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Abstract

We introduce a novel active learning algo-
rithm for classification of network data. In
this setting, training instances are connected
by a set of links to form a network, the labels
of linked nodes are correlated, and the goal
is to exploit these dependencies and accu-
rately label the nodes. This problem arises in
many domains, including social and biologi-
cal network analysis and document classifica-
tion, and there has been much recent interest
in methods that collectively classify the nodes
in the network. While in many cases labeled
examples are expensive, often network infor-
mation is available. We show how an active
learning algorithm can take advantage of net-
work structure. Our algorithm effectively ex-
ploits the links between instances and the in-
teraction between the local and collective as-
pects of a classifier to improve the accuracy of
learning from fewer labeled examples. We ex-
periment with two real-world benchmark col-
lective classification domains, and show that
we are able to achieve extremely accurate re-
sults even when only a small fraction of the
data is labeled.

1. Introduction

In many domains of interest, the instances are con-
nected via a set of links, thus forming a network, in
which neighboring instances frequently have correlated
labels. For example, in document classification, doc-
uments that cite each other often have similar topics,
and in social networks, people that are friends often
have similar characteristics. A long tradition in ma-
chine learning has focused on exploiting such network
information to achieve better predictive accuracy by
classifying instances collectively, rather than treating

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

them as independent samples (see Sen et al. (2008) for
an overview). This approach is appealing because in
many cases link information is readily available. For
example, in document classification, citation or hyper-
links can be automatically collected. On the other
hand, labeling instances requires human attention and
may be expensive. For instance, if the task is to pre-
dict the effect of a new substance on organisms in a
biological network, labeling new examples may require
laboratory experiments, whereas the network informa-
tion regarding interactions among the organisms may
be well-known.

Therefore, an important research question is to de-
velop algorithms that reduce the amount of labeling ef-
fort required in such tasks. One promising approach is
to use active learning. In this setting, rather than be-
ing presented with a labeled training set from the start,
the learner is allowed to request labels for particular
examples with the goal of decreasing the number of la-
bels needed in order to achieve a desired level of accu-
racy. While many effective active learning algorithms
have been developed (see Settles (2010) for a survey),
to the best of our knowledge, efficient active learners
that take direct advantage of explicit network struc-
ture in the data have not been considered. The main
contribution of this paper is a novel active learning
algorithm that addresses this setting. Our algorithm,
called alfnet (for active learning for networked data),
exploits the network structure of the domain and the
interaction between the local and collective aspects of
a classifier to select more informative examples to be
labeled, thus improving the accuracy of learning from
fewer labeled instances. We demonstrate the effective-
ness of alfnet in several real-world collective classifi-
cation tasks.

Another important consideration for active learning
from networked data is that to learn how to exploit
label correlations in the network, the collective classi-
fication algorithms need access to the labels of linked
nodes. However, because labels are scarce, it is rarely
the case that labels of neighboring nodes are known.
We introduce a novel semi-supervised technique that
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can effectively handle the problem of missing labels,
thus providing the collective classification algorithms
sufficient supervision for learning label correlations.

Further, we argue in favor of combining dimensional-
ity reduction techniques with active learning. Even
though it is well known in the literature that high di-
mensionality is an important problem, especially when
labeled data is limited, dimensionality reduction is of-
ten overlooked in the active learning community. In
this paper, we employ unsupervised dimensionality re-
duction as a first step of learning and show that it
leads to significant performance gains.

Such semi- and unsupervised algorithms are of great
importance to active learning settings in which labeled
data is typically severely limited. By using them, we
ensure that our proposed active learning algorithm im-
proves over strong base learners and obtains improve-
ments beyond those achievable by simpler methods.

The remainder of the paper is organized as follows. In
Section 2 we introduce some background and notation.
The alfnet algorithm is described in Section 3, and
an empirical evaluation is presented in Section 4. Sec-
tion 5 discusses related work, and Section 6 concludes.

2. Background

This section introduces necessary background and no-
tation on collective classification and active learning.
We assume that our data is represented as a graph
G = (V, E). Each node Vi ∈ V is described by an at-
tribute vector ~Xi and a class label Yi, Vi = 〈 ~Xi, Yi〉. ~Xi

is a vector of individual attributes 〈Xi1, Xi2, . . . , Xip〉.
The domain of Xij can be either discrete or continuous
whereas the domain of the class label Yi is discrete and
denoted as {y1, y2, . . . , ym}. Each edge Eij ∈ E , where
Eij = 〈Vi, Vj〉, describes some relationship or link be-
tween Vi and Vj . For example, in a citation network,
the nodes are publications, the node attributes include
words, the node labels may be the topics of the papers,
and the edges represent citations.

