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Abstract
Wireless sensor networks play a major role in smart grids and
smart buildings. They are not just used for sensing, but they
are also used as actuating. In terms of sensing they are used
to measure temperature, humidity, light, to detect motion, etc.
Sensors are often operated on a battery and hence we often
face a trade-off between obtaining frequent sensor readings
versus maximizing their battery life. There have been sev-
eral approaches to maximizing their battery life from hard-
ware level to software level such as reducing components en-
ergy consumption, limiting node operation capabilities, us-
ing power-aware routing protocols, and adding solar energy
support. In this paper, we introduce a novel approach: we
model the sensor readings in a wireless network using a dy-
namic Gaussian Bayesian network (dGBn) whose structure
is automatically learned from data. dGBn allows us to inte-
grate information across sensors and infer missing readings
more accurately. Through active inference for dGBns, we are
able to actively choose which sensors should be pulled for a
reading and which ones can stay in a power-saving mode at
each time step, maximizing prediction accuracy while staying
within the budgetary constraints on battery consumption.

Introduction
Smart buildings are increasingly more prevalent and they are
used in various service areas such as factories, energy facili-
ties, airports, harbors, schools, medical centers, government
buildings, military bases, etc. Properties of smart buildings
and their objectives show a wide range of variety: security,
surveillance, adapting to weather conditions and quality of
service.

Sensing is a major task in smart buildings. Arguably the
most common sensing mechanism consists of wireless sen-
sor networks (WSN). WSNs’ key components are sensor
nodes. They are mechanically independent and they commu-
nicate through RF. They sense one or multiple specific phys-
ical events, process their readings, and forward to a server.

As nodes in a WSN are mechanically independent, they
rely on their individual source of energy, most generally a
battery. Lifespan of each sensor node is determined by how
fast it consumes energy. Many studies have been carried out
to increase lifespan of nodes in WSN. In addition to extend-
ing battery life through physiochemical enhancements, some
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strategies have been proposed for decreasing energy expen-
diture (Akyildiz et al. 2002).

A sensor node performs three essential tasks: sensing in
which it converts a physical quantity to a reading, process-
ing in which it treats readings and store them, and finally
communicating in which it sends or receives data. Energy
consumption of sensing and processing is negligible beside
communicating. Instead of gathering every reading from
each node, readings from a subset can be fetched and re-
mainders can be kept silent. The more frequent a sensor
keeps silent, the longer it survives.

The intuition behind keeping some sensors silent is to uti-
lize the correlations between sensors to predict sensor read-
ings that are not communicated to conserve energy. Collect-
ing readings from a sensor or a group of sensors might give
enough data to estimate readings of another. Thereby, we
can save energy by not fetching true readings. Correlations
existing between sensors should be considered not only in
space but in time as well. A sensor’s reading in the past
might provide enough insight to estimate its value for some
period with help of concurrent readings from other sensors
and their past readings as well.

In this paper, we propose a dynamic Gaussian Bayesian
network (dGBn) model for WSNs and utilize the correlation
between sensors to minimize prediction error subject to how
many messages each sensor can send in a given time frame.
Our contribution consists of two phases. First we model a
WSN as a dGBn that represents correlations between sen-
sors in space and time. Second, on top of our dGBn model,
we select sensors to fetch readings on each time stamp with
an intelligent strategy, which we call active inference. Active
inference dynamically selects random variables on dGBn,
which are sensors in this context, for observation. This ob-
servation is used as evidence to maximize accuracy. As a
result, active inference can help us to minimize battery us-
age.

In the rest of the paper, we provide background on wire-
less sensor networks and dynamic Bayesian network mod-
els. Then we describe our dynamic Gaussian Bayesian net-
work model and we formulate the active inference problem
followed by a discussion of experimental methodology. We
finally present results, discuss related work and conclude.



Background and Approach
Problem Statement
Lifespans of sensors in a typical wireless sensor network
(WSN) depend on their battery consumption and commu-
nication is the largest consumer of battery. To increase lifes-
pan, an obvious solution is to reduce the frequency of mes-
sages that a sensor sends to other sensors and/or to a central
server. The downside of reducing the frequency of messages
is that it leads to missing information at various time stamps.
One possible remedy is to use a model of sensor readings
and i) when the sensor reading is available, use the observed
reading, and ii) when the sensor reading is missing due to
reduced communication frequency, predict missing values
using the underlying model.

