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Abstract—Active learning methods aim to choose the most
informative instances to effectively learn a good classifier.
Uncertainty sampling, arguably the most frequently utilized
active learning strategy, selects instances which are uncertain
according to the model. In this paper, we propose a framework
that distinguishes between two types of uncertainties: a model
is uncertain about an instance due to strong and conflicting
evidence (most-surely uncertain) vs. a model is uncertain about
an instance because it does not have conclusive evidence (least-
surely uncertain). We show that making a distinction between
these uncertainties makes a huge difference to the performance
of active learning. We provide a mathematical formulation
to distinguish between these uncertainties for naive Bayes,
logistic regression and support vector machines and empirically
evaluate our methods on several real-world datasets.
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I. INTRODUCTION

Active learning methods aim to learn the correct classifi-
cation function by selecting the most informative instances
according to the model and seeking labels for those instances
from an expert [1]. The goal of active learning is to learn the
classification function using the most cost-effective instances
to reduce the time, effort and cost of the expert.

Many active learning methods have been developed in the
past two decades. Uncertainty sampling is arguably the most
frequently utilized method. This method is popular due to its
simplicity and success. In this paper, we introduce a novel
way to determine the cause of uncertainty of a model and
use it to improve the label efficiency of active learning.

An underlying model’s uncertainty can arise due to at
least two reasons. (i) The model can be uncertain due to
presence of strong, but conflicting evidence for each class.
For example, in document classification, while some words
in the document strongly pull the class label in one direction,
other words strongly pull the class label in the opposite
direction. In medical diagnosis, while some lab test results
strongly suggest one disease, few others strongly suggest
another disease. We call this type of uncertainty as most-
surely uncertain. (ii) The model can be uncertain due to
presence of weak evidence for each class. For example, in
document classification, none of the words provide strong
evidence for either class. In medical diagnosis, none of the
lab test results provide a conclusive evidence for any disease.
We call this type of uncertainty as least-surely uncertain.

Figure 1 depicts this phenomenon for binary classification.
For most-surely uncertain, the attribute values pull strongly
in opposing directions while for least-surely uncertain, none
of the attribute values provide strong evidence for either
class. In both cases, the underlying model is uncertain about
the instances but the cause of uncertainty is different. It is
worth noting that these uncertainties exist only with respect
to the underlying model, which is trained on a relatively
small training set in an active learning setting.
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Figure 1. Most-surely vs. least-surely uncertain. A model’s uncertainty for
an instance is represented by the probability line. The most-surely uncertain
represents a model’s uncertainty on an instance due to strong evidence for
each class, whereas least-surely uncertain represents a model’s uncertainty
on an instance due to weak evidence for each class. The values of evidence
for each class range from 1 to infinity.

We introduce a formulation to distinguish between these
two types of uncertainties. In particular, we provide for-
mulations for naive Bayes, logistic regression and support
vector machines. Through empirical evaluations on several
real-world datasets, we show that distinguishing between
these two types of uncertainties (most-surely uncertain and
least-surely uncertain) makes a huge difference to the
performance of active learning. We show that most-surely
uncertain provides the most benefit for learning, drastically
outperforming the regular uncertainty sampling.

The rest of the paper is organized as follows. First,
we provide background on active learning and uncertainty
sampling in Section II. Then, in Section III, we provide
our problem formulation. In Section IV, we provide details
of our experiments, datasets and evaluation strategies. In
Section V, we provide the results of our experiments. Finally,
we discuss related work in Section VI, present future work
in Section VII and conclude in Section VIII.



II. BACKGROUND

In this section, we first briefly describe active learning and
then explain uncertainty sampling in detail. We assume that
we are given a dataset D of instances consisting of attribute
vector and label pairs 〈x, y〉. Each x ∈ X is described
as a vector of f attributes x , 〈a1, a2, · · · , af 〉, each of
which can be real-valued or discrete, whereas each y ∈ Y is
discrete-valued Y , {y1, y2, · · · , yl}. A small subset L ⊂ D
is the labeled set where the labels are known: L = {〈x, y〉}.
The rest U = D\L consists of the unlabeled instances whose
labels are unknown: U = {〈x, ?〉}.

