
1

HPCM: A Pre-compiler Aided Middleware for the Mobility of Legacy Code*

Cong Du, Xian-He Sun
 Department of Computer Science

Illinois Institute of Technology
{ducong, sun}@iit.edu

Kasidit Chanchio
Computer Science and Mathematics Division

Oak Ridge National Laboratory
chanchiok@ornl.gov

Abstract

Mobility is a fundamental functionality of the next
generation internet computing. How to support mobility
for legacy codes, however, is still an issue of research.
The key to solve this outstanding issue is the support of
heterogeneous process migration. During the last few
years, we have successfully developed mechanisms to
support heterogeneous process migration of legacy codes
written in C, C++, and Fortran. We present in this paper
the design of the High Performance Computing Mobility
(HPCM) middleware, the development and
implementation of its key components, pre-compiler and
its static libraries. Due to the similarity between process
migration and checkpointing, the pre-compiler not only
makes automatic process migration of legacy codes
feasible, but also supports dynamic heterogeneous
checkpointing. We perform a set of tests and compare
experimental results with Porch, a well-known portable
heterogeneous checkpointing system. The experimental
results show that our methods are feasible, efficient and
very promising.

1. Introduction

Process migration is the act of transferring an active

process from one computer to another. The process retains
its execution sequence, memory state and communication
state during migration. The process is interrupted on the
source machine and then resumes its execution at the
break point with the same memory state and
communication contexts on the destination machine. The
break point in the execution sequence where migration
occurs is called “migration point”. Process migration has
many benefits to distributed computing environment,
including dynamic load balancing, fault tolerance, data
access locality, mobile and pervasive computing. The

* This research was supported in part by national science foundation
under NSF grant EIA-0130673, ANI-0123930, ACI-0130458 and by
Army Research Office under ARO grant DAAD19-01-1-0432.

emergence of grid-computing environment has made
process migration even more important and challenging
[10]. The grid provides mechanisms to share
heterogeneous resources in a wide area network
environment. In a grid environment, the cooperating
systems are loosely coupled and the resources are widely
distributed and highly dynamic. With the help of process
migration, the running process can be relocated to
approach computation, data, and service resources
dynamically. Process migration system helps improve
mobility, performance, efficiency and utilization of shared
resources in a grid environment. Process migration can be
classified into two categories: homogenous and
heterogeneous. The heterogeneity can be at the hardware
layer, system software layer, communication layer, and
runtime environment layer. The grid is a large scale
distributed computing environment that features
heterogeneity, posing great difficulties and challenges to
process migration. For example, the source and
destination of a migration may have different computer
architectures and instruction formats. For execution state
transfer, an application has different binary codes on the
source and destination machines. The destination machine
cannot directly use the address of migration point stored in
the instruction counter of the source machine. Similarly,
for memory state transfer, the variable values at the source
machine are meaningless to the destination because of
different data representations. During a migration, the
execution and memory states have to be transferred in a
machine independent format.

The High Performance Computing Mobility (HPCM)
middleware supports user-level heterogeneous process
migration. Several critical mechanisms have been
proposed in our previous work [3, 5], including the
execution, memory, and communication state transfer
mechanisms. Based on these mechanisms, we build the
HPCM middleware, an automatic process migration
system in a heterogeneous distributed environment. The
pre-compiler is an important component that aims to
transform a code written in C, or other stack based
languages, into a migration capable code. We choose C
because of its high performance and popularity. We also
build up libraries that can be statically linked with the pre-

2

compiled applications and provide necessary
functionalities. In this paper, we introduce the design of
the HPCM middleware and present its implementation and
experimental results. In next section, we give an overview
of related works on process migration and checkpointing
technologies. In section 3, we describe the architecture
and components of the HPCM middleware. In Section 4,
we introduce the structure and workflow of the pre-
compiler system and address several technical issues. The
experimental tests are presented and discussed in section
5. In Section 6, the conclusion and future work are
presented.