2.1. Collective Classification

In network data, the labels of neighboring nodes are
often correlated (though not necessarily positively cor-
related). For example, papers that cite each other are
likely to have similar topics, and proteins that interact
are likely to have complementary functions. Exploit-
ing these correlations can significantly improve clas-
sification performance over using only the attributes,
~Xi, for the nodes. However, when predicting the label
of a node, the labels of the related instances are also
unknown and need to be predicted. Collective classi-

fication is the term used for simultaneously predicting
the labels Y of V in the graph G, where Y denotes the
set of labels of all of the nodes, Y = {Y1, Y2, . . . , Yn}.
In general, the label Yi of a node can be influenced
by its own attributes ~Xi as well as the labels Yj and
attributes ~Xj of other nodes in the graph.

The variety of collective classification models that have
been proposed make different modeling assumptions
about these dependencies. Here, we focus on local col-
lective classification models, which consist of a collec-
tion of local vector-based classifiers, such as logistic
regression, applied iteratively. For this category of col-
lective models, each object is described as a vector of
its local attributes ~Xi and an aggregation of attributes
and labels of its neighbors. In particular, we use an
Iterative Classification Algorithm (ICA) (Neville &
Jensen, 2000; Lu & Getoor, 2003), which we briefly
explain next. However, our active learning algorithm
is largely independent of the underlying collective clas-
sification model.

LetNi denote the labels of the neighboring nodes of Vi,
Ni = {Yj |〈Vi, Vj〉 ∈ E}. A typical modeling assump-
tion that we also make here is that, once we know the
values of Ni, then Yi is independent of the attribute
vectors ~Xj of all neighbors and non-neighbors, as well
as of the labels Yj of all non-neighbors.

In ICA, each node in the graph is represented as a
vector that is a combination of node features, ~Xi,
and features that are constructed using the labels of
the nodes’ immediate neighbors. Because nodes can
have varying numbers of neighbors, we use an aggre-
gation function aggr over the neighbor labels in order
to get a fixed-length vector representation. For ex-
ample, count aggregation constructs a fixed-size fea-
ture vector by counting the number of neighbors with
each label; other examples of aggregations include
proportion, mode, etc. Once the features are con-
structed, then an off-the-shelf probabilistic classifier
can be used to learn P (Yi | ~Xi, aggr(Ni)) Here we re-
fer to a classifier that learns P (Yi | ~Xi, aggr(Ni)) as
CC, for collective classifier. We refer to a classifier that
uses only the local node features and learns P (Yi | ~Xi)
as CO, which stands for content-only classifier.

A key component of this approach is that during infer-
ence, the labels of the neighboring instances are often
not known. ICA addresses this issue, and performs
collective classification by using the predicted labels
for the neighbors for computing the aggregates. ICA
iterates over all nodes making a new prediction based
on the predictions made for the unknown labels of the
neighbors in the previous iteration; in the first step
of the algorithm, initial labels can be inferred based



Active Learning for Networked Data

solely on attribute information, or based on attribute
and any observed neighboring labels.

2.2. Active Learning

Active learning addresses the problem of minimizing
the labeling cost by letting the base learner choose
which examples to label. A variety of active learn-
ing settings have been studied (see Settles (2010) for
a survey). Here, we consider the pool-based setting,
in which the learner is initially provided with a pool
of unlabeled examples P. At each step, it is allowed
to select a batch of k instances that are added to its
labeled corpus L and removed from P. We utilize and
build upon uncertainty sampling (Lewis & Gale, 1994),
committee-based sampling (Seung et al., 1992), and
clustering (Dasgupta & Hsu, 2008). A more thorough
discussion of related work is provided in Section 5.

3. alfnet

alfnet is a novel active learning algorithm for col-
lective classification. Before describing it in detail, we
provide a precise statement of the problem we study.

Problem Statement: We are given a graph G =
(V, E), where a subset P ⊂ V is the pool of unlabeled
examples, a classification model (e.g., logistic regres-
sion), which will be used to train CC and CO, a batch
size k, and a budget B. The task is, within the con-
straints of B, to make a series of selections of k ele-
ments from P to be labeled by an oracle so that the
accuracy of CC on unseen data, after training it on the
acquired labeled examples L, is maximized.