Active learning algorithm iteratively selects an instance
〈x, ?〉 ∈ U and obtains the resulting target value y by
querying an expert for its label and incorporating the new
example 〈x, y〉 into its training set L. This process continues
until a stopping criterion is met, usually until a given budget,
B, is exhausted. The goal of active learning is to learn the
correct classification function F : X → Y using minimal
budget. Algorithm 1 describes this process more formally.

Algorithm 1 Budget-Based Active Learning
1: Input: U - unlabeled data, L - labeled data, θ - under-

lying classification model, B - budget
2: repeat
3: for all 〈x, ?〉 ∈ U do
4: compute utility(x, θ)
5: end for
6: pick highest utility x∗ and query its label
7: L ← L ∪ {〈x∗, y∗〉}
8: U ← U \ {〈x∗, y∗〉}
9: Train θ on L

10: until Budget B is exhausted; e.g., |L| = B

A number of successful active learning methods have been
developed in the past two decades. Examples include uncer-
tainty sampling [2], query-by-committee [3], bias reduction
[4], variance reduction [5], expected error reduction [6, 7],
and many more. We refer the reader to [1] for a survey of
active learning methods.

Arguably, the most-frequently utilized active learning
strategy is uncertainty sampling1, which is also the topic of
this paper. Next, we describe uncertainty sampling in detail.

A. Uncertainty Sampling

Uncertainty sampling selects those instances for which
the current model is most uncertain how to label [2]. These
instances correspond to the ones that lie on the decision
boundary of the current model.

Uncertainty of an underlying model can be measured
in several ways. We present the three most common ap-
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proaches. One approach is to use conditional entropy:

x∗ = argmax
x∈U

−
∑
y∈Y

Pθ(y|x) log (Pθ(y|x)) (1)

where θ is the current model trained on L and Pθ(y|x) is
the probability that instance x has label y. Another approach
is to use maximum conditional:

x∗ = argmin
x∈U

(
1−max

y∈Y
Pθ(y|x)

)
(2)

The last approach we discuss uses margin of confidence:

x∗ = argmin
x∈U

(
Pθ(y

(m)|x)− Pθ(y(n)|x)
)

(3)

where, y(m) is the most likely label and y(n) is the next
likely label for x. More formally, y(m) = argmax

y∈Y
Pθ(y|x)

and y(n) = argmax
y∈Y\{y(m)}

Pθ(y|x).

When the task is binary classification, that is when
Y = {+1,−1}, each of these objective functions rank the
instances x ∈ U in the same order, and the highest utility is
achieved when Pθ(+1|x) = Pθ(−1|x) = 0.5.

In this paper, we distinguish between two types of uncer-
tainties that we define next. On one extreme, the model is
uncertain about an instance because the instance’s attribute
values provide equally strong evidence for each class. We
call this kind of uncertainty most-surely uncertain. On the
other extreme, the model is uncertain about an instance
because the instance’s attribute values provide very weak
evidence for each class. We refer to this type of uncertainty
as least-surely uncertain.

III. PROBLEM FORMULATION

In this section, we first formally define evidence in the
context of binary classification, Y = {+1,−1}, using a
naive Bayes classifier. Then, we show how the definition
can be extended to logistic regression and support vector
machines. Finally, we discuss how it can be generalized to
multi-class classification domains.

A. Evidence using naive Bayes

A naive Bayes classifier uses the Bayes rule to compute
P (y|x) and assumes that the attributes ai are conditionally
independent given y:

P (y|x) = P (y|a1, a2, · · · , af ) =
P (y)

∏
ai

P (ai|y)

P (a1, a2, · · · , af )
(4)

An instance can be classified based on the ratio of P (+1|x)
P (−1|x) :

y =

 +1 if
(
P (+1)
P (−1)

∏
ai

P (ai|+1)
P (ai|−1)

)
> 1

−1 otherwise
(5)



From Equation 5, it follows that the attribute value ai
of instance x provides evidence for the positive class if
P (ai|+1)
P (ai|−1) > 1, and it provides evidence for the negative class
otherwise.

Let Px and Nx be two sets, such that Px contains the
attribute values that provide evidence for the positive class
and Nx contains the attribute values that provide evidence
for the negative class:

Px , {ai |
P (ai|+ 1)

P (ai| − 1)
> 1}

Nx , {aj |
P (aj | − 1)

P (aj |+ 1)
> 1}

Note that these sets are defined around a particular instance
x. That is, whether an attribute provides evidence for the
the positive or negative class depends on its value, and thus
it is dependent on the current x. For example, for medical
diagnosis, whether a lab test provides evidence for one class
vs. another depends on the outcome of the lab test, and hence
is dependent on the patient under consideration.

