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Abstract

We present a simple and yet effective ap-
proach that can incorporate rationales elicited
from annotators into the training of any off-
the-shelf classifier. We show that our sim-
ple approach is effective for multinomial naı̈ve
Bayes, logistic regression, and support vector
machines. We additionally present an active
learning method tailored specifically for the
learning with rationales framework.

1 Introduction

Annotating documents for supervised learning is a
tedious, laborious, and time consuming task for hu-
mans. Given huge amounts of unlabeled documents,
it is impractical for annotators to go over each doc-
ument and provide a label. To reduce the anno-
tation time and effort, various approaches such as
semi-supervised learning (Chapelle et al., 2006) that
utilizes both labeled and unlabeled data, and active
learning (Settles, 2012) that carefully chooses in-
stances for annotation have been developed. To fur-
ther minimize the human effort, recent work looked
at eliciting domain knowledge, such as rationales
and feature annotations, from the annotators instead
of just the labels of documents.

One of the bottlenecks in eliciting domain knowl-
edge from annotators is that the traditional super-
vised learning approaches cannot readily handle the
elicited rich feedback. To address this issue, many
methods have been developed that are classifier-
specific. Examples include knowledge-based neural
networks (e.g., (Towell and Shavlik, 1994), (Girosi

and Chan, 1995), (Towell et al., 1990)), knowledge-
based support vector machines (Fung et al., 2002),
pooling multinomial naı̈ve Bayes (Melville and
Sindhwani, 2009), incorporating constraints into the
training of naı̈ve Bayes (Stumpf et al., 2007), and
converting rationales and feature annotations into
constraints for support vector machines (e.g., (Small
et al., 2011) and (Zaidan et al., 2007)). Being
classifier-specific limits their applicability when one
wants to test a different classifier for his/her domain,
necessitating an approach that can be utilized by sev-
eral off-the-shelf classifiers.

In this paper we present a simple and yet effective
approach that can incorporate the elicited rationales
in the form of feature annotations into the training
of any off-the-shelf classifier. We empirically show
that it is effective at incorporating rationales into the
learning of naı̈ve Bayes, logistic regression, and sup-
port vector machines using four text categorization
datasets. We further discuss a novel active learn-
ing strategy specifically geared towards the learning
with rationales framework and empirically show that
it improves over traditional active learning.

The rest of the paper is organized as follows. In
Section 2, we provide a brief background on elicit-
ing rationales in the context of active learning. In
Section 3, we describe our approach for incorpo-
rating rationales into the training of classifiers and
compare learning without rationales and learning
with rationales. In Section 4, we present an active
learning method using the learning with rationales
framework and present relevant results. Finally, we
discuss limitations and future work in Section 5, re-
lated work in Section 6, and conclude in Section 7.



2 Background

In this section, we provide a brief background on
data annotation with rationales in the context of ac-
tive learning and introduce the notation to be used
throughout the paper.

Let D be a set of document-label pairs 〈x, y〉,
where the label (value of y) is known only for a small
subset L ⊂ D of the documents: L = {〈x, y〉}
and the rest U = D \ L consists of the unlabeled
documents: U = {〈x, ?〉}. We assume that each
document xi is represented as a vector of features
(most commonly as a bag-of-words model with a
dictionary of predefined set of phrases, which can
be unigrams, bigrams, etc.): xi , {f i1, f i2, · · · , f in}.
Each feature f ij represents the binary presence (or
absence), frequency, or tf-idf representation of the
word/phrase j in document xi. Each label y ∈ Y is
discrete-valued variable Y , {y1, y2, · · · , yl}.

Typical greedy active learning algorithms itera-
tively select a document 〈x, ?〉 ∈ U , query a labeler
for its label y, and incorporate the new document
〈x, y〉 into its training set L. This process continues
until a stopping criterion is met, usually until a given
budget, B, is exhausted.

In the learning with rationales framework, in ad-
dition to querying for label yi of a document xi, the
active learner asks the labeler to provide a rationale,
R(xi) for the chosen label. The rationale in its most
general form consists of a subset of the terms that
are present in xi: R(xi) = {f ik : j ∈ xi}. Note
that there might be cases where the labeler cannot
pinpoint any phrase as a rationale, in which case
R(xi) is allowed to be φ. Algorithm 1 formally de-
scribes the active learning process that elicits ratio-
nales from the labeler.

