes and some service and I/O nodes. The data
shown in the table only lists compute nodes.

While these systems may exhibit different patterns in
terms of idle node distributions, they share a common
characteristic, that is, idle nodes are often available. In fact, on
all the systems we have examined, the probability that at least
2 percent of the system resources are idle at any instant of
time is high (more than 70 percent), and in some systems, the
probability is even as high as 90 percent. We believe that the
table clearly delivers the message that idle nodes are common
in production systems. Indeed, this observation is confirmed
by system administrators and is also mentioned in [43].

3.2 Dynamic Allocation Strategy

Based on the above observation, we propose a nonintrusive,
dynamic allocation strategy for FARS. Here, the “dynamic”

means that spare nodes are determined at runtime, and the
“nonintrusive” indicates that FARS does not violate any
reservation made by the job scheduler. The detailed steps
are as follows:

. Upon invocation, FARS first harvests the available
idle nodes into a candidate pool.

. Next, it excludes failure-prone nodes from the
candidate pool according to failure prediction. The
rationale is to avoid the situation wherein an applica-
tion process is transferred to a failure-prone node.

. Finally, FARS excludes a number of nodes from the
candidate pool to ensure job reservations made by
the batch scheduler for some queued jobs [20]. The
resulting pool is denoted as spare pool, and will be
used for runtime failure prevention.

Fig. 2 illustrates how our dynamic allocation strategy
works with FCFS/EASY backfilling scheduling [20]. Under
FCFS/EASY, jobs are served in FCFS order, and subsequent
jobs continuously jump over the first queued job as long as
they do not violate the reservation of the first queued job.
FCFS/EASY backfilling is widely used by many batch
schedulers, and it has been estimated that 90 percent to
95 percent of batch schedulers use this default configuration
[39]. As shown in the figure, to guarantee the reservation of
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TABLE 1
Nomenclature

TABLE 2
Statistics of Idle Nodes in Production Systems

The last column gives the probability that at least 2 percent of system
nodes are idle at any time instant.
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the first queued job (job 4 at time t4), FARS only puts one
idle node into the spare pool. After this, FARS will apply
the rescheduling method presented in Section 4 to select a
job (which is j2 in this case) for rescheduling, and j1 will fail
if the failure prediction is correct.

This dynamic allocation strategy is not limited to FCFS/
EASY and can be applied to other scheduling policies. For
example, in case of a greedy scheduling that does not
guarantee any job reservation, FARS aggressively acquires
all idle nodes and puts them into the spare pool; in case of a
more conservative scheduling such as conservative back-
filling [20], FARS excludes the nodes to guarantee the
reservation of all the queued jobs and only puts the
remaining idle nodes into the spare pool.

4 JOB RESCHEDULING

After acquiring the spare pool, the next step is to provide a
strategy for rescheduling suspicious jobs. In case that the
number of spare nodes is sufficient, all the suspicious jobs
will be reallocated. Otherwise, contention occurs among the
suspicious jobs for the spare nodes. A desirable reschedul-
ing strategy should weigh the benefit of reallocating
different jobs, with the goal of minimizing failure impact
on system productivity.

In this section, we first describe how to formalize the
problem into a 0-1 knapsack model and then present three
rescheduling strategies derived from this model.

4.1 0-1 Knapsack Model

Suppose there are S nodes in the spare pool, Js
suspicious jobs fjsi j1 � i � Jsg, with each job ji residing
on nsi suspicious nodes. Hence, the rescheduling problem
can be formalized as follows:

Problem 1. To select a set of application processes from the
suspicious jobs, with the objective of minimizing failure impact
on system productivity.

For a parallel job (e.g., a MPI job), failure of even a
single process usually aborts the entire job. Thus, for a
suspicious job, migrating some of its suspicious processes
does not eliminate the possibility of failure. An effective
rescheduling strategy should be more job oriented, meaning
that all suspicious processes belonging to the same job

should be migrated together if possible. As a result,
Problem 1 can be transformed into the following problem:

Problem 2. To select a subset of fjsi j1 � i � Jsg such that their
rescheduling requires no more than S spare nodes, with the
objective of minimizing failure impact on system productivity.

For each suspicious job ji, we associate it with a gain
vi and a weight wi. Here, vi represents productivity gain
by rescheduling the job, which will be elaborated in the
next section. And wi denotes its rescheduling cost, which
is the number of spare nodes needed for rescheduling the
job. We can further transform Problem 2 into a standard
0-1 knapsack model:

Problem 3. To determine a binary vector X ¼ fxij1 � i � Jsg
such that

maximize
X

1�i�Js
xi � vi; xi ¼ 0 or 1

subject to
X

1�i�Js
xi � nsi � S:

ð1Þ

The solution X determines the jobs for rescheduling. If
xi is 1, meaning that ji is selected for reallocation by
transferring some of its application processes so as to avoid
job failure.