2. Related Research

Intensive research has been done in the area of process

migration due to its importance. Some of the early works,
such as MOSIX [1], V [2] and Sprite [7], try to combine
the migration functionality to cluster operating systems.
By migrating a process across workstations, these systems
balance workload and provide single system image. These
systems rely on specific operating systems and provide
services by the kernel extension. The usage of these
technologies is limited to a specific system with a specific
cluster operating system. To provide transparent access,
they use forwarding technology, which keeps user
contexts on the igniting host. The igniting host forwards
system events such as IPC, file accesses and signals. As a
result, the process is not migrated completely. These
systems miss some benefits of process migration,
including fault tolerance, data access locality, and
mobility in grid or pervasive computing. They can only
achieve load balancing to a limited cluster environment.

Several other systems have been implemented at user-
level such as Condor [16], Dynamite [13] and CoCheck
[12], or kernel level such as Linux Zap [17] to support
homogeneous process migration. These systems use run-
time checkpointing to preserve the memory image of a
running process. They assume that the migration is
between homogenous machines, where the execution and
memory states can be transmitted without being translated
or understood. For heterogeneous environments, a pre-
compiler is necessary to transfer the type, structure,
variable and other required information into a machine
independent format. An advantage of these systems is that
they are built on top of the operating system layer and can
be used on commercial workstations. The second
advantage is that through checkpointing mechanisms, they
can provide fault tolerance without other instrumentations.
There are some outstanding limitations for these systems
too. The checkpointed memory images can only be
restored on machines with the same architecture. That is,
the migration can only be performed on homogeneous
platforms.

Most checkpointing systems are designed for
homogeneous computing. By capturing the memory image
from physical memory or virtual memory, the memory
collection and restoration problems can be naturally
solved. Some research efforts have been made on
developing heterogeneous checkpointing systems.
Existing compiler instrumented portable heterogeneous
checkpointing systems include Porch [19], PREACHES
[15] and [14]. Similar to our system, they support
heterogeneity by compiler or pre-compiler. Both
checkpointing and process migration systems provide the
save and restoration of the process states. However,
checkpointing rolls back to a previously checkpoint for
fault recovery; migration continues computing till the next
migration point to migrate. Checkpointing requires
periodic saving of run-time information to the disk,
assuming reliable storage, and may have a domino effect
in a distributed environment [18, 8]. Migration provides
better mobility and efficiency, but requires pre-warning
for fault tolerance.

Few early research efforts [20, 9] in heterogeneous
process migration have been presented in some early
works. They address and discuss several important
problems and build their prototype systems. These
systems are not widely accepted by the scientific and
engineering applications because of their inherent
limitations such as range, performance and the integrity.

3. HPCM System Overview

The HPCM middleware is designed to support mobility
of legacy codes. It consists of several primary
components. They are a pre-compiler, libraries, a
console/scheduler, and a run-time environment. The goal
is to build an automatic heterogeneous process migration
system, which provides a transparent mobility middleware
layer. Users can modify the pre-compiler output through
the pre-compiler interface and coordinate process
operations through the console/scheduler. The libraries
include execution and memory state facilities, and the
communication library. HPCM can be incorporated into a
distributed computing environment such as PVM, MPI,
Condor and Grid. Figure 1 shows the structure of the
HPCM middleware.

The input of HPCM is the source code of an
application. A poll-point is the point where a migration
can occur. The pre-compiler chooses poll-points via poll-
point analysis with the assistance of the user, if the user
chooses to do so. The pre-compiler annotates the source
code accordingly and outputs equivalent migration
capable code, namely the annotated code. The
console/scheduler can distribute the annotated code to the
destination machine at any time. In general, the annotated
code is pre-loaded into a potential destination machine
before a migration. The annotated code is then compiled

3

and linked with libraries to generate the binary code at the
destination machine, which is called pre-initialization.
When the migrating process at the source machine
requests a migration, the console/scheduler chooses a pre-
initialized host from the pool, sends its choice to the
migrating process, and initializes a process called
initialized process at the destination machine. While
receiving the migration command, the migrating process
transfers the execution, memory, and communication state
to the initialized process. By applying our mechanisms,
the process states can be transferred in a pipelined fashion.
That is, the data collection, transmission, and restoration
can be performed concurrently. Concurrency can save
significant time in a networked environment, especially
when there are large amount of state data to be transmitted.
After transmission, the migrating process is terminated
and the initialized process resumes its execution.