The goal of eliciting rationales is to improve the
learning efficiency by incorporating domain knowl-
edge. However, it is not trivial to integrate domain
knowledge into state-of-the-art classifiers, such as
logistic regression and support vector machines.

Next, we describe our approach for incorporating
rationales into the learning process.

3 Learning with Rationales

In this section we first provide the formulation of our
approach to incorporate rationales into learning and
then present the results to compare learning with-

Algorithm 1 Active Learning with Rationales
1: Input: U - unlabeled documents, L - labeled

documents, θ - underlying classification model,
B - budget

2: repeat
3: x∗ = argmax

x∈U
utility(x|θ)

4: request label and rationale for this label
5: L ← L ∪ {〈x∗, y∗, R(x∗)〉}
6: U ← U \ {〈x∗〉}
7: Train θ on L
8: until Budget B is exhausted; e.g., |L| = B

out rationales (Lw/oR) and learning with rationales
(LwR) on four datasets. We evaluate our approach
using multinomial naı̈ve Bayes, logistic regression,
and support vector machines classifiers.

3.1 Training a Classifier Using Labels and
Rationales

Like most previous work, we assume that the ra-
tionales, i.e. the phrases, returned by the labeler
already exist in the dictionary of the vectorizer.
Hence, rationales correspond to features in our vec-
tor representation. It is possible that the labeler re-
turns a phrase that is currently not in the dictionary;
for example, the labeler might return a phrase that
consists of three words whereas the representation
has single words and bi-grams only. In that case,
the representation can be enriched by creating and
adding a new feature that represents the phrase re-
turned by the labeler.

Our simple approach works as follows: we
modify the features of the annotated document
〈x∗, y∗, R(x∗)〉 to emphasize the rationale(s) and
de-emphasize the remaining phrases in that docu-
ment. We simply multiply the features correspond-
ing to phrase(s) that are returned as rationale(s) by
weight r and we multiply the remaining features in
the document by weight o, where r > o, and r and
o are hyper-parameters. The modified document be-
comes:

xi′ = 〈r × f ij , ∀f ij ∈ R(xi); o× f ij ,∀f ij /∈ R(xi), 〉
(1)

Note that the rationales are tied to their docu-
ments for which they were provided as rationales.
One phrase might be a rationale for the label of one



document and yet it might not be the rationale for
the label of another document. Hence, the feature
weightings are done at the document level, rather
than globally. To illustrate this concept, we provide
an example dataset below with three documents. In
these documents, the words that are returned as ra-
tionales are underlined.

Document 1: This is a great movie.
Document 2: The plot was great, but the perfor-

mance of the actors was terrible. Avoid it.
Document 3: I’ve seen this at an outdoor cinema;

great atmosphere. The movie was terrific.
As these examples illustrate, the word “great” ap-

pears in all three documents, but it is marked as a
rationale only for Document 1. Hence, we do not
weight the rationales globally; rather, we modify
only the labeled document using its particular ratio-
nale. Table 1 illustrates both the Lw/oR and LwR
representations for these documents.

Table 1: The Lw/oR binary representation (top) and its
LwR transformation (bottom) for Documents 1, 2, and 3.
Stop words are removed. LwR multiplies the rationales
with r and other features with o.
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Lw/oR Representation (binary)

D1 1 1
D2 1 1 1 1 1 1
D3 1 1 1 1 1 1

LwR Transformation of the binary Lw/oR repr.

D1 r o
D2 o o o o r r
D3 o o o o o r

This approach is simple, intuitive, and classifier-
agnostic. As we will show later, it is quite effec-
tive empirically as well. To gain a theoretical un-
derstanding of this approach, consider the work on
regularization: the aim is to build a sparse/simple
model that can capture the most important features
of the training data and thus have large weights for
important features and small/zero weights for irrel-
evant features. For example, consider the gradient

for wj of feature fj for logistic regression with l2
regularization (assuming y is binary with 0/1):

∇wj = C×
∑
xl∈L

f lj×(yl−P (y = 1|xl))−wj (2)

where C is the complexity parameter that balances
between fit to the data and the model complexity.