4.2 Three Rescheduling Strategies

Depending on the primary objective of fault management, a
variety of rescheduling strategies can be derived from the
aforementioned 0-1 knapsack model by properly setting vi.

In practice, failure impact can be observed from different
aspects. When a failure occurs, the affected job fails and
rolls back to its initial state or the most recent checkpoint,
thereby causing a loss of computing cycles. In the field of
HPC, such a loss is generally measured by service units
which are defined as the aggregated processing time. Users
are typically concerned about failure probability of their
jobs. This can be quantified by job failure rate, which is
defined as the ratio between the number of failed jobs and
the total number of jobs submitted. Furthermore, given that
different jobs have different characteristics, it is often
important to determine the average slowdown caused by
failure on user jobs. Failure slowdown (FSD), defined as the
ratio of the time delay caused by failure to failure-free job
execution time, can be used to serve the purpose.

In this paper, we propose three rescheduling strategies,
each focusing on reducing one specific failure impact as
discussed above.

1. Service Unit Loss Driven (SUL-D). It aims at minimiz-
ing the loss of service units (defined as the product of
the number of compute nodes and the amount of time
wasted due to failure). Not knowing the exact failure
time, we assume that failures are uniformly distrib-
uted in the next interval. Hence, for a suspicious
job ji, its rescheduling gain can be estimated as

vi ¼ fi � ni � tþ IF
2
� tilast �OF

� �
; ð2Þ

where fi ¼ 1� ð1� precisionÞn
s
i .
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Fig. 2. Dynamic node allocation. An example by using FARS with FCFS/
EASY is shown, in which spare nodes are not sufficient. At time t4, there
are two suspicious jobs (j1 and j2) and two idle nodes (n4 and n5). To
guarantee the reservation of the first queued job j4 at t4 required by
FCFS/EASY, FARS only puts n5 into the spare pool.
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Here, t is the current time, IF is FARS interval, ni is job
size, nsi is number of suspicious nodes, fi is job failure
probability, and tilast is the most recent time where the
job can be safely started from, e.g., the last checkpoint
or the job start time. As we can see, ðtþ IF

2 � tilastÞ is the
amount of time saved by rescheduling ji. OF is the
overhead of reallocating the job, which can be
obtained by tracking operational costs at runtime.
Depending on the specific implementation of process
migration, OF may differ. For example, in case of a
stop-and-restart design that checkpoints the applica-
tion and then restarts it on a new set of resources [18],
OF can be approximated by ðOckp þOrÞ; in case of live
migration support, it can be estimated by Or. Both
Ockp and Or can be tracked in practice [17].

2. Job Failure Rate Driven (JFR-D). It aims at reschedul-
ing as many suspicious jobs as possible. This
strategy intends to minimize job interrupts caused
by failure so as to improve user satisfaction of
system service. Hence, for a suspicious job ji, its
rescheduling gain vi is

vi ¼ fi � 1: ð3Þ

3. Failure Slowdown Driven (FSD-D). The objective of
this strategy is to minimize the slowdown caused by
failure. For a suspicious job ji, failure impact
includes job re-queuing cost Oq, its restart cost Or

and the recomputation time on the lost work. The
recomputation time can be estimated in the same
way as in the SUL-D strategy; Oq can be determined
based on historical data, such as by using LAST or
MEAN predictive method [22]. Thus, the gain of
rescheduling job i can be estimated as

vi ¼ fi � tþ IF
2
� tilast þOq þOr �OF

� �
=ti; ð4Þ

where ti is failure-free job execution time.

4.3 Dynamic Programming

After setting the gain value in (1), the 0-1 knapsack model
can be solved in pseudopolynomial time by using dynamic
programming method [6]. To avoid redundant computa-
tion, we use the tabular approach by defining a 2D table G,
where G½k; w� denotes the maximum gain that can be
achieved by rescheduling suspicious jobs fjsi j1 � i � kg
with no more than w spare nodes, where 1 � k � Js and
1 � w � Ns. G½k; w� has the following recursive feature:

¼
0 kw ¼ 0;
G½k� 1; w� nsk > w;
max G½k� 1; w�; vk þG k� 1; w� nsk

� �� �
nsk � w:

8<
: ð5Þ

The solution G½Js; S� and the corresponding binary
vector X determine the selection of suspicious jobs for
rescheduling. The computation complexity of (5) is
OðJs � SÞ.