3.1. Pre-compiler

We have successfully designed a set of mechanisms to

support the process migration in the heterogeneous
environments [5]. These mechanisms include the
execution, memory and communication state transfer
mechanisms. These novel mechanisms have been tested
on several practical applications, which confirm their
feasibility and effectiveness. To implement these
mechanisms, macros and other facilities need to be
inserted into the source code. For this purpose, we build a
pre-compiler, which transforms the source code to its
equivalent migration capable annotated code.

A migration point is a poll-point where a migration
occurs. Poll-point analysis is used to determine a set of
suitable locations where a migration can be performed
safely and efficiently. The pre-compiler performs poll-
point analysis to automatically choose suitable poll-points
according to the user’s requirements. Astute users can
make their own decisions based on the pre-compiler’s
choice. At each poll-point, the process will examine if a

migration command has been issued and take action
accordingly. Proper choice of poll-points may
significantly affect the feasibility and performance of
process migration. Firstly, there might be some features in
C language that are not safe to migrate at certain locations.
These features may lead to errors after migration.
Secondly, it is not efficient to migrate at some locations. It
may need more memory state data to be transferred or it
may need more communication to be redirected to the
destination machine. Avoiding those locations as poll-
points can save much time during migration. Thirdly, the
migrating process should not be executing for a long time
before it reaches the nearest poll-point. If there are fewer
poll-points in an application, it will take a longer time to
reach the nearest poll-point. On the other hand, if there are
more poll-points, the cost for checking the poll-points and
source code annotation is higher. Poll-point analysis
determines an appropriate set of poll-points. It needs to
estimate the execution time between poll-points, the
amount of data that needs to be transferred, and the
overhead of migration. We need to minimize the
execution time, migration response time, communication
overhead and migration overhead.

3.2. Console/Scheduler

A console is built to monitor and coordinate the

running processes. The console accepts user commands to
migrate a running process and controls the state
transformation. It handles the authentication and
authorization problems. It initializes a process, which
compiles, distributes the code and starts the run-time
environment. The console serves as a commander to
running processes and as a user interface to the system
administrator. Sometimes for load balancing and fault
tolerance, we also need a scheduler to collect current
status of performance and resources availability on the
source machine and other pooling hosts. When the
performance of current hosting machine cannot satisfy the
requirements of the users, it will find another host that has
more suitable resources. It will also determine when to
migrate and where to migrate dynamically. In our system
design, we combine the console and the scheduler into one
component called console/scheduler. With the
console/scheduler, we can choose a suitable destination
machine automatically or manually. Users can define
conditions as to when the process migration should be
invoked or directly issue a command through the
console/scheduler interface to migrate at a desired time to
a desired machine.

3.3. Libraries and Run-time System

We build a set of libraries and a run-time process

working together to provide the functions and run-time

Figure 1. Software Structure of HPCM Middleware

4

supports needed by process migration. The libraries
include a basic library, a data transmission library, and a
communication migration library. We can easily extend
the HPCM middleware to different platforms by providing
more libraries. The basic library contains a set of
functions, which are called by the macros inserted by the
pre-compiler. These functions help to conduct memory,
execution and communication state transfers. The data
transmission library contains functions to handle memory
and execution transfers over the network. It can be
implemented on top of various communication software
environments. Currently we have implemented the
libraries on top of MPI, PVM and TCP/IP. That is, the
memory and execution state can be transmitted across
machines using MPI, PVM, or TCP/IP communication
facilities. The communication migration library contains
the functions needed to handle message passing or
network data communication during process migration.
We have currently implemented the communication
migration library under PVM [11]. However, It also can
be extended to support other distributed environments.
The run-time system consists of a number of collaborative
daemon processes each running on a participant computer
within a process migration environment. The
console/scheduler starts a daemon on a participant host on
demand. An early version of the functions is used [3] to
confirm the feasibility of the mechanisms for execution,
memory and communication transfer. Recently, we have