The total evidence that instance x provides for the positive
class is:

E+1(x) =
∏
ai∈Px

P (ai|+ 1)

P (ai| − 1)
(6)

and, the total evidence that instance x provides for the
negative class is:

E−1(x) =
∏

aj∈Nx

P (aj | − 1)

P (aj |+ 1)
(7)

Note that the ratio of prior probabilities P (+1)/P (−1)
also provides evidence for one or the other class. In the
above definitions, we focused on the evidence that the
attributes values of specific instance x provide. With these
definitions, we can rewrite the classification rule for naive
Bayes as:

y =

{
+1 if

(
P (+1)
P (−1)

E+1(x)
E−1(x)

)
> 1

−1 otherwise
(8)

B. Evidence using Logistic Regression

Logistic regression is a discriminative classifier. The
parametric model assumed by logistic regression for binary
classification is:

P (y = −1|x) = 1

1 + e
(w0+

f∑
i=1

wiai)

(9)

P (y = +1|x) = e
(w0+

f∑
i=1

wiai)

1 + e
(w0+

f∑
i=1

wiai)

(10)

An instance can then be classified using:

y = sgn

(
w0 +

f∑
i=1

wiai

)
(11)

From Equation 11, it follows that the attribute value ai of
instance x provides evidence for the positive class if wiai >
0, and it provides evidence for the negative class otherwise.

Let Px and Nx be two sets, such that Px contains the
attribute values that provide evidence for the positive class
and Nx contains the attribute values that provide evidence
for the negative class:

Px , {ai | wiai > 0}

Nx , {aj | wjaj < 0}

Then, the total evidence that instance x provides for the
positive class is:

E+1(x) =
∑
ai∈Px

wiai (12)

and, the total evidence that instance x provides for the
negative class is:

E−1(x) = −
∑
aj∈Nx

wjaj (13)

With these definitions, we can rewrite the classification rule
(Eqn. 11) for logistic regression as:

y = sgn
(
w0 + E+1(x)− E−1(x)

)
(14)

C. Evidence using Support Vector Machines

Support Vector Machines (SVM) maximize the margin of
classification:

w = argmax
w

(
y × (w0 +

∑
ai

wiai)

)
(15)

and the classification rule is identical to that of logistic
regression (Eqn. 11):

y = sgn

(
w0 +

f∑
i=1

wiai

)
(16)

Following the reasoning of evidence using logistic re-
gression, the equations for E+1(x), E−1(x), and the clas-
sification rule for SVM are identical to those for logistic
regression.

Next, we briefly outline how the evidence can be gener-
alized to multi-class classification.



D. Evidence for Multi-class Classification

For binary classification, all three types of uncertainties
(Equations 1, 2, and 3) prefer instances closest to the
decision boundary as specified by Equations 5, 11, and 16.
However, their preferences differ in multi-class classifica-
tion. The entropy approach (Equation 1), for example, con-
siders overall uncertainty and takes into account all classes,
whereas the maximum conditional approach (Equation 2)
considers how confident the model is about the most likely
class. To keep the discussion simple and brief, and as a
proof-of-concept, we show how the evidence for multi-class
can be extended for naive Bayes (Equation 4) when used
with the margin uncertainty approach (Equation 3).

The margin uncertainty prefers instances for which the
difference between the probabilities of most-likely class
y(m) and next-likely class y(n) is minimum. LetMx and Nx
be two sets, such that Mx contains the attribute values that
provide evidence for the most-likely class and Nx contains
the attribute values that provide evidence for the next likely
class:

Mx , {ai |
P (ai|y(m))

P (ai|y(n))
> 1}

Nx , {aj |
P (aj |y(n))
P (aj |y(m))

> 1}

Then, the total evidence that instance x provides for the
most-likely class (in comparison to the next-likely class) is:

Em(x) =
∏

ai∈Mx

P (ai|y(m))

P (ai|y(n))
(17)

and, the total evidence that instance x provides for the next-
likely class (in comparison to the most-likely class) is:

En(x) =
∏

aj∈Nx

P (aj |y(n))
P (aj |y(m))

(18)

E. Most-Surely vs. Least-Surely Uncertain

In this paper, we investigate whether the evidence frame-
work provides useful criteria to distinguish between uncer-
tain instances and whether such an approach leads to more
or less effective active learning. We have several objectives
to optimize at the same time:
• The model needs to be uncertain on instance x.
• For most-surely uncertain, both E+1(x) and E−1(x)

need to be large.
• For least-surely uncertain, both E+1(x) and E−1(x)

need to be small.
This is a multi-criteria optimization problem where we have
to make trade-offs across objectives.