In this paper, we tackle the following problem: given a
sensor network, a predictive model for the sensor network,
and a budget of how many messages can be sent per time
stamp, determine the ideal sensors that should communicate
their readings to a central location so that the overall error
over the network at each time stamp is minimized. More for-
mally, let Y s

t be the sensor reading for time t and sensor s (if
it is communicated to the central server, then it is observed;
if not, it is predicted), Yt be the sensor readings, both ob-
served and predicted, of all sensors at time t (i.e, Yt is the
union of Y s

t for all s), Xs
t be the always-observed features

of the sensor s at time t, which includes sensor specific in-
formation such as ID and location, Xt (i.e, Xt is the union
of Xs

t for all s), the set of observed features of all sensors
at time t, B the budget, t the current time, O the the set of
observed readings up to time t (i.e., the communicated Y s

i
values for 0 ≤ i < t), θ the underlying model, and Err the
error function over Y , the objective is:

argmin
S⊂Yt

Err(Yt|S,O,Xt, θ) s.t. |S| = B (1)

That is, find the subset of sensors at time t that should
communicate their readings to the central location so that
the error over all sensor readings, observed and predicted,
is minimized for time t. Note that in this case, the error is
computed over both observed and predicted sensors. The er-
ror for observed sensors can be assumed to be zero (or in the
case of noisy sensor readings, the error can reflect the noise
in readings). Alternatively, one can compute the error over
only the sensors that did not communicate their readings and
hence need to be predicted:

argmin
S⊂Yt

Err(Yt \ S|S,O,Xt, θ) s.t. |S| = B (2)

We will discuss potential approaches to choosing S in ac-
tive inference section below. There are a number of potential
choices for θ. For example, one can train a temporal model
per sensor such as a Gaussian process model per sensor. An-
other possibility is to use graphical models. We discuss these
next.

Predictive Models for WSNs
Gaussian Processes One of the simplest and yet most ap-
propriate strategy for modeling sensor readings over time

is Gaussian Processes (Rasmussen 2004). For WSN, a pos-
sible approach is to train one Gaussian Process per sensor
using its past history of readings over time. The advantage
is that training of a Gaussian process per sensor and using
it for prediction are both very fast. The disadvantages are,
however, i) the correlations between sensors are not taken
into account, and ii) once the model is trained and fixed, the
observed readings at one time stamp at prediction time does
not affect the predictions at other time stamps.

Dynamic Gaussian Bayesian Network We use dynamic
Gaussian Bayesian network modeling to handle the temporal
behavior of the system and to exploit spatio-temporal cor-
relations between sensors. Each sensor is represented by a
Gaussian random variable Y s

t with conditional Gaussian dis-
tributionN (β0+β

T ·Pa(Y s
t ), σi) wherePa(Y s

t ) is Y s
t ’s

parents. To explore independencies between sensors, thus
finding a DBN structure capturing correlations the most, we
resort K2 structure learning proposed by Cooper and Her-
skovits (1992).

To keep structure simplistic for temporal dependencies,
we assumed that each random variable at time slice t, Y s

t
will be independent from all other sensor values of the pre-
vious time slice t − 1 given itself in the previous time slice
t−1 (Y s

t ⊥ Yt−1 \{Y s
t−1}|Y s

t−1). Therefore we added Y s
t−1

to the parent list of Y s
t

Since exact inference methods are intractable (Koller and
Friedman 2009) on DBNs, approximate inference methods
are generally resorted for prediction. We used Metropolis-
Hastings (Hastings 1970) (MH) sampling for inference, an
MCMC method which has found practice in many studies
(Gilks, Richardson, and Spiegelhalter 1996). For each ran-
dom variable, MH samples a value from a proposal distri-
bution. Then using this newly sampled value and previously
sampled value, it computes an acceptance probability. If the
acceptance probability exceeds a random threshold sampled
uniformly from [0, 1] interval, then the new value is accepted
as the new state of the random variable, otherwise the previ-
ous value is repeated in the sample.

Equation 3 shows how acceptance probability is com-
puted and evaluated. Ys

t is random variable Y s
t ’s last ac-

cepted value, Y′st is newly sampled value,us is Y i
t ’s Markov

blanket and r is random threshold for α the acceptance prob-
ability. Note that t represents here sampling step.