4.4 Residual Issue

After the aforementioned job-oriented selection, it is possible
that there are some spare nodes and suspicious jobs left,

where the spare nodes are not sufficient to accommodate any
suspicious job. We call this a residual issue. To address the
issue, we adopt a best-effort method to select one more
suspicious job for rescheduling [16]. Suppose there are
R spare nodes left after the job-oriented selection, FARS
calculates rescheduling gain for each of the remaining
suspicious jobs and selects the job with the maximal gain
value. The calculation of vi is the same as shown in (2), (3), and
(4), except that fi ¼ 1� ð1� precisionÞðn

s
i�RÞ.

5 EVALUATION METHODOLOGY

Our experiments were based on event-driven simulations
by means of synthetic data and real traces collected from
production systems. An event driven simulator was devel-
oped to emulate a HPC system using FCFS/EASY schedul-
ing [16]. We compared FARS-enhanced FCFS/EASY as
against the plain FCFS/EASY. In the rest of this paper, we
simply use the term SUL-D, JFR-D, FSD-D, and FCFS to
denote three rescheduling strategies and the plain FCFS/
EASY. This section describes our evaluation methodology,
and the results will be presented in the next section.

5.1 Simulator

The simulator was driven by three classes of events: 1) job
events including job arrivals and terminations; 2) failure
events including failure arrivals and repairs; and 3) fault
tolerant events including job checkpointing and rescheduling
events. Upon a job arrival, the simulator was informed of
job submission time, job size, and its estimated runtime. It
started the job or placed it in the queue based on FCFS/
EASY. Upon a job termination, it removed the job and
scheduled other queued jobs based on FCFS/EASY. Upon a
node failure, the simulator suspended the node and the job
running on it for failure repair. After failure repair, the
simulator resumed the job that was suspended by the
failure and the time delay was added into job completion
time. Each job was checkpointed periodically, and the
checkpoint frequency for each job was set based on the
widely used formula [42]. Upon checkpointing events,
checkpoint overhead was added into job completion time.
In case of FARS rescheduling, FARS overhead was added
into the corresponding job completion time.

The behavior of a failure predictor was emulated and its
prediction accuracy was controlled by two metrics:

1. Recall. If there exists a failure on a node in the next
interval, the predictor reports a failure on the node
with the probability of recall.

2. Precision. Suppose the predictor has totally re-
ported x failures for the intervals with actual
failures. According to the definition of precision,
for intervals without an actual failure, the pre-
dictor randomly selects x�ð1�precisionÞ

precision intervals and
gives a false alarm on each of them.

5.2 Synthetic Data and System Traces

Both synthetic data and real machine traces were used for
the purpose of comprehensive evaluation. Synthetic data
was used to extensively study the sensitivity of FARS to a
variety of system parameters, whereas machine traces were
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critical for assessing the practical effectiveness of FARS in

real computing environments.

5.2.1 Synthetic Data

Our synthetic data was generated to emulate a 512-node

cluster:

. Job events. The job arrivals, lengths, and sizes were
based on exponential distributions, where the means
were set to 1,000.0 seconds, 1,500.0 seconds, and
10 CPUs, respectively. The system utilization rate was
set to 70 percent, to reflect a moderate system load.

. Failure events. Exponential and Weibull distributions
are two commonly used models for failure arrivals
[12], [32]. Hence, we generated two sets of failure
events with Exponential distribution and Weibull
distribution, respectively. For the Weibull distribu-
tion, to reflect the commonly observed “bathtub”
behavior [35], we used a composite Weibull dis-
tribution with three subpopulations where the shape
parameters were set to � ¼ 0:5, � ¼ 1:0, and � ¼ 1:5,
respectively. They were used to simulate the burn-
in, normal, and worn-out phases of the system [23].
To study the sensitivity of FARS to MTBF, we tuned
the mean of Exponential distribution ��1 and the
scale parameter of Weibull distribution �. The failure
repair process was based on an exponential dis-
tribution at a mean of mean-time-to-repair (MTTR).

5.2.2 System Traces

System traces were collected from 512-node production

systems:

. Job events. A six-month job log was collected from the
Lonestar system at Texas Advanced Computing
Center (TACC). The cluster contained 512 Dell
PowerEdge 1,750 compute nodes, 13 Dell Power-
Edge 2,650 I/O server nodes, and 2 Dell PowerEdge
2,650 login/management nodes. The job log only
contained workload information from the compute
nodes. As shown in Table 2, the system utilization
rate was 94 percent. The average job running time
was 3,171.0 seconds, the job arrival rate was 0.0044,
and the average job size was 14 CPUs.