With our rationales framework, the gradient for
wj will be:

∇wj =

C ×

 ∑
xl∈L:f l

j∈R(xl)

r × f lj × (yl − P (yl = 1|xl))

+
∑

xl∈L:f l
j /∈R(xl)

o× f lj × (yl − P (yl = 1|xl))


− wj (3)

In the above equation, a feature fj contributes more
to the gradient of its weight wj when a document
in which it is marked as a rationale is misclassified.
When fj appears in another document xk but is not
a rationale, it’s contribution to the gradient is muted
by o. And hence, when r > o, this framework im-
plicitly provides more granular (per instance-feature
combination) regularization by placing a higher im-
portance on the contribution of the rationales versus
non-rationales in each document.1

Note that in our framework the rationales are tied
to their own documents; that is, we do not weight
rationales and non-rationales globally. In addition
to providing more granular regularization, this ap-
proach has the benefit of allowing different ratio-
nales to contribute differently to the objective func-
tion of the trained classifier. For example, consider
the case where the number of documents in which
one word fj (e.g., “excellent”) is marked as a ratio-
nale is much more than the number of documents
where another word fk (e.g., “good”) is marked as

1The justification for our approach is similar for support vec-
tor machines. The idea is also similar for multinomial naı̈ve
Bayes with Dirichlet priors αj . For a fixed Dirichlet prior with
〈α1, α2, · · · , αn〉 setting, when o < 1 for a feature fj , its
counts are smoothed more.



a rationale. Then, the first sum in equation 3 will
range over more documents for the gradient of wj

compared to the gradient of wk, giving more impor-
tance to wj than to wk. In the traditional feature
annotation work, this can be achieved only if the
labeler can rank the features; even then, it is often
very difficult, if not impossible, for the labelers to
determine how much more important one feature is
compared to another.

3.2 Experiments Comparing Lw/oR to LwR

In this section we first describe the settings, datasets,
and classifiers used for our experiments and how
we simulated a human labeler to provide rationales.
Then, we present the results comparing the learn-
ing curves achieved with learning without rationales
(Lw/oR) and learning with rationales (LwR).

3.2.1 Methodology

For this study, we used four text classification
datasets. The IMDB dataset consists of 25K movie
reviews (Maas et al., 2011). The SRAA2 dataset
consists of 48K documents that discuss either auto
or aviation. Nova is a text classification dataset used
in active learning challenge (Guyon, 2011) and con-
tains 12K documents. WvsH is a 20 Newsgroups3

dataset in which we use the Windows vs. hardware
categories, and it contains 1176 documents.

To make sure our approach works across repre-
sentations, we experimented with both binary and tf-
idf representations for these text datasets. We eval-
uated our strategy using multinomial naı̈ve Bayes,
logistic regression, and support vector machines, as
these are strong classifiers for text classification. We
used the scikit-learn (Pedregosa et al., 2011) imple-
mentation of these classifiers with their default pa-
rameter settings for our experiments.

To compare various strategies, we used learn-
ing curves. The initially labeled dataset was boot-
strapped using 10 documents by picking 5 random
documents from each class. A budget (B) of 200
documents was used in our experiments, because
most of the learning curves flatten out after about
200 documents. We evaluated all the strategies us-
ing AUC (Area Under an ROC Curve) measure. The

2http://people.cs.umass.edu/ mccallum/data.html
3http://qwone.com/ jason/20Newsgroups/

code to repeat our experiments is available at Github
http://www.cs.iit.edu/˜ml/code/.

While incorporating the rationales into learning,
we set the weights for rationales and the remaining
features of a document as 1 and 0.01 respectively
(i.e. r = 1 and o = 0.01). That is, we did not
overemphasize the features corresponding to ratio-
nales but rather de-emphasized the remaining fea-
tures in the document. These weights worked rea-
sonably well for all four datasets, across all three
classifiers, and for both binary and tf-idf data repre-
sentations.

Obviously, these are not necessarily the best
weight settings one can achieve; the optimal settings
for r and o depend on many factors, such as the ex-
tent of the knowledge of the labeler (i.e., how many
words a labeler can recognize), how noisy the la-
beler is, and how much labeled data we have in our
training set. Ideally, one should have r >> o when
the labeled data is small and r should be closer to o
when the labeled data is large; a more practical ap-
proach would be to tune for these parameters (e.g.,
cross-validation) at each step of the learning curve.
However, in our experiments, we fixed r and o and
we found that most settings where r > o worked
quite well.