α(Y′st ,Y
s
t,u

s) = min

{
1,
p(Y′st ,u

s)× q(Y′st |Ys
t,u

s)

p(Ys
t,u

s)× q(Ys
t|Y′st ,us)

}
r ∼ U([0, 1])

Y′st+1 =

{
Y′st , if α ≥ 1

Ys
t, otherwise

(3)

Active Inference
Active inference (Bilgic and Getoor 2009), as a method in
the context of statistical prediction such as classification or
regression, is a technique of selective information gathering
with the objective of maximizing prediction accuracy. Un-
like active learning (Settles 2012) which collects label in-



formation during phase of training a statistical model, active
inference collects in the phase of prediction.

Active inference on Bayesian networks is selecting ran-
dom variables to observe during inference for better pre-
diction on the rest. Active inference formulation is perfect
match for battery optimization in WSNs, because active in-
ference determines which nodes should be observed (i.e.,
which sensors should communicate their readings) to maxi-
mize the prediction accuracy on the remaining ones, subject
to budgetary constraints.

Arguably, the simplest way is randomly selecting obser-
vation set. Another method is to define a fixed frequency for
the sensors and hence they communicate their readings at
fixed intervals, like once every hour. We call this approach,
the sliding window selection approach. In this study we pro-
pose impact-based selection method, in which variables are
selected for observation based on their impact on predict-
ing others. In following subsections, we describe these three
active inference methods.

Random Selection At each prediction time t, random se-
lection chooses B random sensors for observation. Then,
the observed readings for these sensors, and all the past ob-
served readings are used during inference to predict the sen-
sor readings for the unobserved ones and error is computed
using Equations 1 and 2.

Sliding Window Selection This method, as a baseline al-
ternative to random selection, selects sensors not randomly
but with respect to a predefined order. In details, the list
of sensors is shuffled initially and for once, then it is split
into equal width bins, b1, b2, . . . bm. Then at each prediction
time, a bin is selected in the original order, for observation.
When we predict the time slice ti, we observe the bin bi.
After mth time slice, we restart the sequence with b1. To
make picture clear, a very simple example can be given. In
the case of 50% of sensors are selected as evidence. Some
25 sensors are selected for the first time slice, and the other
25 are observed in the following. On the third time slice, the
first 25 are observed again, and so on. An advantage of this
selection method is collecting information from each sensor
in equal frequency, whereas random selection can choose a
sensor multiple times in consecutive slices.

Impact-Based Selection For the impact-based selection
approach, we first define the impact of each random variable
on others when it is observed. Note that when a sensor’s
reading is observed, its immediate impact is on its unob-
served neighbors in the network, i.e., its unobserved parents
and unobserved children in the Bayesian network. In Equa-
tion 4 we define an impact function which incorporates β
coefficients of Y s

t and β coefficients of its children. ω1 is an
indicator function which is 1 when corresponding parent is
unobserved, 0 otherwise. ω1 is the vector of indicator func-
tions of Pa(Y s

t ). ω2 is the set of unobserved children of
Y s
t . The impact of observing Y s

t on its immediate neighbors
is defined as:

Imp(xi) = |βT
i | · ω1 +

∑
j∈ω2

|β(i)
j | (4)

argmax
S

∑
Y s
t ∈S⊂Yt

Imp(Y s
t ) s.t.

∣∣S∣∣ = B (5)

Given this impact formulation, we would like to find a
subset of random variables of which sum of impacts is max-
imum, as shown in Equation 5. In literature, this problem is
also described as finding the maximum cut given parts of size
in a graph. This problem is discussed by Ageev and Sviri-
denko (1999). They also show that it is APX-Hard, i.e. it
does not admit an error guarantee with a polynomial-time
approximation algorithm. Therefore, we propose a greedy
algorithm.

Algorithm 1 Greedy Impact Based Selection
1: procedure GREEDY–IBS(Yt,B)
2: for i = 1, 2, . . . B do
3: maxI = 0
4: maxY = NIL
5: for Y s

t ∈ Yt \ S do
6: if Imp(Y s

t ) > maxI then
7: maxI = Imp(Y s

t )
8: maxY = Y s

t
9: end if

10: end for
11: S = S ∪ {maxY }
12: for each Y s

t ∈ Pa(maxY ) do
13: ω2(Y

s
t ) = ω2(Y

s
t ) \ {maxY }

14: end for
15: for each Y s

t ∈ Child(maxY ) do
16: ω1(Y

s
t )[maxY ] = 0

17: end for
18: end for
19: end procedure

Algorithm 1 describes our greedy impact based selection
method. Yt is the set of all random variables, B is the num-
ber of random variables we can select for observation and
S is the observation/evidence set. We loop over all random
variables which are not yet in the evidence set, we find the
one with the highest impact, we add it to evidence list and
remove it from parent list of its children and child list of
its parents. The reason is obvious, a random variable has no
impact on an observed variable, therefore once a variable
is observed, it has to be removed from neighborhood of its
neighbors and impact of all its neighbors should be recom-
puted. We repeat this selection B times.