. Failure events. Due to the unavailability of a
corresponding failure log from the TACC Lonestar,
we used a failure log from a comparable Linux
cluster at NCSA [19]. The machine had 520 two-way
SMP 1-GHz Pentium-III nodes (1,040 CPUs), 512 of
which were compute nodes (2-Gbyte memory), and
the rest were storage nodes and interactive access
nodes (1.5-Gbyte memory). The MTBF was 0.79 hour
for the system and was 14.16 days per node. The
MTTR was about 1.73 hours.

5.3 Evaluation Metrics

Three performance metrics and three reliability metrics were

used for evaluation:

1. Average response time (Resp). Let J be the total
number of jobs, ci be the completion time of job ji,

and ai be job arrival time. The average response time
of the system is defined by

X
1�i�J

ðci � aiÞ
" #,

J:

2. Utilization rate (Util). Let T be the total elapsed time
for J jobs, N be the number of nodes in the system,
si be the start time of job i, and ni be the size of job i.
System utilization rate is defined as

X
1�i�J

ðci � siÞ � ni

" #,
ðN � T Þ:

3. Throughput (Thru). It is defined as the average
number of completed jobs in a unit of time.

4. Service unit loss (SUL). Defined as the total amount of
wasted service units (i.e., product of wall clock hours
and number of nodes) caused by failure. This metric
directly indicates the amount of computing cycles
lost due to failures—an important metric to both
system managers and users.

5. JFR. Defined as the ratio between the number of
failed jobs and the total number of jobs submitted. It
reflects percentage of jobs that are interrupted by
failures, an important indicator of system’s quality
of service.

6. FSD. Defined as the ratio of time delay caused by
failure to failure-free job execution time, average
over the total number of jobs. To mitigate the impact
of small jobs, a threshold of 10.0 seconds was
applied in the calculation of FSD. Different from
the widely used scheduling metric bounded slowdown,
this metric provides a direct indication of failure
impact on job completion time.

In addition, a 6D Kiviat graph was employed to provide
a composite view of these metrics (see Fig. 3) [46]. The
graph consists of six dimensions, each representing one of
the aforementioned metrics emanating from a central point.
Note that nonutilization rate (defined as ð1� UtilÞ) and mean-
time-between-completion (MTBC) (defined as ð1=ThruÞ) are
used in the graph. The range of each metric is from zero to
the largest value observed in the experiments. As shown in
the figure, the composite view of six metrics is the shaded
area. The smaller the area is, the better the performance is.
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Fig. 3. Exemplar of 6D Kiviat graph. The range of each metric is from
zero to the largest value observed in the experiments. The relative
gain of method B over A is defined as KðAÞ�KðBÞ

KðAÞ , where Kð�Þ denotes
the K-value of a method. The K-value of a method is the shaded area.
The smaller the K-value is, the better the performance a method has.
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To compare two methods A and B, we calculate the relative

gain of B over A as KðAÞ�KðBÞKðAÞ , whereKð�Þ denotes the K-value

of a method. A K-value of a method is defined as the shaded

area of its associated Kiviat graph. Obviously, the smaller the

K-value is, the better the performance a method has.

6 EXPERIMENTAL RESULTS

6.1 Results on Synthetic Data

A series of simulations were conducted to analyze the
impact of system load, node MTBF, and prediction accuracy
on FARS. The baseline configuration is summarized in
Table 3. These parameters and their corresponding ranges
were chosen according to the results reported in [23], [41],
[43], and our experiments [17].

6.1.1 Baseline Results

Baseline results are presented in Fig. 4 (Exponential Failure
Distribution) and Fig. 5 (Weibull Failure Distribution).
FARS-enhanced methods outperform FCFS in terms of both
performance and reliability metrics, with the improvement
on reliability metrics being more substantial. Let us first
take a look at reliability metrics. As we can see, the use of
FARS can reduce SUL by more than 2,000 CPU hours and
the number of failed jobs is reduced from 600þ to 400 under

both failure distributions. We also observe that each
rescheduling strategy achieves the best improvement with
regard to its target metric. As an example, SUL-D is able to
minimize SUL. This result implicitly validates the calcula-
tion of vi in (2), (3), and (4).

With regard to performance metrics, a noticeable im-
provement is observed on response time. For example, under
Exponential distribution, the average response time is
reduced from 19,400þ seconds by using FCFS to around
18,000 seconds by using either of the rescheduling strategies.
It indicates that the improvement on reliability by using FARS
can lead to an increase in scheduling performance. In terms of
utilization rate and throughput, the improvement is rela-
tively trivial. This is because utilization rate and throughput
are mainly determined by job arrivals and the scheduling
policy. This observation also indicates the necessity of
using other metrics, in addition to performance metrics, to
measure system productivity in the presence of failure.