3.2.2 Simulating the Human Expert
Like most literature on feature labeling, we con-

structed an artificial labeler to simulate a human la-
beler. Every time a document is annotated, we asked
the artificial labeler to mark a word as a rationale for
that document’s label. We allowed the labeler to re-
turn any one (and not necessarily the top one) of the
positive words as a rationale for a positive document
and any one of the negative words as a rationale for
a negative document. If the labeler did not recog-
nize any of the words as positive (negative) in a pos-
itive (negative) document, we let the labeler return
nothing as the rationale. To make this as practical as
possible in a real-world setting, we constructed the
artificial labeler to recognize only the most apparent
words in the documents. For generating rationales,
we chose only the positive (negative) features that
had the highest χ2 (chi-squared) statistic in at least
5% of the positive (negative) documents. This re-
sulted in an overly-conservative labeler that recog-
nized only a tiny subset of the words. For example,



the artificial labeler knew about only 49 words (23
for one class and 26 for the other class) for IMDB,
67 words (32 for one class and 35 for the other class)
for SRAA, 95 words (42 for one class and 53 for the
other class) for WvsH, and 111 words (31 for one
class and 80 for the other class) for the Nova dataset.

To determine whether the rationales selected by
this artificial labeler are meaningful, we printed out
the actual words used as rationales, and we ourselves
verified that these words are human-recognizable
words that could be naturally provided as rationales
for classification. For example, the positive terms
for the IMDB dataset included “great”, “excellent”,
and “wonderful” and the negative terms included
“worst”, “bad”, and “waste.”

3.2.3 Results
Next, we compare Lw/oR to LwR. Figure 1

presents the learning curves for random sampling
on four text classification datasets with binary and
tf-idf representations and using multinomial naı̈ve
Bayes, logistic regression, and support vector ma-
chines. Figure 1 shows that even though the arti-
ficial labeler knew only about a tiny subset of the
vocabulary, and returned any one word, rather than
the top word or all the words, as rationale, LwR still
drastically outperformed Lw/oR across all datasets,
classifiers, and representations. This shows that our
method for incorporating rationales into the learning
process is empirically effective.

We used the default complexity parameters for
logistic regression and support vector machines
and used Laplace smoothing for multinomial naı̈ve
Bayes. In our rationale framework, most features
were non-rationales, and hence in Equation 3, most
features appeared in the second summation term,
with o = 0.01. We tested whether the improve-
ments that LwR provide over Lw/oR are simply
due to implicit higher regularization for most of the
features with o = 0.01, and hence experimented
with equation 2 (which is Lw/oR) using C = 0.01.
We observed that setting C = 0.01 and indis-
criminately regularizing all the terms did not im-
prove Lw/oR, further providing experimental evi-
dence that the improvements provided by LwR are
not due to just higher regularization, but they are due
to a more fine-grained regularization, as explained in
Section 3.1.

Even though LwR provides huge benefits, pro-
viding both a label and a rationale is expected to
take more time of the labeler than simply provid-
ing a label. However, the improvements of LwR
over Lw/oR is so huge that it might be worth spend-
ing the extra time in providing rationales. For ex-
ample, in order to achieve a target AUC of 0.95
for SRAA dataset (using tf-idf representation with
MNB classifier), Lw/oR required labeling 656 doc-
uments, whereas LwR required annotating a mere
29 documents, which is 22.6 times reduction in the
number of documents. As another example, in or-
der to achieve a target AUC of 0.8 for WvsH dataset
(using binary representation with SVM classifier),
Lw/oR required labeling 113 documents, whereas
LwR achieved this target with only 13 documents.

(Zaidan et al., 2007) conducted user studies and
showed that providing 5 to 11 rationales and a class
label per document takes roughly twice the time of
providing only the label for the document. (Ragha-
van et al., 2006) also conducted user studies and
showed that labeling instances takes five times more
time than labeling features. We worked with simu-
lated user and showed that a document that is anno-
tated with a label and a single rationale can be worth
as many as 22 documents that are annotated with
only a label and thus these results suggest that LwR,
compared to Lw/oR, can lead to significant time sav-
ings for the annotator.

4 Active Learning with Rationales

So far we have seen that LwR provides drastic im-
provements over Lw/oR. Both these strategies se-
lected documents randomly for labeling. Active
learning (Settles, 2012) aims to carefully choose in-
stances for labeling to improve over random sam-
pling. Many successful active learning approaches
have been developed for instance labeling (e.g.
(Lewis and Gale, 1994), (Seung et al., 1992),
(Roy and McCallum, 2001)), feature labeling (e.g.
(Druck et al., 2009)), and rotating between instance
and feature labeling (e.g. (Raghavan and Allan,
2007), (Druck et al., 2009), (Attenberg et al., 2010),
(Melville and Sindhwani, 2009)). In this section, we
introduce an active learning strategy that can utilize
the learning with rationales framework.
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Figure 1: Comparison of Lw/oR with LwR. LwR provides drastic improvements over Lw/oR for all datasets with
binary and tf-idf representations and using all three classifiers.