build up a set of libraries based on them and significantly
improve their prototypes by providing more
functionalities for process migration operations, by
making the run-time system more robust and interoperable
with other software, and by providing better performance.
The run-time system can be bound to different underlying
platforms as well.

4. The Pre-compiler and Its Functionality

The pre-compiler is a C-to-C translator, which converts
the C source code into its equivalent migration capable C

code, and generates related utility files. Figure 2 shows the
conceptual model of the pre-compiler. The pre-compiler
does the poll-point analysis to select a set of poll-points. It
gathers type, structure, variable and memory block
information from the source code and performs type
analysis, live variable analysis and memory block
analysis. Live variable analysis of the pre-compiler also
generates the performance prediction and statistical data to
evaluate the selection. Users can also choose poll-points
and evaluate the poll-points selected by the poll-point
analysis manually through the graphic user interface. The
GUI is implemented using Java. This process may repeat
several times until an appropriate set of poll-points is
selected. It annotates the source code and inserts the
migration macros and function calls to C source code to
form MOD (MODified code). The Code Generator also
generates a main function file that takes care of the global
data and data type management of the application (MAIN),
a function definition file (FUNC), a type definition file
(TYPE) containing type information table, a component
layout table, as well as saving and restoring functions.

For applications written in C, there are some language
features and programming practices that make the process
non-migratable. Some of them depend highly on the
current execution state and some others depend highly on
the underlying computational platform. We called this
condition as migration-unsafe. We have to transform these
features into their equivalent codes that are safe during
migration. We have to use some mechanisms to deal with
these features, rewrite this part of program in a different
but safe way or use some other mechanisms to gain safe
migration. The migration-unsafe features include: usage
of pointer, type casting, usage of void pointer, memory
allocation and release, union, communication, local file
access, usage of “sizeof()” operator, function pointer. We
need to handle these migration-unsafe problems through
the pre-compiler and process migration mechanisms.

Our pre-compiler is implemented based on the
framework of Porch (Portable checkpoint compiler), a
well-known pre-compiler for a checkpointing system
developed by the MIT laboratory of computer science
[19]. We adopt the underlying layer including lexical
analysis, semantic analysis, framework of data flow
analysis and some part of the code generation.

Figure 3 shows the workflow of our pre-compiler. The
pre-compiler gets the preprocessed code with “gcc –E”,
and then performs lexical and semantic analysis to the
preprocessed code and builds up the AST (Abstract
Syntax Tree). After performing optional poll-point
analysis and user interaction one or more times, it detects
the migration-unsafe features of the application and
transforms them to an equivalent code that is migration-
safe, gathers the function information, and performs type,
live variable, and memory block analysis. Finally, the pre-
compiler generates annotated codes.

Figure 2. Pre-Compiler Conceptual Model

5

4.1. Source Code Annotation

There are six kinds of macros involved in the process
of migration. The pre-compiler needs to insert them into
the source code. They are head_macro, end_macro,
jump_macro, mig_macro, entry_macro, and stk_macro.
The head_macro is inserted at the beginning of the
function body. It put the migration point to the stack of
calling sequence. For the migrating process, it registers
memory spaces and memory blocks into a global data
structure, called MSRLT table; for the main function of
the initialized process, it makes connection to the
migrating process and initializes the global state of the
process. The end_macro removes the migration point in
the stack of calling sequence. The jump_macro follows
the head_macro. It extracts the calling sequence
information and jumps to corresponding location of codes.
The mig_macro is placed at the poll point. For the
migrating process, it collects and transmits global
variables; for the initialized process, it receives and
restores the values of global variables. The entry_macro
and stk_macro are placed separately before and after the
function call in the migration point calling sequence. The
entry_macro collects and restores the local live variables
of the current function before entering the migrating point.
The stk_macro collects and restores the local live
variables of the current function after existing the
migrating points.