It is hard to tell which rescheduling strategy is better by
simply comparing the results in Figs. 4 and 5. To provide a
holistic comparison of different rescheduling strategies, we
calculated their relative gains over FCFS by using Kiviat
graph as shown in Fig. 3. All the strategies are able to
provide more than 30 percent gain over FCFS. We also
observe that the gain achieved by FSD-D is relatively lower
than the other two. We believe this stems from the fact that
the estimation of vi in (4) is not precise. Getting an accurate
estimation of Oq is difficult as it is influenced by many
dynamic factors such as failure repair time, job queue status,
and resource availability. This observation implies that more
sophisticated methods such as the one presented in [22] may
be applied to improve prediction of job queuing time.

In summary, the results indicate that the use of FARS can
greatly improve system productivity in the presence of
failure, with the relative improvement of over 30 percent as
compared to the case without using it. The selection of
rescheduling strategy depends on the primary objective of
fault management. In general, if the objective is to improve
the overall productivity, then both SUL-D and JFR-D are
good candidates.
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TABLE 3
Baseline Configuration

Fig. 4. Synthetic data under Exponential failure distribution. The data label in the plot of JFR indicates the actual number of failed jobs. The

composite gain over FCFS is 34.02 percent (FSD-D), 36.35 percent (SUL-D), and 37.34 percent (JFR-D).
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6.1.2 Sensitivity to System Load

In this set of simulations, we varied failure-free system
utilization rate from 0.1 to 0.95 by adjusting job service
times ti. The purpose is to assess the impact of system load
on FARS.

The raw data achieved by using FCFS are listed in
Tables 4 and 5. Fig. 6 presents relative improvements by
using FARS. First, let us look at Figs. 6a and 6b. There are
six curves in each plot, representing the relative gains of six
metrics over FCFS as system load changes. It shows that the
performance of FARS drops as system load increases. This
is reasonable because a higher system load means a smaller
sized spare pool, thereby degrading the effectiveness of
FARS. The plots also show that for each metric, its trends
under both failure distributions are similar, although the
absolute value under Weibull distribution is lower than
that under Exponential distribution. Hence, failure dis-
tribution does not have a significant impact on the
performance of FARS. A major reason is that FARS is
mainly influenced by failure prediction, instead of by long-
term failure characteristics.

Different metrics exhibit different trends, according to
the figure. The curves of utilization and throughput stay
close to the x-axis, meaning the relative gain on these metric

is close to 0. As stated earlier, this is due to the fact that both
metrics are mainly determined by job arrivals and the
scheduling policy. The curve of response time is heading up
when the load increases to 0.9. After that, it starts to drop.
When the load is beyond a certain point, meaning that the
system is about saturating, spare nodes become scarce,
thereby limiting the capability of FARS.

More apparent changes are observed on SUL and JFR,
when system load increases from 0.1 to 0.95. Recall that
FARS adopts a dynamic strategy for spare pool allocation.
A higher load leads to fewer spare nodes, thereby limiting
the effect of FARS for failure avoidance. The same trend
is observed on FSD, except that it drops more sharply
when system load increases beyond 0.8. We attribute this
to the instability of FSD: when the load is high, more
dynamics is introduced into the system, thereby making it
hard to accurately estimate the rescheduling gain vi,
particularly Oq.

Fig. 6c presents the overall gains of different reschedul-
ing strategies over FCFS under Exponential and Weibull
failure distributions. As system load increases from
0.1 to 0.7, the overall gain achieved by FARS smoothly
decreases to 30 percent. When system load increases
beyond 0.70, the gain decreases to 15 percent. In both plots,

LI ET AL.: FAULT-AWARE RUNTIME STRATEGIES FOR HIGH-PERFORMANCE COMPUTING 467

Fig. 5. Synthetic data under Weibull bathtub failure distribution. The data label in the plot of JFR indicates the actual number of failed jobs. The

composite gain over FCFS, based on the Kiviat graph, is 33.73 percent (FSD-D), 36.62 percent (SUL-D), and 33.84 percent (JFR-D).

TABLE 4
Raw Results by Using Plain FCFS/EASY under Different System Loads

There are two values in each cell: The upper one is from Exponential distribution (E) and the bottom one is from Weibull distribution (W).
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we observe that the performance of FSD-D is slightly lower

than those achieved by SUL-D and JFR-D. This result is

consistent with the results obtained in Figs. 4 and 5.