Experimental Design and Evaluation
We first describe the data on which we test our dGBn model
and active inference. Next we illustrate our baselines to as-
sess our dGBn model and our active inference method.

Data
In our study we used Intel Research Lab sensor data (Desh-
pande et al. 2004). It consists of temperature, humidity, light,
and voltage readings collected from 60 sensors. These sen-
sors were placed in an office environment and employed for
sensing the environment in different frequencies.



In this article, we focused on temperature readings for
days 2, 3, 4, and 5 as these days show highest temperature
variation. We split this period into equal bins of 30 minutes.
We averaged readings of each sensor at each bin. In the end,
we obtained a data set composed of one temperature value
for each sensor at each time bin. We selected days 2, 3, 4 as
training set, and we used first 6 hours of the 5th day as test
set.

Evaluation Metrics
To evaluate our dGBn model, our active inference method,
and the baselines, we utilize Mean Absolute Error (MAE), as
our predictions are in a continuous domain. MAE measures
distance of each reading to real value and computes mean
of distances of a set of readings. Note that in the context of
this study, a reading can be an actual observation, as well
as a prediction. Based on our objective, we define the set of
readings on which we compute the mean.

Mean Absolute Error on all readings In the first method,
we refer to the objective function given in Equation 1. In
this objective, we include all readings from the prediction
time to compute error. Hence we average absolute error over
all readings, including observed ones, in order to explore
overall prediction performance of the predictive model (i.e.
Gaussian processes or dGBn). Equation 6 shows how we
compute average error of prediction over all sensors, given
Err as the distance of a reading to its actual value:

MEA(t) =
1

|Yt|
∑

Y s
t ∈Yt

|Err(Y s
t )| (6)

Mean Absolute Error on predicted readings In the sec-
ond method, we refer to Equation 2 which minimizes error
on only predicted readings. Equation 7 shows how we com-
pute average error.

MEA(t) =
1

|Yt \ S|
∑

Y s
t ∈Yt\S

|Err(Y s
t )| (7)

For stochastic methods, which are random selection and
sliding window selection, we ran 5 trials and averaged MAE
at each time slice over 5 trials. Because a time slice has
no specific effect on error reduction, we average MAE over
time slices and obtain an overall error for each budget B.

In order to see the effect of budget on error reduction, we
tried various budget levels: 0%, 10%, 20%, 30%, 40%, and
50%. To evaluate our dGBn model and our greedy impact-
based selection method, we tried Gaussian processes with
random selection, which we shortly call GP-RND. Then we
tried our dGBn model with 3 different active inference meth-
ods: random selection (dGBn-RND), sliding window se-
lection (dGBn-SW), greedy impact-based selection (dGBn-
IBS).

Experimental Results and Discussion
We first present results for Gaussian processes followed by
the results for dynamic Gaussian Bayesian network model.
Then, we compare Gaussian processes with dynamic Gaus-
sian Bayesian networks. We present these results in tables.

In each table, columns are reserved for different budgets.
The first row represents MAEs over all readings, whereas the
second row shows MAEs over predicted readings only. For
all cases, we present results corresponding to MAE over all
readings and MAE over only predicted readings. We show
these results in bar plots.

Mean Absolute Error of GP-RND

Budget

0% 10% 20% 30% 40% 50%

All readings 0.56 0.50 0.45 0.39 0.34 0.28

Predicted readings 0.56 0.56 0.56 0.56 0.56 0.56

Table 1: Mean absolute error of random selection on Gaus-
sian process with budgets from 0% to 50%.

Table 1 shows prediction error of Gaussian Process using
random sampling as active inference (GP-RND). In the first
row, we see a strictly monotonic reduction in error as budget
increases. This result is not surprising: as the observed sen-
sor percentage increases, the error goes down because the
error on the observed ones are assumed to be zero. It is im-
portant to note however that as the observed sensor rate goes
up, so does the battery consumption. On the other hand, in
the second row, we notice that the error rate is invariant on
budget for MAE with predicted readings only. Since Gaus-
sian process cannot incorporate evidence and cannot make
use of correlations between sensors, more evidence will not
help predicting a reading.