This is an inductive set-up, in which the test data,
V \ P, is not available during the active learning pro-
cess, i.e., testing is done on unseen instances and not
on the remaining part of the pool P. However, we
assume that the labeled data and the remaining un-
labeled instances are available at test time. In the
remainder of this section, for simplicity of notation we
assume that the test nodes and their adjacent edges
have been removed from the training graph G, and so,
the initial pool consists of all nodes in V.

The difference between the problem addressed in this
and previous active learning approaches is that here
we assume that the instances to be classified form a
network structure, as defined by the edge set E of the
graph G. alfnet can take advantage of this addi-
tional information in order to select more informative
instances. It proceeds by first using the network struc-
ture to cluster the data. It then requests the labels of
examples that belong to clusters in which CC and CO
(1) disagree about the class assignments of the yet un-

Algorithm 1: alfnet: Active Learning for Net-
worked Data

Input: G = (V, E): the network, CO:
content-only learner, CC: collective
learner, k: the batch size, B: the budget

Output: L: the training set
L ← ∅1

C ← Cluster the nodes V of the network G into2

at least k clusters
Ck ← Pick k clusters from C3

foreach Cluster Ci ∈ Ck
4

Vj ← Pick an item from Ci5

Add Vj to L6

while |L| < B7

Re-train CO and CC8

foreach Cluster Ci ∈ C9

score(Ci)← Disagreement(CC,CO,Ci,L)10

Ck ← Pick k clusters based on the scores11

foreach Cluster Ci ∈ Ck
12

Vj ← Pick an item from Ci ∩ P13

Add Vj to L14

Remove Vj from P15

observed instances and (2) make predictions that do
not match the distribution of observed labels in the
cluster.

The high-level pseudo code for alfnet is described in
Algorithm 1. First, in line 2, the network structure, as
given by the edge set E , is used to cluster the nodes of
G into at least k clusters, where k is the batch size, as
defined above. To obtain initial data for training the
base learner, k clusters are selected, and one item from
each of them is picked and labeled (lines 3-6). This
forms the initial labeled set L. alfnet then proceeds
in iterations until the budget B is exhausted (lines 7-
15), as follows. Although only the accuracy of CC is
tested in the evaluation, both CC and CO are trained
in parallel so that their predictions can be compared
for the purposes of computing a disagreement score.
In each iteration, CO and CC are re-trained using the
currently labeled data L (line 8). For each cluster,
alfnet computes a score of the disagreement of CO
and CC and selects k clusters based on their scores.
We provide details on how the disagreement score is
computed later in this section. One unlabeled item
from each of the selected clusters is labeled, added to
L, and removed from P (lines 13-15).

Next, we provide more detail on how the clusters are
computed, how clusters and elements from them are
selected, and how the disagreement score is calculated.
For each of these, a variety of options can be explored.



Active Learning for Networked Data

Here we focus on the choices made in our implemen-
tation.

Clustering the nodes (step 2): There are many
options on how to cluster the nodes V of the graph G.
While in previous work, (Dasgupta & Hsu, 2008), clus-
tering was performed based only on object attributes,
here, we take advantage of the available network struc-
ture and use a graph clustering algorithm to find clus-
ters. For our experiments we chose modularity cluster-
ing by Newman (2006). The algorithm was allowed to
split larger clusters into sub-clusters until one of two
conditions was met: splitting the cluster further either
did not add to the modularity score (Newman, 2006),
or it would result in clusters with size smaller than a
pre-defined threshold θ. In the experiments, we set
θ = 200 and did not consider other values. Clustering
the nodes based on network structure is promising be-
cause it identifies groups of related nodes in the data,
and thus helps the active learner obtain a balanced
training set, while avoiding areas of the data for which
sufficient supervision is already acquired.

Computing the disagreement score of a cluster
(step 10): Intuitively, the disagreement score of a
cluster Cj , captures the degree to which CC and CO
differ in their predictions from each other, as well as
from the observed labels in the cluster. The overall
disagreement score of Cj is defined as the sum of the
local disagreement (LD) scores for each unlabeled node
in cluster Cj :

Disagreement(CC, CO,Cj ,L) =
∑

Vi∈Cj∩P
LD(CC, CO,Vi,L).