4.2. Pointers and Dynamic Memory Management

The pointer type in C language poses a great difficulty
in process migration. The memory address on the source
machine is meaningless to the destination machine. In
most cases, we consider the memory piece occupied by a
variable or sometimes a group of variables as a memory
block. The dynamic allocated memory pieces are also
considered as memory blocks. To circumvent the above
problem, a logical memory space model MSR (Memory
Space Representation) is defined [5].

There could be many memory blocks in the memory
space of a big application. In practice, we do not need to
register all memory blocks into MSRLT table. The
memory blocks registered in the MSRLT shall satisfy one

of the following four conditions: dynamic allocated
memory blocks; pointers; variables with the types of
struct and array; variables whose addresses have been
used as right-value. For dynamic memory management,
we replace the system calls of dynamic memory
management with our own functions. The MSR function
not only requests a piece of memory as required but also
registers this memory block to MSRLT table.

4.3. Live variable analysis

A practical computing application may have large
number of variables. Some of those variables will never
been used after process migration. Transferring those
variables to the destination machine will add unnecessary
cost. To improve the performance of process migration,
we try to find out which variable is useful in future
execution and which is not. This process is called live
variable analysis [4]. Live variable analysis defines a set
of variables whose values are modified before a poll-point
and are needed after the poll-point. We perform live
variable analysis to global variables and local variables
separately to determine the variables that need to be
transmitted.

4.4. Struct and Union

Union is one of the three composite types in C. It is

widely used in all kinds of applications, especially, in
system header files. It will dramatically limit the usage of
our method without solving this problem. P. Smith and N.
Hutchinson address this problem [20], but the problem is
not solved in their system. The difference is caused by the
definition of union, which is that every component in a
union should occupy the same memory address. In our
way, for case C, we do the followings: 1. add a component
int _elem_tag to the union; 2. add a component union _U
to the union and move all the components in the original
union to _U; 3. convert the access (read, write) of the
union to the access of the component “_U”; 4. record
current type in the union to _elem_tag after an assignment
instruction to a union; 5. check the _elem_tag to
determine current type of the union while saving/restoring
the value of a union,, then save/restore the value
accordingly.

5. Experimental Testing

We have implemented and tested our system on the
following three platforms: a Sun Blade workstation 100
with 1 UltraSparc-IIe 500MHz CPU, 256K L2 cache,
128MB, running SunOS 5.8 operating system (called w in
this section), a Sun Enterprise 450 server with 4
UltraSparc II 480Hz, 8M cache, 4GB, running SunOS 5.8
operating system (called s), and a Dell Precision

Figure 3. Workflow of the Pre-compiler

6

Workstation 410MT with 2 Pentium III 500MHz, 512K
L2 cache, 768MB, running Redhat Linux 8.0 (called l).
Their floating-point speed is 32698kflops for the server,
27067kflops for the workstation and 54934kflops for the
Linux PC. We have tested the linpack sequential program
translated to C by Bonnie Toy that solves a dense system
of linear equations with Gaussian elimination [6], and the
bitonic program by Joe Hummel, which builds a random
binary tree and then sort it. The linpack program includes
use of pointer, array and other primary types. The bitonic
includes more complex self-defined data structure such as
structs and linking pointers. It also includes lots of
dynamic memory management operations and recursive
function calls, which may incur large memory state data.
We configured the matrix size of the linpack as 100, 200,
500, and 1000. The tree size of the bitonic benchmark
varies from 1024 to 16384. The communication between
the server and the workstation is a 100Mbps internal
Ethernet with exclusive use. The server and linux belong
to different subnets of our 100Mbps campus network and
the communication between them is sometimes interfered
non-determinately by other users. Each test with
communication is performed ten times at separate time
periods to avoid the network interference.