4.1 Active Learning to Select Documents based
on Rationales

Arguably, one of the most successful active learn-
ing strategies for text categorization is uncertainty
sampling, which was first introduced by (Lewis and
Catlett, 1994) for probabilistic classifiers and later
formalized for support vector machines (Tong and
Koller, 2001). The idea is to label instances for
which the underlying classifier is uncertain, i.e., the
instances that are close to the decision boundary
of the model. It has been successfully applied to
text classification tasks in numerous publications,
including (Zhu and Hovy, 2007), (Sindhwani et al.,
2009), and (Segal et al., 2006).

We adapt uncertainty sampling for the learning
with rationales framework. To put simply, when
the underlying model is uncertain about an unla-
beled document, we look whether the unlabeled doc-
ument contains words/phrases that were returned as
rationales for any of the existing labeled documents.
More formally, letR+ denote the union of all the ra-
tionales returned for the positive documents so far.
Similarly, let R− denote the union of all the ratio-
nales returned for the negative documents so far. An
unlabeled document can be of these three types:

1. Type1: has no words in common with R+ and
R−.

2. Type2: has word(s) in common with either R+

or R− but not both.

3. Type3: has at least one word in common with
R+ and at least one word in common with R−.

One would imagine that labeling each of the
type1, type2, and type3 documents has its own ad-
vantage. Labeling type1 documents has the potential
to elicit new domain knowledge, i.e., terms that were
not provided as a rationale for any of the existing
labeled documents. It also carries the risk of con-
taining little to no useful information for the clas-
sifier (e.g., a neutral review). For type2 documents,
even though the document shares a word that was re-
turned as a rationale for another document, the clas-
sifier is still uncertain about the document either be-
cause that word is not weighted high enough by the
classifier and/or there are other words that pull the
classification decision in the other direction, making

the classifier uncertain. Type3 documents contain
conflicting words/phrases and are potentially harder
cases, however, they also have the potential to re-
solve the conflicts for the classifier.

Building on our previous work (Sharma and Bil-
gic, 2013) we devised an active learning approach,
where given uncertain documents, the active learner
prefers instances of type3 over type1 and type2.
We call this strategy as uncertain-prefer-conflict
(UNC-PC) because type3 documents carry conflict-
ing words (with respect to rationales) whereas type1
and type2 do not. The difference between this ap-
proach and our previous work (Sharma and Bil-
gic, 2013) is that in (Sharma and Bilgic, 2013), we
selected uncertain instances based on model’s per-
ceived conflict whereas in this work, we are se-
lecting documents based on conflict caused by the
domain knowledge provided by the labeler. Next,
we compare the vanilla uncertainty sampling (UNC)
and UNC-PC strategies using LwR to see if using
uncertain documents of type3 could improve active
learning.

4.2 Active Learning with Rationales
Experiments

We used the same four text datasets and evalu-
ated our method UNC-PC using multinomial naı̈ve
Bayes, logistic regression, and support vector ma-
chines. For the active learning strategies, we used
a bootstrap of 10 random documents, and labeled
five documents at each round of active learning.
We used a budget of 200 documents for all meth-
ods. UNC simply picks the top five uncertain doc-
uments, whereas UNC-PC looks at top 20 uncertain
documents and picks five uncertain documents giv-
ing preference to the conflicting cases (type 3) over
the non-conflicting cases (type1 and type2). We re-
peated each experiment 10 times starting with a dif-
ferent bootstrap at each trial and report the average
results.

In Figure 2 we show the learning curves com-
paring UNC-PC with UNC for multinomial naı̈ve
Bayes. (Logistic regression and SVM curves are
omitted due to space.) Since the results for LwR
using tf-idf representation are better than the re-
sults using the binary representation, we compared
UNC-PC to UNC for LwR using only the tf-idf
representation. We see that for multinomial naı̈ve



Bayes, UNC-PC improves over traditional uncer-
tainty, UNC, on two datasets, and hurts performance
on one dataset. Next, we discuss the significance re-
sults for all classifiers.