To define the local disagreement LD for an unlabeled
node Vi, we collect the predictions of three classifiers,
regarding the label of Vi. The first two are the most
likely labels predicted by CC and CO, respectively, and
the third one is the majority class in the already ob-
served nodes in Cj ∩ L. Let Si be the set of all pre-
dicted categories by the above three classifiers and
Di = {ph

i |h ∈ Si}, where ph
i is the proportion of the

above three classifiers that predicted category h for Vi.
The local disagreement LD of a node Vi is defined as the
entropy of Vi’s label according to the class distribution
Di:

LD(CC, CO,Vi,L) = HDi
(Vi).

Therefore, the more diverse the predictions of the three
classifiers, the greater the disagreement about an in-
stance.

Picking clusters (steps 3 and 11): alfnet picks k
of the clusters, from which it selects items for labeling.
In general, the clusters may differ in size, and thus the

cluster sizes should be taken into account. In step 3
of the algorithm, clusters are picked probabilistically
in proportion to their sizes. In step 11, the top k
clusters are picked, where clusters are sorted according
to their disagreement scores, divided by the number of
already labeled items from each cluster. This selection
strategy is needed in order to avoid over-investing in
the clusters that have already been explored.

Picking an item from a given cluster (step 5
and 13): Given a cluster, an item is chosen randomly
at step 5, and the item with the highest local disagree-
ment LD score is picked for labeling at step 13.

3.1. Semi-supervision and Dimensionality
Reduction

An important aspect of active learning for networked
data is that the collective classification algorithms
need access to the labels of linked nodes in order
to learn how to exploit label correlations in the net-
work. More specifically, the collective classifier is
trained on the combined local and neighborhood fea-
ture sets ( ~Xi, aggr(Ni)), where aggr(Ni) is computed
only over neighbors for which observed labels are avail-
able. When labeled data is scarce, there is an insuffi-
cient number of observed neighbors. We introduce a
novel semi-supervised collective classification method,
which is simple, but yet quite effective, as we show
in the experiments. In this technique, CO is used to
predict labels for the unobserved neighbors of Vi. The
aggregation function aggr(Ni) is then computed over
actual (predicted) labels for the observed (unobserved)
neighbors. This results in much stronger supervision
for the neighborhood features.

Further, we argue for combining dimensionality reduc-
tion techniques with active learning. We employ un-
supervised dimensionality reduction as a first step of
learning and show that it leads to significant perfor-
mance gains. Specifically, we used principal compo-
nent analysis (PCA) to transform the original feature
space into a smaller one, over which learning from less
data is more effective.

4. Experiments

We experimented with alfnet in two benchmark col-
lective classification tasks. Our experimental study
is structured as follows. First, we use the techniques
described in Sect. 3.1 to strengthen the base learner.
We then compare the accuracy of alfnet to that of
several competitive baselines. Finally, we perform an
ablation study in which we test the importance of dif-
ferent aspects of alfnet. Next, we describe the data
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sets and experimental methodology.

4.1. Data

We experimented with two real-world publication data
sets – Cora and CiteSeer, prepared by Sen et al. (2008)
and available at http://www.cs.umd.edu/projects/
linqs/projects/lbc/. Cora contains 2708 instances,
each belonging to one of seven classes, while CiteSeer
contains 3312 instances, each of which is in one of six
classes. In both data sets, instances correspond to
documents and are described as 0/1 feature vectors,
which indicate the absence/presence of a word. The
size of the vocabulary in Cora is 1433 and CiteSeer is
3703 words. The network structure of both domains
is provided by the citations between documents. Cora
contains 5429 citation links, while CiteSeer contains
4732. We ignored the direction of the links, treating
two documents as connected if either of them cited the
other. In a preliminary analysis, we discovered that in
each of the data sets one connected component con-
tained a large percentage of all documents, whereas the
remaining documents were sparsely connected in com-
ponents of average size 2.86/2.75 for Cora/CiteSeer.
We attribute this sparsity to missing information in
the data. Because in this work we are interested in
collective classification, and thus the presence of links
between the documents is essential, we cleaned up the
data by removing instances that do not belong to the
largest connected component. In this way, we were
left with 92% of all instances in Cora and 64% in Cite-
Seer. The cleaned-up version of the data is available
from the above URL.