First, we discuss how we define the overall evidence
(E(x)) as a function of E+1(x) and E−1(x). There are
a number of aggregation choices, which include multipli-
cation, summation, taking the minimum and taking the
maximum.

In this paper, we focus on the multiplication aggregation:

E(x) = E+1(x)× E−1(x) (19)

This aggregation makes sense because the overall evidence
E(x) is largest when both E+1(x) and E−1(x) are large and
close to each other. Similarly, E(x) is smallest when both
E+1(x) and E−1(x) are small. Hence, we mainly focus on
the multiplication aggregation in our experiments.

Picking an unlabeled instance x where E(x) is largest (or
smallest) will obviously not guarantee that the underlying
model is uncertain on x. To guarantee uncertainty, we take
a simple approach. We first rank the instances x ∈ U
in decreasing order of their uncertainty score (measured
through one of the Equations 1, 2, or 3) and work with
the top k instances, where k is a hyper-parameter. Let S be
the set of top k uncertain instances. Most-surely uncertain
picks the instance with maximum overall evidence:

x∗ = argmax
x∈S

E(x) (20)

and, least-surely uncertain picks the instance with minimum
overall evidence:

x∗ = argmin
x∈S

E(x) (21)

where, E(x) is defined according to Equation 19.

IV. EXPERIMENTAL METHODOLOGY

We designed our experiments to test whether distinguish-
ing between most-surely and least-surely uncertain instances
makes a difference to the performance of active learning. We
experimented with the following approaches:

1) Random Sampling (RND): This is a common baseline
for active learning, in which instances are picked at
random from the set of candidate unlabeled instances.

2) Uncertainty Sampling - 1st (UNC-1): This method
picks the instance for which the underlying model is
most uncertain, as defined in Section II-A.

3) Most-Surely Uncertain (UNC-MS): Among the top 10
uncertain instances, this method picks the instance for
which the model is most-surely uncertain (as defined
in Equation 20) and uses Equation 19 to calculate the
overall evidence.

4) Least-Surely Uncertain (UNC-LS): Among the top 10
uncertain instances, this method picks the instance for
which the model is least-surely uncertain (as defined
in Equation 21) and uses Equation 19 to calculate the
overall evidence.

5) Uncertainty Sampling - 10th (UNC-10): Among the
top 10 uncertain instances, this method picks the 10th

most uncertain instance. The motivation behind this
method is that UNC-1 is expected to be better than
UNC-10, because the top instance is more uncertain
than the 10th instance. UNC-MS and UNC-LS methods
pick UNC-t, where t is between 1 and 10 and changes



Table I
DESCRIPTION OF THE DATASETS: THE DOMAIN, NUMBER OF INSTANCES

IN THE DATASET AND THE PERCENTAGE OF MINORITY CLASS. THE
DATASETS ARE SORTED IN INCREASING ORDER OF CLASS IMBALANCE.

Dataset Domain Size Min. %
Spambase Email. classif. 4,601 39.4%
Ibn Sina Handwr. recog. 20,722 37.8%
Calif. Housing Social 20,640 29%
Nova Text processing 19466 28.4%

Sick Medical 3,772 6.1%
Zebra Embryology 61,488 4.6%
LetterO Letter recog. 20,000 4%
Hiva Chemo-inform. 42,678 3.5%

at every iteration. If UNC-MS and/or UNC-LS are
better than UNC-1, then this result would suggest
that different types of uncertainties matter. Similarly,
if UNC-MS and/or UNC-LS are worse than UNC-10,
then this result would also suggest that different types
of uncertainties matter.