Mean Absolute Error of dGBn-RND

Budget

0% 10% 20% 30% 40% 50%

All readings 4.19 0.63 0.31 0.24 0.18 0.15

Predicted readings 4.19 0.70 0.39 0.34 0.31 0.30

Table 2: Mean absolute error of random selection on dGBn
with budgets from 0% to 50%.

In Table 2, we present performance result of dGBn with
random selection. In both rows we see a monotonic decrease
in error rates as more evidence is provided. The decrease
in error in the first row is not surprising again, as was ex-
plained for the GP-RND result (Table 1). A decrease in error
computed on predicted readings demonstrates that our dGBn
model is able to exploit relationships between sensor nodes
and hence observed/collected readings help reduce the pre-
diction error for the unobserved/not-collected readings.

In Table 3 we show the effect of sliding window selection
with dGBn (dGBn-SW) on error reduction. We see similar
trends as dGBn-RND results. More evidence yields less er-
ror in regards to both error computation methods.

Table 4 shows our greedy impact-based selection
method’s contribution to our dGBn in error reduction. We
see a monotonic decrease in both measures, except 30% on
MAE averaged on unobserved sensors only, which is same
as 20%.



Mean Absolute Error of dGBn-SW

Budget

0% 10% 20% 30% 40% 50%

All readings 4.19 0.58 0.33 0.23 0.18 0.14

Predicted readings 4.19 0.64 0.41 0.32 0.29 0.28

Table 3: Mean absolute error of sliding window selection on
dGBn with budgets from 0% to 50%.

Mean Absolute Error of dGBn-IBS

Budget

0% 10% 20% 30% 40% 50%

All readings 4.19 0.31 0.27 0.23 0.18 0.12

Predicted readings 4.19 0.35 0.33 0.33 0.30 0.23

Table 4: Mean absolute error of impact-based selection on
dGBn with budgets from 0% to 50%.

Next, we compare various modeling and active inference
results side by side using bar plots. Figure 1 shows error
rates of GP-RND, dGBn-RND, dGBn-SW, and dGBn-IBS,
referring to all readings including observed ones. Likewise,
Figure 2 shows error rates with respect to predicted readings
only. In these plots, Y axis represents the error rate in tem-
perature. X axis is reserved for evidence rates. We did not
include error rates on budget 0% since they are drastically
larger on this budget, and this difference scales the plot in a
way that comparison of error rates on other budgets become
infeasible.

In Figure 1, surprisingly, dGBn-RND and dGBn-SW per-
formed worse than GP-RND on budget of 10%. We can in-
terpret that this budget was good enough for neither RND
nor SW on dGBn to reduce error as much as GP-RND can
do with the same budget. Note that GP uses local attributes
as well. However, on this rate we can see that dGBn-IBS out-
performs all other model and method combinations includ-
ing GP-RND. On other evidence rates, all active inference
methods on dGBn outperform GP-RND. We can conclude
that on overall prediction performance our dGBn model out-
performs GP when at least 20% of sensors are observed. On
30% and 40%, dGBn-IBS outperforms dGBn-RND and it
competes with dGBn-SW. When budget is 50%, dGBn-IBS
is the best model and method combination.

Figure 2 presents error rates of each model and method
combination with respect to predicted readings only. Results
in this figure show some similarities to those on Figure 1. A
major difference in Figure 2 is that GP-RND is constant with
respect to budget. This is simply because GP-RND cannot
exploit evidence to reduce error on predictions. On 30% and
40%, dGBn-IBS is at least as good as dGBn-SW, and bet-
ter than dGBn-RND and GP-RND. On remaining rates, it is
better than all other model and method combinations.

We omitted results for GP with SW approach because,
given enough trials, the results are expected to be similar to
GP-RND results. The reason is that GP per sensor approach

does not exploit relationships between sensors.
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Figure 1: Mean absolute error of all model and method com-
binations computed over all readings on budgets from 0% to
50%
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Related Work
Many studies addressed predictive models for energy saving
on wireless sensor networks (WSN). Elnahrawy and Nath
(2004) propose prediction by context awareness. They dis-
cretize readings and use naı̈ve Bayes classifier to predict
these discrete values. They use the geographical topology
of the sensor network as the basis of node neighborhood in
their model.