4.2. Methodology

We performed 10-fold cross-validation by randomly
partitioning the data into 10 pieces. During training,
in each fold of cross-validation, the instances from one
of the partitions were held for testing, and all of their
links to the rest of the data were removed to avoid
contaminating the test set. The instances from the
remaining nine partitions had their labels hidden and
constituted the pool P, from which the active learner
selected k = 5 instances to be labeled and added to the
training set in each iteration. During testing, the links
between the test instances and the rest of the data were
restored. Data labeled during the learning stage was
available during testing. However, to ensure that all
systems were tested on the same set of examples, we
evaluated their accuracy only on the held-out test set,
and not on unlabeled examples from P. In each fold,
we performed three runs for each of the systems; thus,
each point on the learning curves presented here is an
average of 30 runs.

Figure 1. The effect of semi-supervision and dimensionality
reduction in Cora. Both semi-supervision and dimension-
ality reduction provide significant improvements.

The base classifier used for CO and CC was logistic re-
gression (LR). During preliminary experiments with
these data sets, we additionally experimented with
SMO and Naive Bayes, and selected LR as the best
among the three. For aggregating the label infor-
mation from the neighboring nodes for CC, we used
proportion where for each class, we take the propor-
tion of neighbors of Vi belonging to that class.

4.3. Results

4.3.1. Semi-supervision and Dimensionality
Reduction

In the first set of experiments, we investigate the ef-
fect of the techniques from Sect. 3.1. Because this
is not the main focus of the paper, we present re-
sults only on Cora. Figure 1 compares the per-
formance of content-only CO classification, in which
LR uses only the local features, collective classifica-
tion CC, in which both local and collective features
are included, semi-supervised collective classification
(CC-SS), which is as described in Sect. 3.1, and semi-
supervised collective classification with dimensionality
reduction (CC-SS-DR), where the number of features
is reduced to 100 using PCA. Figure 1 shows that
CC outperforms CO but only slightly. Adding semi-
supervision provides a statistically significant improve-
ment, measured using t-test.1 Furthermore, perform-
ing dimensionality reduction provides additional sig-
nificant benefits over using semi-supervision.

Although the issues considered in the above experi-
1All significance claims are at the 0.1 level.

http://www.cs.umd.edu/projects/linqs/projects/lbc/
http://www.cs.umd.edu/projects/linqs/projects/lbc/
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(a) (b)

Figure 2. a) Relative accuracy of alfnet in Cora. b) P-values of a paired t-test between pairs of systems in Cora. A
detailed description is in the text.

ments are orthogonal to the main contribution of this
work, we emphasize their importance as a means of
ensuring that any improvements obtained by active
learning are not over a weak “strawman,” but over
a carefully selected base learner that already reaches
almost optimal accuracy, as reported by Sen et al.
(2008), and is very challenging to improve upon. These
experiments also provide strong empirical evidence in
favor of coupling semi- and un- supervised techniques
with active learning. For the remaining experiments,
we use CC-SS-DR as the base learner and perform ac-
tive learning using this classifier.

4.3.2. alfnet

In this set of experiments, we compare the accuracy
of alfnet to that of two baselines–Random, which
randomly selects examples to be labeled, and Uncer-
tainty sampling, which selects the instances about
whose labels CC-SS-DR is most uncertain (Lewis &
Gale, 1994). Uncertainty in our experiments is mea-
sured as the expected conditional error of CC-SS-DR.
To pick k items in each batch, we follow Saar-
Tsechansky & Provost (2004) and use the uncertainties
to weight the samples and then probabilistically choose
k items. This contrasts with picking the top k most un-
certain items, which is known to perform poorly (Lewis
& Gale, 1994; Saar-Tsechansky & Provost, 2004).

We present two figures for each data set; the first one
shows the accuracies of the different active learning
systems, whereas the second one shows the p-values of
paired t-tests between couples of systems. The accu-
racy results and the p-values are shown in Figures 2(a)
and 2(b) for Cora and in Figures 3(a) and 3(b) for Cite-

Seer respectively. Figures 2(b) and 3(b) are organized
as follows. The X-axis matches the X-axis of the corre-
sponding accuracy graph. For a curve labeled A vs B,
any point that falls below the bottom dashed green line
indicates a significant win of system A, and any point
above the top dashed green line indicates a significant
win of system B. For example, for the curve labeled
alfnet vs Uncertainty, alfnet is significantly better
than Uncertainty at points below the bottom dashed
green line, and Uncertainty is significantly better at
points above the top dashed green line.