We experimented with eight publicly available datasets.
Active learning methods can behave very differently under
varying class imbalance. Thus, we chose a mix of datasets
with various class imbalances. We chose four datasets with
minority class % > 10%, which we refer to as medium-
imbalanced, and four datasets with minority class % ≤ 10%,
which we refer to as extreme-imbalanced datasets. We pro-
vide the description of these datasets in Table I. We evaluated
these five methods using three performance measures: AUC,
accuracy, and F1. We computed AUC for all the datasets. We
computed accuracy for only medium-imbalanced datasets
(the top four in Table I) and F1 for only extreme-imbalanced
datasets (bottom four in Table I).

A. Parameters and Repeatability

We performed five-fold cross validation and repeated the
experiments five times per fold. In each experiment, the
train split was treated as the unlabeled set, U , and randomly
chosen 10 instances (five from each class) were used as
the initially labeled set, L. At each iteration, each method
picks only one instance to be labeled. We set our budget,
B, in Algorithm 1 to 500 instances. UNC-MS and UNC-LS
operate within top k uncertain instances, as described in
Section III-E. We set k = 10. We evaluated each method
using a naive Bayes classifier with Laplace smoothing. To
speed-up the experiments, at each iteration we computed
utility over a set of randomly sub-sampled 250 instances,
which is a common practice in active learning. We used
entropy as a measure of uncertainty (Equation 1), but using
the other two measures of uncertainty would lead to identical
results because we experimented with binary classification
tasks.

B. Scalability

We discuss the comparison of running times of UNC-1,
UNC-MS, and UNC-LS methods for naive Bayes for one
iteration of active learning. Given dataset D =

{
x(i), y(i)

}m
1

where, x(i) ∈ Rf , and y(i) ∈ {+1,−1} is discrete valued.
UNC-1 calculates uncertainty score (measured through one
of the Equations 1, 2, or 3). The time complexity of
calculating the conditional probabilities Pθ(y|x) in each of
these equations is proportional to the number of attributes,
which is O(f). Since we compute uncertainty on m instances,
the time complexity of UNC-1 is O(m ∗ f).
UNC-MS and UNC-LS methods also calculate uncertainty

on m instances, which takes time O(m ∗ f). Additionally,
UNC-MS and UNC-LS methods calculate evidence for each
attribute of an instance, which again takes time O(f). This
additional step is done only for the top k (where, k=10 for
our experiments) uncertain instances. Hence, the running
time of UNC-MS and UNC-LS methods is O((m+ k) ∗ f).
Given that k is a small constant (k << m), the running times
of UNC-MS and UNC-LS are comparable to the running time
of UNC-1.

V. RESULTS AND DISCUSSION

In this section, we present the results for five meth-
ods (UNC-MS, UNC-LS, UNC-1, UNC-10 and RND). We
present the AUC results in Figure 2 and Figure 3, accuracy
results in Figure 4, and F1 results in Figure 5.

As Figures 2, 3, 4 and 5 show, distinguishing between
most-surely and least-surely uncertain instances has a huge
impact on active learning for all datasets and measures.
This result is quite interesting because UNC-MS, UNC-LS,
UNC-1 and UNC-10 all rank the instances according to
uncertainty and operate within the same top 10 instances;
thus their flexibility in choosing a different instance for
labeling is rather limited and yet they result in drastically
different performances.

Next, we provide the results of statistical significance tests
comparing these five methods. Tables II and III provide
summary of pairwise one-tailed t-tests results under signifi-
cance level of 0.05, where the pairs are the learning curves
of the compared methods. ’W/L’ means that the method
significantly wins/loses to the baseline, and ’T’ means that
there is no significant difference between the method and
the baseline. Note that for each method, the total counts of
’W’, ’T’ and ’L’ should add up to 8 for AUC, 4 for accuracy
and 4 for F1.

Table II presents summary of ’Win/Tie/Loss’ counts of
UNC-MS and UNC-LS compared to UNC-1 baseline. With
respect to UNC-1, there is a clear difference between
UNC-MS and UNC-LS. Our results show that on AUC,
UNC-MS wins over UNC-1 on all 8 datasets, whereas
UNC-LS loses to UNC-1 on 7 out of 8 datasets. On accuracy,
UNC-MS wins over UNC-1 on 3 out of 4 datasets and ties
on one dataset (Nova), whereas UNC-LS loses to UNC-1 on
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Figure 2. AUC results for four medium-imbalanced datasets (Spambase, Ibn Sina, Calif. Housing and Nova). UNC-MS outperforms UNC-1 on all four
datasets. UNC-LS loses to UNC-1 on all four datasets.