First we test the overhead for the migration capable
linpackc application for normal execution. We perform
the testing on the server, workstation and linux. The
problems scale from 100 to 1000. We find that the
overhead of the migration capable code is very low. In
most cases, the performance of the linpackc and the
migration capable linpackc is almost the same. There is no
significant overhead in most testing results shown in
Figure 4. The maximum overhead found among these tests
is 0.7%, which comes from the 1000x1000 matrix running
on the server. These performance results show that
generally the overhead is very low when there is no
migration occurred. Figure 4 compares the execution time
of the linpackc and migration capable linpackc.

Table 1. Homogeneous Process Migration
Seconds 100 200 500 1000

original (w) 0.800 5.720 96.475 773.420

original (s) 0.793 5.338 75.628 604.676

non-migration (w) 0.782 5.699 96.478 772.650

non-migration (s) 0.780 5.343 75.353 608.996

migration (w=>s) 0.813 5.464 77.643 622.620

migration (w=>w) 0.828 5.750 96.947 774.026

communication data 82240 323440 2007040 8013040

migration overhead (w) 3.5% 0.5% 0.5% 0.08%

We test the homogeneous process migration from the
workstation to the server and the heterogeneous process
migration performance from the server to the Linux PC.
Table 1 shows the performance of homogeneous process
migration from the workstation to the server and the

migration between two workstations. The overheads of the
homogeneous migration between the workstations with
the same architecture and speed range from 0.08% to
3.5%. For very small application scale, the migration may

cause higher overhead. For bigger scales, the overheads
are from 0.08% to 0.5%. Figure 5 compares the
performance of original, non-migration and homogeneous
migration.

The heterogeneous testing is on the problem scale
1000x1000 and 500x500 matrix. The floating point
computing speed of the Linux PC is higher than the
server. Table 2 shows the comparisons of performance for
the pre-compiled linpack application without migration,
collection time, restoration time, migration without
pipelining, and migration with pipelining. The collection
and restoration time refer to the time of memory state
collection and restoration time respectively. Because we
pipelined the collection, restoration, and data
transmission, the summation of no-migration execution,
collection, and restoration time is higher than the actual
migration time. Table 2 verifies that our design is
efficient and pipelining the collection and restoring of
state is beneficial in actual migrations. By overlapping the
collection, restoration, and transmission, we save 6%-14%
of total execution time or almost 50% of the data
collection/restoration time. We also tested process
migration for the benefits of load balancing on the server
and linux. When the server’s one-minute load average is
5.23, the migrated linpackc can save 24.60% time
compared with the non-migrated control. When the
server’s one-minute load average reaches 8.41, the
performance gain is over 100%. In this case, migrating a
process to a faster machine compensates for the overhead
incurred by migration. Because it is difficult to find

 Figure 4. Overhead of Process Migration System

Table 2. Heterogeneous Migration from Server
to Linux

Seconds 500 1000
1. non-migration 75.353 608.996
2. collection 4.708 19.092
3. restoration 4.790 19.334
4. without pipeline 1+2+3 84.851 648.326
5. migration (s=>l) 74.182 610.496

7

heterogeneous platforms with the same computational
environments including integer speed, floating point speed,

and memory access speed, the exact overhead for
heterogeneous migration is not presented here.