Table 2 shows the paired t-test results comparing
the learning curves of UNC-PC with the learning
curves of UNC at each step of the active learning
(i.e, if the average of one learning curve is signifi-
cantly better or worse than the average of the learn-
ing curve of the other). If UNC-PC has a higher av-
erage AUC than UNC with a t-test significance level
of 0.05 or better, it is a Win (W), if it has signifi-
cantly lower performance, it is a Loss (L), and if the
difference is not statistically significant, the result is
a Tie (T).

Using multinomial naı̈ve Bayes, UNC-PC wins
over UNC for two of the datasets (IMDB and
WvsH), does not cause any significant changes for
Nova (ties all the time), and loses for SRAA. Using
logistic regression, UNC-PC wins for two datasets
(Nova and SRAA), ties for WvsH and loses for
IMDB. Using support vector machines, UNC-PC
wins for three datasets (Nova, SRAA, and WvsH)
and loses for IMDB. The t-test results show that
UNC-PC often improves learning over UNC.

Table 2: Significant W/T/L counts for UNC-PC versus
UNC. UNC-PC improves over UNC significantly for all
three classifiers and most of the datasets.

UNC baseline MNB LR SVM
UNC-PC 2/1/1 2/1/1 3/0/1

5 Limitations and Future Work

A limitation of our work is that we simulated the la-
beler in our experiments. Even though we simulated
the labeler in a very conservative way (that is, our
simulated labeler knows only a few most apparent
words) and asked the simulated labeler to provide
any one (rather than the top) rationale, a user study
is needed to i) experiment with potentially noisy la-
belers, and ii) measure how much actual time saving
LwR provides over Lw/oR.

Another line of future work is to allow the la-
beler to provide richer feedback. This is especially
useful for resolving conflicts that stem from seem-
ingly conflicting words and phrases. For example,

for the movie review “The plot was great, but the
performance of the actors was terrible. Avoid it.”
the word “great” is at odds with the words “terri-
ble” and “avoid”. If the labeler is allowed to provide
richer feedback, saying that the word “great” refers
to the plot, “terrible” refers to the performance, and
“avoid” refers to the movie, then the learner might
be able to learn to resolve similar conflicts in other
documents. However, this requires a conflict reso-
lution mechanism in which the labeler can provide
rich feedback, and a learner that can utilize such rich
feedback. This is an exciting future research direc-
tion that we would like to pursue.

We showed that our strategy to incorporate ratio-
nales works well for text classification. The pro-
posed framework can potentially be used for non-
text domains where the domain experts can provide
rationales for their decisions, such as medical do-
main where the doctor can provide a rationale for
his/her diagnosis and treatment decisions. Each do-
main is expected to have its own unique research
challenges and working with other domains is an-
other interesting future research direction.

6 Related Work

The closest related work deals with eliciting ratio-
nales from users and incorporating them into the
learning (e.g., (Zaidan et al., 2007), (Donahue and
Grauman, 2011), (Zaidan et al., 2008), and (Parkash
and Parikh, 2012)). However, much of this work
is specific to a particular classifier, such as sup-
port vector machines. The framework we present is
classifier-agnostic and we have shown that it works
across classifiers and feature representations. Addi-
tionally, we provide a novel active learning approach
tailored for the learning with rationales framework.

Another line of related work is the recent work
on active learning with instance and feature annota-
tions (e.g., (Melville and Sindhwani, 2009), (Druck
et al., 2009), (Small et al., 2011), (Stumpf et al.,
2008), (Raghavan and Allan, 2007), and (Attenberg
et al., 2010)). The main difference between the fea-
ture annotation work and the learning with ratio-
nales framework is that the feature annotations are
not tied to particular instances, whereas in the learn-
ing with rationales framework, the documents and
their rationales are coupled together. Even though
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Figure 2: Comparison of LwR using UNC and UNC-PC for all datasets with tf-idf representation and using multino-
mial naı̈ve Bayes classifier.

feature annotation work can be utilized for the learn-
ing with rationales framework by decoupling ratio-
nales from their documents, this is expected to re-
sult in information loss (such as weighting features
globally rather than locally). The precise effect of
decoupling rationales and documents on the classi-
fier performance still needs to be tested empirically.

7 Conclusion

We introduced a novel framework to incorporate ra-
tionales into active learning for text classification.
Our simple strategy to incorporate rationales can uti-
lize any off-the-shelf classifier. The empirical eval-
uations on four text datasets with binary and tf-idf

representations and three classifiers showed that our
proposed method utilizes rationales effectively. Ad-
ditionally, we presented an active learning strategy
that is tailored specifically for the learning with ra-
tionales framework and empirically showed that it
improved active learning.
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