all 4 datasets. On F1, UNC-MS wins over UNC-1 on 3 out
of 4 datasets and loses on one dataset (LetterO), whereas
UNC-LS loses to UNC-1 on all 4 datasets.
UNC-MS clearly stands out as a winner strategy, signif-

icantly outperforming UNC-1 on almost all datasets and
measures. On the other hand, UNC-LS is clearly the worst
performing uncertainty strategy, losing to UNC-1 on almost
all datasets and measures. This clear distinction between
UNC-MS and UNC-LS holds for both medium-imbalanced
and extreme-imbalanced datasets.

Next, we compared UNC-MS and UNC-LS to UNC-10.
Table III presents ’Win/Tie/Loss’ results using UNC-10
as the baseline. We observe that UNC-MS significantly
outperforms UNC-10 on almost all datasets, which is not
surprising because even a random strategy from top 10
uncertain instances has the potential to outperform UNC-10.
However, it is surprising to observe that UNC-LS is perform-
ing statistically significantly worse than UNC-10 for almost
all datasets and measures.

Table II
UNC-MS AND UNC-LS VERSUS UNC-1

UNC-1 baseline AUC ACCU F1
Method W/T/L W/T/L W/T/L
UNC-MS 8/0/0 3/1/0 3/0/1
UNC-LS 1/0/7 0/0/4 0/0/4

Table III
UNC-MS AND UNC-LS VERSUS UNC-10

UNC-10 baseline AUC ACCU F1
Method W/T/L W/T/L W/T/L
UNC-MS 7/0/1 4/0/0 3/0/1
UNC-LS 1/0/7 0/0/4 0/0/4

These results clearly suggest that the two types of un-
certainties have an effect on active learning. Most-surely
uncertain can help to improve active learning, whereas least-
surely uncertain hurts active learning.
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Figure 3. AUC results for four relatively skewed datasets (Sick, Zebra, LetterO and Hiva). UNC-MS outperforms UNC-1 on all four datasets. UNC-LS
loses to UNC-1 on all four datasets except Hiva (d).

A. Effect of Evidence Aggregation
In this section, we investigate whether other aggregation

functions can be used to compute the overall evidence,
and how sensitive our experiments are to the choice of
aggregation. For most-surely uncertain, we also investigate
choosing instances where the smaller of the E+1(x) and
E−1(x) is large, and hence experiment with choosing the
instance where the minimum is largest:

x∗ = argmax
x∈S

E(x) = argmax
x∈S

min(E+1(x), E−1(x))

(22)
We refer to this strategy as UNC-MS-MIN. For least-surely
uncertain, we also investigate choosing instances where the
larger of the E+1(x) and E−1(x) is small, and hence
experiment with choosing the instance where the maximum
is smallest:

x∗ = argmin
x∈S

E(x) = argmin
x∈S

max(E+1(x), E−1(x))

(23)

We refer to this strategy as UNC-LS-MAX.
Tables IV and V provide summary of pairwise one-tailed

t-tests results for these methods compared to UNC-1 and
UNC-10 baselines. The results in Tables IV and V have
same setting as Tables II and III (in Section V).

We observe that UNC-MS-MIN significantly outperforms
both UNC-1 and UNC-10 on almost all datasets and all
measures, whereas UNC-LS-MAX significantly loses to both
UNC-1 and UNC-10 on almost all datasets and all measures.
These results are quite similar to the results for UNC-MS
and UNC-LS methods. Thus, our claims that most-surely un-
certain significantly improves regular uncertainty sampling
and that least-surely uncertain significantly hurts regular
uncertainty sampling, hold regardless of the aggregation
function used.

VI. RELATED WORK

Many active learning methods have been developed in
the past [1]. Uncertainty sampling [2] is arguably one of the
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Figure 4. Accuracy results. UNC-MS outperforms UNC-1 significantly on three datasets and ties on Nova (d). UNC-LS loses to UNC-1 on all datasets.