One of the first observations is that, even though LR
is known to be difficult to improve especially using un-
certainty sampling (Schein & Ungar, 2007), for these
datasets, uncertainty sampling improves over random
sampling. The alfnet algorithm improves over uncer-
tainty sampling for both Cora and CiteSeer. As the
p-values in Figures 2(b) and 3(b) show, alfnet loses
significantly to Random and Uncertainty only once. It
wins significantly over Uncertainty in half of the cases
in Cora and most of the cases in CiteSeer. It is signifi-
cantly better than Random in most cases. Finally, we
observe that in most cases Uncertainty is not signifi-
cantly better than Random.

4.3.3. Ablation Experiments

Finally, we test the contribution of each of alfnet’s
components by comparing the complete alfnet to
two variants. The first one, disagreement, utilizes
the disagreement between CO and CC, but does not ex-
ploit the cluster structure of the data. The second
variant, clustering, pre-clusters the data but selects
the instances randomly from each cluster, rather than
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(a) (b)

Figure 3. a) Relative accuracy of alfnet in CiteSeer. b) P-values of a paired t-test between pairs of systems in CiteSeer.
A detailed description is in the text.

Table 1. Comparing alfnet with individual components
of it. For both datasets, we show significant wins (as mea-
sured by a t-test with 90% confidence interval), ties, i.e. no
significant differences, and significant loses of alfnet over
disagreement and clustering.

Cora CiteSeer

W T L W T L

Disagreement 7 22 1 7 23 0
Clustering 9 21 0 12 18 0

using disagreement. We present statistically signifi-
cant wins and loses, as well as ties (i.e. no significant
difference) of alfnet over disagreement and cluster-
ing in Table 1.

These results suggest that the most important com-
ponent of alfnet is disagreement; however, using the
clustering information provides significant gains over
using just the disagreement information.

5. Related Work

alfnet is most closely related to active learning al-
gorithms for structured prediction tasks, in which the
label of an instance is not a single variable but some
structured object, such as a sequence or a tree, e.g.,
(Anderson & Moore, 2005; Culotta & McCallum, 2005;
Roth & Small, 2006). The setting explored in this pa-
per differs from structured prediction in that here each
example has a single-variable label, but the examples
are linked in an arbitrary network structure, whereas

in structured prediction, the individual instances are
not directly connected, but structure is present in the
complex label of each example.

Clustering of the data as a means of avoiding sam-
pling bias has been explored before (Nguyen & Smeul-
ders, 2004; Dasgupta & Hsu, 2008). alfnet builds on
these ideas but bases clustering on the network struc-
ture of the data, rather than on the local features of
the examples. Moreover, alfnet treats the labels in
a cluster as only one member of a committee, which
additionally includes CO and CC. The idea of using dis-
agreement to identify interesting training instances is
inspired by a long tradition of active learning algo-
rithms that use the disagreement between alternative
hypotheses, e.g., (Seung et al., 1992). However, pre-
vious disagreement-based approaches did not address
collective classification.

Graph-based active learning has been addressed before
(Zhu et al., 2003; Macskassy, 2009), however, they em-
ployed the empirical risk minimization technique (Roy
& McCallum, 2001), which is known to be a very ex-
pensive procedure, and thus (Zhu et al., 2003; Mac-
skassy, 2009) optimize it specifically for Gaussian Ran-
dom Fields. In this paper, we present a general active
learning technique that is largely independent of the
underlying collective model. Finally, (Rattigan et al.,
2007; Bilgic & Getoor, 2009) consider the problem of
label acquisition for collective classification; however,
they assume that the collective model is given and
trained, and they perform label acquisition to improve
the performance of the model only at inference time.
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6. Conclusion

Active learning, semi-supervised learning and collec-
tive classification are all important concepts within
machine learning. In this work, we have shown how
all of them can be leveraged in the setting where
we have network data. We developed an algorithm,
alfnet, which leverages network structure in a va-
riety of ways to select samples for labeling in an in-
formed manner. We show how to adapt classic active
learning ideas such as disagreement and clustering to
the setting in which we have network structure as well
as attribute information. In addition, we show how
to significantly boost the baseline performance of our
active learner by combining dimensionality reduction
with semi-supervised learning. We have performed an
extensive experimental evaluation, and even over our
strong baseline, we are able to show that principled
use of structure using alfnet provides significant im-
provements over our baseline.
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