6.1.3 Sensitivity to Node MTBF

We also studied FARS sensitivity to failure rate by tuning

node MTBFs based on the baseline value with the ratio

linearly changed from 1/32 to 8. In other words, node

MTBF was varied from 448 days to 1.75 days.

Similar to Fig. 6, we first plot the relative gains of
individual metrics in Figs. 7a and 7b, and then present the
overall gains of different FARS strategies in Fig. 7c.

The curves of utilization rate and system throughput are
close to zero, meaning there is no significant change on
these metrics. In terms of job response time, the curve first
heads up from 0 percent to around 40 percent as node
MTBF decreases from 448 to 3.5 days. This is because a
lower value of MTBF means higher failure rate, thereby
resulting in more opportunities for FARS to avoid failures,
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TABLE 5
Raw Results by Using Plain FCFS/EASY under Different Node MTBFs

There are two values in each cell: The upper one is from Exponential distribution (E) and the bottom one is from Weibull distribution (W).

Fig. 6. Sensitivity to system load. (a) and (b) plot the relative gain of each metric over FCFS, under Exponential Distribution and Weibull Distribution,

respectively. (c) presents the overall gains of different rescheduling strategies, based on Kiviat graph. The performance of FARS drops as system

load increases. FARS always outperforms FCFS by over 15 percent, even when the system has high load.
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and consequently, reducing job response time. When node
MTBF drops below 3.5 days, the curve starts to drop. We
believe this is caused by the insufficiency of spare nodes.
When the system becomes extremely unreliable, suspicious
nodes significantly outnumber the available spare nodes,
thereby degrading the performance of FARS.

As shown in the figure, the curves for reliability metrics
generally head down as node MTBF is getting smaller. The
curves of SUL and JFR gradually drop from 50 percent to
20 percent, whereas the FSD curve (FSD) drops more
quickly. A major reason for the fast drop of FSD is due to
the instability of FSD. As discussed earlier, getting an
accurate estimation of Oq is difficult, especially when failure
interrupts become more frequent.

Fig. 7c shows the composite gains of different reschedul-
ing strategies over FCFS. As we can see, the performance
achieved by FARS drops as node MTBF decreases. For the
systems whose node MTBFs are larger than 14 days, FARS
can provide more than 30 percent performance gain; when
system nodes become unreliable with a low MTBF value
(e.g., lower than 14 days), FARS still outperforms FCFS/
EASY by more than 20 percent. We also notice that when
node MTBF drops below 7 days (extremely unreliable), the
gain achieved by FARS decreases dramatically. This is
caused by insufficient spare nodes due to high failure rate.
We also observe that the performance of FSD-D is slightly

lower than those achieved by SUL-D and JFR-D, which is
consistent with the results shown in the previous figure.

The above study also justifies that promising gain may
be achieved in production systems by using FARS.
According to the failure data repository [32], node MTBFs
of real systems vary from 120 days to a couple of years. By a
simple projection based on the gain curves in Fig. 7, for
these systems, FARS can provide more than 35 percent gain.

6.1.4 Sensitivity to Prediction Accuracy

Obviously, the performance of FARS depends on prediction
accuracy. In this set of simulations, we simulated different
levels of prediction accuracies and quantified the amount of
gain achieved by FARS under different prediction precision
and recall rates.

In Fig. 8, we show the distribution of composite gain
achieved by SUL-D as against FCFS, where precision and
recall range between 0.1 and 1.0. We have also analyzed the
sensitivities of JFR-D and FSD-D to different prediction
accuracies. Their distributions (not shown) are similar to the
results shown in Fig. 8.

The figure clearly shows that the more accurate a
prediction mechanism is, the higher the gain SUL-D can
provide. For example, under both failure distributions, the
best performance is achieved when precision and recall are
1.0 (perfect prediction) and the worst case occurs when both
are set to 0.1 (meaning that 90 percent of the predicted
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Fig. 7. Sensitivity to Node MTBF. (a) and (b) plot the relative gain of each metric over FCFS under Exponential and Weibull failures, respectively.
(c) presents the overall gains of different rescheduling strategies, where the overall gain is calculated based on Kiviat graph. The results show
that in general, the benefit brought by FARS drops as node MTBF decreases.
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failures are false alarms and 90 percent of the failures are
not captured by the failure predictor). With a perfect
prediction, the optimal gain achieved by SUL-D is more
than 50 percent. We also notice that as long as both precision
and recall are higher than 0.2, SUL-D always outperforms
the plain FCFS. In other words, although false alarms may
cause unnecessary job rescheduling, the benefit brought by
FARS often overcomes its negative impact, under the
condition that the failure predictor can capture 20 percent
of failures with the false alarm rate lower than 80 percent.