Table IV
UNC-MS-MIN AND UNC-LS-MAX VERSUS UNC-1

UNC-1 baseline AUC ACCU F1
Method W/T/L W/T/L W/T/L
UNC-MS-MIN 7/0/1 4/0/0 3/0/1
UNC-LS-MAX 1/0/7 0/0/4 0/0/4

Table V
UNC-MS-MIN AND UNC-LS-MAX VERSUS UNC-10

UNC-10 baseline AUC ACCU F1
Method W/T/L W/T/L W/T/L
UNC-MS-MIN 7/0/1 4/0/0 3/0/1
UNC-LS-MAX 1/0/7 1/0/3 0/0/4

most common active learning methods and is frequently used
as a baseline for comparing other active learning methods.

Uncertainty sampling has been shown to work success-
fully in a variety of domains. Example domains include
text classification [2, 8, 9, 10], natural language processing

[11], email spam filtering [12, 13], image retrieval [14],
medical image classification [15], robotics [16], information
retrieval [17], dual supervision [18] and sequence labeling
[19] among many others.

Even though uncertainty sampling is frequently utilized,
it is known to be susceptible to noise and outliers [7]. A
number of approaches have been proposed to make it more
robust. For example, [19] weights the uncertainty of an
instance by its density to avoid outliers, where density of the
instance is defined as average similarity to other instances.
[20] used a K-Nearest-Neighbor-based density measure to
determine whether an unlabeled instance is an outlier. [9]
proposed a hybrid approach to combine representative sam-
pling and uncertainty sampling. Other approaches used the
cluster structure of the domain to choose more representative
examples [21, 8].

Our work is orthogonal to these approaches. We are
not providing yet another alternative approach to improve
uncertainty sampling, but instead we are highlighting that
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Figure 5. F1 results. UNC-MS outperforms UNC-1 on three datasets ((a), (b) and (d)), and loses on one (c). UNC-LS loses to UNC-1 on all datasets.

distinguishing between the two types of uncertainties (most-
sure vs. least-sure) has a big impact on active learning.
One can imagine combining uncertainty sampling, density
weighting and most-surely uncertain methods because they
are not mutually exclusive.

VII. LIMITATIONS AND FUTURE WORK

We combined the evidence framework and uncertainty
sampling using a simple approach in Section III-E: we
first ranked the instances according to uncertainty and then
applied the evidence framework to the top k instances. We
observed that this simple approach worked very well. In the
future, we would like to investigate multi-criteria optimiza-
tion approaches [22] for combining uncertainty sampling
and the evidence framework. A potential approach is to
utilize the Knapsack framework. In Knapsack problem, we
are given a set of instances in which each instance has a
value and a cost, and one needs to pick instances so as to
maximize the total value while not exceeding a given budget.
For our problem, we can define the value of an instance

as its overall evidence and its cost as model’s certainty on
the instance. The objective is to pick k instances so as
to maximize the total evidence, while remaining within a
budget of total certainty.

It is well-known in the active learning community that
uncertainty sampling is susceptible to noise and outliers [19].
It is not clear at this point whether combining uncertainty
sampling with the evidence framework makes it more or
less susceptible to noise and outliers. We experimented with
real-world datasets, which are expected to be noisy, and
showed that most-surely uncertain significantly outperforms
uncertainty sampling while least-surely uncertain performed
significantly worse on many measures and datasets. The
effect of noise and outliers on UNC-MS and UNC-LS needs
to be verified through carefully designed experiments with
synthetic datasets.

A related question is whether the most-surely uncertain
method makes the experts’ job easier or more difficult. That
is, are the instances chosen by UNC-MS harder or easier to



label than the ones chosen by UNC-LS? Similarly, does it
take longer or shorter for experts to label UNC-MS instances
versus UNC-LS instances? We note that we define most-
sure/least-sure uncertainty with respect to the underlying
model, which is trained on a relatively small training set, and
not with respect to the expert. Thus, it is hard to estimate
the real affect of the evidence framework on annotation time
and difficulty. These issues need to be investigated through
user and case studies.

VIII. CONCLUSION

We introduced a framework that distinguishes between
two types of uncertainties: a model is uncertain about
an instance due to strong and conflicting evidence (most-
surely uncertain) vs. a model is uncertain because it does
not have conclusive evidence (least-surely uncertain). The
regular uncertainty sampling does not distinguish between
these types of uncertainties, but our empirical evaluations
showed that making this distinction had a big impact on the
performance of uncertainty sampling. While least-surely un-
certain instances provided the least value to an active learner,
actively labeling most-surely uncertain instances performed
significantly better than regular uncertainty sampling.
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