In a similar way, Wang and Deshpande (2008) cluster
sensors and discretize readings. Then they apply compres-
sion techniques on descretized data to detect correlations be-
tween sensors within each cluster. Using compression-based
correlations, they fit joint distributions for variables in each
cluster, and they incorporate the joint distributions in a prob-
abilistic model, which they refer as decomposable model, to
predict some sensors instead of reading them.

Deshpande et al. (2004) also apply a model based pre-
dictive approach to saving energy. They train a multivariate



Gaussian distribution which models a wireless sensor net-
work and let user run queries on their model with arbitrary
confidence intervals. Depending on target query and con-
fidence interval, their model decides which sensors to ob-
serve. Their approach involves the entire set of sensors as
one multivariate distribution and they incorporate only ob-
servations of the prediction time. In our case, we make use
of current observations and all past observations.

In addition to modeling sensor networks for energy opti-
mization, another approach is scheduling sensors for read-
ing. Slijepcevic and Potkonjak (2001) addressed this ap-
proach to seek an efficient way of clustering sensors so that
each cluster alone covers the entire area of surveillance, and
that clusters alternate for sensing one at a time. They turn
this problem into an area cover problem and maximize the
count of clusters so that they can keep as many sensors silent
as possible at each turn.

Gaussian Bayesian networks are so far used in various
contexts. Castillo et al. (1997) designed a model for damage
assessment in concrete structures of buildings using Gaus-
sian Bayesian network modeling. They used their model in
numerical propagation of uncertainty in incremental form
and they also proved that conditional means and variances
of nodes in their network are rational functions given evi-
dence. Again Castillo, Menéndez, and Sánchez-Cambronero
(2008) used Gaussian Bayesian networks to model traffic
flow.

Active inference was previously applied by Bilgic and
Getoor (2009; 2010) for general graphs. They used active
inference to query the labels of a small number of care-
fully chosen nodes in a network to condition the underlying
model on these collected labels to increase prediction perfor-
mance on the remaining nodes. Active inference was used by
Chen et al. (2011) to analyze short chunks of video on which
the underlying model can condition and make better predic-
tions on remaining segments. Bilgic and Getoor (2010) used
active inference along with an iterative classification algo-
rithm. Chen et al. (2011) used it on hidden Markov models.
Active inference was also discussed in the context of hid-
den Markov models by Krause and Guestrin (2009). Finally
Krause and Guestrin, (2005b; 2005a; 2009), and Bilgic and
Getoor (2011) formulated active inference as optimal value
of information on graphical models.

Limitations and Future Directions
In this work, the dGBn model of the sensor network utilized
only the correlations between the sensor readings, i.e., the
Y s
t variables, ignoring the local attributes, Xs

t . Therefore,
when no observation was made, the full network defaulted
to the average prediction. In the future, we plan on incor-
porating local attribute values into dBGn so that prediction
accuracy can be maximized, especially when the observed
node ratio is small.

We utilized several active inference approaches in this
paper, including sliding-window and impact-based ap-
proaches. There are other approaches that can be utilized as
baselines. One such baseline is the variance approach where
sensor readings with the highest prediction variance is cho-
sen for observation. The motivation is that the higher the

prediction variance is, the higher the chance of incorrect pre-
diction is.

Finally, nodes in a sensor network often sense more than
one measure. For example, in the Intel Research Lab data
(Deshpande et al. 2004) that we used, the nodes sense
temperature, humidity, light, and voltage. We focused on
only the temperature readings in this paper. Training one
Bayesian network model over multiple types of sensing,
such as temperature and humidity, will enable the model to
exploit correlations between different types of readings. For
example, it is quite conceivable that humidity and tempera-
ture readings are correlated and hence it makes perfect sense
to exploit these relationships.

Conclusions
We tackled the problem of simultaneously minimizing the
battery consumption in a wireless sensor network by limit-
ing how frequently the sensors can communicate their read-
ings to a central server and minimizing prediction error over
the not-communicated ones. We presented two predictive
models, a Gaussian process model, and a dynamic Gaus-
sian Bayesian network model, and several active inference
approaches that selectively gather sensing information from
nodes of a sensor network. We showed that by utilizing the
dynamic Gaussian Bayesian network model that exploits the
spatio-temporal correlations between sensor readings and
performing active inference formulated through the edge
weights on the Bayesian network model, we were able to
reduce the prediction error drastically.
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