6.2 Results on System Trace

Fig. 9 presents the results obtained with the system traces
by using the same baseline configuration as listed in Table 3,
except that the failure events and the job events are from
real system traces.

Consistent with the results on synthetic data, FARS
outperforms FCFS, especially in terms of reliability metrics.
Each rescheduling policy is capable of minimizing its
target metric. As an example, SUL-D gives the best result
in terms of SUL, whereas JFR-D is good at minimizing JFR.
All these rescheduling strategies are capable of providing
over 35 percent composite gain, as compared to FCFS.

We also examined the impact of failure prediction by
tuning prediction accuracies. Fig. 10 shows the distribution

of the composite gain achieved by SUL-D as against FCFS,
where precision and recall vary from 0.1 to 1.0. Similar trends
are observed by using JFR-D and FSD-D, so we only present
the results by using SUL-D here.

The maximum gain 53 percent is achieved under a perfect
prediction where precision and recall are 1.0. The negative
gain (�4 percent) is observed only when both parameters
are as low as 0.1. Although the trends are similar to those
obtained with synthetic data shown in Fig. 8, we notice that
the performance of SUL-D drops fast as prediction precision
decreases. This is caused by the higher load in the job log,
which reaches 84 percent even under a failure-free comput-
ing environment. A lower precision means more false alarms,
which consequently demands more spare nodes. This
situation is exacerbated when the available spare resources
are limited under a high system load.

6.3 Result Summary

In summary, our experiments with synthetic data and real
system traces have shown the following:

. FARS can effectively improve system productivity as
long as failure prediction is capable of predicting
25 percent of failure events with a false alarm rate
lower than 75 percent (see Figs. 8 and 10).
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Fig. 8. Distribution of SUL-D gain versus FCFS. Similar distributions are observed for JFR-D and FSD-D (not shown).

Fig. 9. Results on system traces. The data label in the plot of JFR indicates the actual number of failed job. The relative gain over FCFS, based on

the Kiviat graph, is 35.45 percent (FSD-D), 38.47 percent (SUL-D), and 35.21 percent (JFR-D).
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. System load implicitly determines number of spare
nodes, thereby impacting the performance of FARS.
In the systems under a moderate load (e.g.,� 0.7), the
gain achieved by FARS is always above 30 percent.
Even when the system load is as high as 0.95, the gain
is still above 15 percent (see Fig. 6).

. For systems with node MTBF ranging between
several weeks to a couple of years, FARS is capable
of providing more than 30 percent gain in terms of
system productivity (see Fig. 7).

7 RELATED WORK

Considerable research has been conducted on fault manage-
ment for HPC. They generally fall into two categories, one
on fault-aware scheduling and the other on runtime fault
tolerance techniques.

Fault-aware scheduling focuses on making an appro-
priate mapping of jobs or tasks to compute resources by
taking system reliability into consideration. The objective is
to optimize performance metrics, such as job response time
or job slowdown [1]. In [10], Hariri and Raghavendra
proposed two reliability-aware task allocation algorithms to
optimize the probability of successful task completions.
Shatz et al. presented a task-graph-based performance
model for maximizing a reliability cost function, and
developed several scheduling algorithms based on this
model [34]. Dogan and Ozguner investigated two reliability-
aware cost functions to enable scheduling of precedence-
constrained tasks in heterogeneous environments [7].
Srinivasan and Jha introduced the safety concept for reliable
task allocation in distributed systems [38]. There are also
several studies on utilizing redundant resources for task
scheduling. Kartik and Murthy proposed a branch-and-
bound algorithm to maximize the reliability of distributed
systems by using two-level redundancy [14]. Recently, an
increasing attention has been paid to fault-aware scheduling
in the field of HPC. In [43], Zhang et al. suggested utilizing
temporal and spatial correlations among failure events for
better scheduling. Oliner et al. presented a fault-aware job-
scheduling algorithm for Blue Gene/L systems by exploit-
ing node failure probabilities [24]. In [15], a fault-aware
scheduling was presented for the HA-OSCAR framework.

Fault-aware scheduling mainly focuses on providing an
optimal mapping of inactive jobs (i.e., jobs in the queues)

onto available resources based on long-term failure models,
such as observed failure characteristics or distributions.
Different from fault-aware scheduling, this study empha-
sizes on dynamically adjusting the placement of active jobs
(i.e., running jobs) to avoid imminent failures discovered by
short-term failure predictors. Here, “short-term” means the
time is on the order of several minutes to an hour. There are
several active projects on exploiting data mining and
pattern recognition technologies for the development of
short-term failure predictors [31], [45]. For example, Fu and
Xu have designed and implemented a framework called
hPREFECTS for failure prediction in networked computing
systems [47]; in our own studies [44], [45], [48], we have
investigated online failure prediction for large-scale sys-
tems by applying ensemble learning and automated data
reduction techniques.

Fault-aware scheduling and FARS complement each other,
where fault-aware scheduling prevents inactive jobs from
the failures that are well captured in the long-term failure
models and FARS enables active jobs to avoid imminent
failures that may not follow any long-term pattern but can
be discovered via runtime diagnosis.

Checkpointing and process migration are two prevailing
fault tolerance techniques. Checkpointing centers upon
reducing recovery cost by periodically saving an inter-
mediate snapshot of the system to a stable storage. A
detailed description and comparison of different check-
pointing techniques can be found in [9]. A number of
checkpointing libraries and tools have been developed for
HPC, and examples include libckpt [27], BLCR [11], open
MPI [4], MPICH-V [3], and the Cornell Checkpoint
(pre)Compiler (C3) [33]. In addition, a number of optimiza-
tion techniques have been developed to reduce its cost and
overhead [25], [28], [42]. Oliner et al. proposed to
dynamically skip unnecessary checkpoints via failure
prediction [23]. In essence, checkpointing is reactive, mean-
ing that it only deals with failures after their occurrences. In
contrast to these studies on checkpointing, the proposed FARS
emphasizes the use of proactive action (i.e., reallocating
running jobs) to avoid failures.

Unlike checkpointing, process migration takes preven-
tive actions—transferring application processes away from
failure-prone nodes—before failures. Intensive research has
been done on process migration. Process migration can be
performed at the kernel level or the user level. Kernel-level
migration requires a modification of the operating system,
whereas user-level methods allow migration without
changing the operating system kernel. A detailed survey
regarding migration can be found in [36]. There are several
active projects on providing process migration support for
sequential and parallel applications. For instance, Condor
allows user-level process migration by first checkpointing
the application and then restarting it on a new set of
resources [18]. The PCL protocol used in the MPICH-V
package applies a similar research effort on developing live
migration support for MPI applications. Du and Sun
proposed distributed migration protocols to support live
migration [8]. In the AMPI project, a proactive migration
scheme was proposed to move objects to reliable nodes
based on fault prediction provided by hardware sensors [5].
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Fig. 10. Distribution of SUL-D gain versus FCFS on system traces.
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Nagarajan et al. discussed the use of Xen virtual machine

technology to facilitate transparent process migration [21].
The majority of research focuses on the development and

optimization of runtime techniques, yet there is a lack of

systematic study on fault-aware runtime management by

taking account of various factors. This study bridges the gap

by presenting runtime strategies for spare node allocation and job

rescheduling. These strategies coordinate jobs and comput-

ing resources in response to failure prediction. To the best

of our knowledge, we are among the first to comprehen-

sively and systematically study FARS for HPC.
The term of job rescheduling has been used in Grid

computing. For example, in the GrADS project, an applica-

tion-level job migration and processor swapping approach

was presented to reschedule a Grid application when a better

resource is found [2]. Fundamentally different from these

studies, our work utilizes job rescheduling to improve system

resilience to failures. The issues such as spare node allocation

and job selection for rescheduling are not addressed in Grid

computing.

8 CONCLUSIONS

Although much work remains to make FARS fully opera-

tional, our results have shown the importance and potential

of exploiting runtime failure prediction to improve system

productivity. In particular, we have presented runtime

strategies for coordinating jobs and computing resources in

response to failure prediction. Our extensive experiments

have indicated that FARS is capable of improving system

productivity as long as the failure predictor can capture

25 percent of failure events with a false alarm rate lower

than 75 percent. With the advance in failure prediction,

we believe FARS will become more effective. The proposed

0-1 knapsack model gives a general and flexible method for

job rescheduling, from which we can derive a variety of

rescheduling strategies.
Our study has some limitations that remain as our future

work. First, we are in the process of collecting more

workloads and failure events from production systems to

further evaluate the effectiveness of FARS. Second, we plan

to integrate FARS with fault-aware scheduling work such as

[24]. We expect that this combination can further improve

system productivity. Lastly, exploiting failure patterns for

failure prediction is an on-going project in our group [44],

[45], [48]. Integrating FARS with the work on failure

prediction is part of our future work. Our ultimate goal is

to implement FARS, along with failure prediction work, in

job scheduling systems for better fault management of HPC.
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