Table 3. Heterogeneous Migration of Bitonic
Tree Size Data size (bytes) Execution Time (seconds) Migration Time (seconds)

level 1 4 8 1 4 8 1 4 8
1024 49416 49932 50620 0.564 0.558 0.570 0.018 0.018 0.018
2048 98568 99084 99772 1.715 1.768 1.786 0.036 0.036 0.047
4096 196872 197388 198076 4.779 4.674 4.742 0.088 0.108 0.108
8192 393480 393996 394684 11.020 11.134 10.994 0.214 0.248 0.253

16384 786696 787212 787900 24.815 24.857 24.724 0.462 0.556 0.557

We also test the migration performance of the bitonic
benchmark from the server to the linux. The bitonic
benchmark randomly generates a defined size of tree, then
perform bitonic sort on the tree. In our tests, the process
repeats for 32 times. There are a large number of pointers
referring the memory blocks that need to be transferred
because the bitonic benchmark has many memory
management operations. The actual migration point is
inside a recursive function call, biSort(). The migration
command is issued when the execution sequence reaches
its depth of 1st, 4th, and 8th level in biSort(). The scale of
the application increases with the Tree Size from 1024 to
16384. The execution time of the application, the data size
of the memory state and the migration time increase
accordingly. We compare the experimental data for 1st, 4th,
and 8th level for data size, total execution time, and
migration time in Table 3. With the increase of the Tree
Size and the data size, the execution time and migration
time increase accordingly. With the increase of the
migration point level, the data size increases slowly; the
migration time also increases slowly. There is no
significant increase for total execution time. Though the
application is recursive, the amount of local variable does
not incur a dramatic performance overhead for both the
execution time and the migration time.

Figure 6 is a comparison of the migration and
checkpointing/restoring performance for the HPCM
system and Porch, a well-known portable heterogeneous

checkpointing system [19]. Porch provides fault tolerance
by checkpointing the process state to local reliable disks.
The recovery can be performed both on local or remote
system. The recovery machine can be both homogenous
and heterogeneous. But Porch has the limitations caused
by its data conversion mechanisms. They use a data
structure called structure metric to provide a specification
of the data layout at runtime to accomplish data
representation conversion. This means that Porch has to
know the data representation format at pre-compile time.
The pre-compiled application is static to the given format
of data. In the other words, Porch has to know the type of
the data format at the source machine before compiling
the application on the destination machine. The pre-
compilation has to be performed for each source or
destination machine and for each data format. Porch does
not support the type of union. In the contrary, for the
HPCM middleware, we do not need to know the
architecture of source or destination machine before
migration. We can dynamically configure the system at
run time. Both the systems are using the pre-compiler
technology to solve the problems caused by heterogeneity.
In normal execution, Porch generates more overheads
compared with HPCM pre-compiler. Figure 6 shows that
the performance of HPCM process migration is better than
Porch checkpointing. The mechanisms used by HPCM
can be used for dynamic heterogeneous checkpointing as
well.

Figure 5. Migration Overhead of Homogeneous Migration (workstation)

8

6. Conclusion and Future Work

This paper presents our recent progress in supporting
mobility of legacy codes through heterogeneous process
migration. First we introduce the background of process
migration and compare the heterogeneous process
migration with checkpointing systems. We describe the
design of the HPCM middleware and its primary
components. Then we introduce the conceptual model, the
implementation and the workflow of the pre-compiler.
The performance results show that the HPCM middleware
is efficient for both the migration and non-migration
conditions, and has its real potential in checkpointing as
well as in mobility. Heterogeneous process migration of
legacy codes is an outstanding research issue. The success
of the design and implementation of the pre-compiler is a
significant step towards a practical solution for the
outstanding issue.

There are still some features in our design that are left
for future work. The performance of the HPCM system is
highly depending on the amount of memory states to be
transferred. This problem is worsened when the
application is recursive in major. Local variables need to
be transferred for each level of recursive call. We need to
further improve the system and tune it for better
performance. Currently, the algorithm of poll-points
selection is coarse-grained and simple. It needs user
interaction for better performance. We still need to refine
the poll-point analysis module to select the poll-point
wisely and improve the console/scheduler component of
the current prototype implementation.

References

[1] A. Barak and R. Wheeler, “Mosix: An Integrated
Multiprocessor UNIX", in Proceedings of Winter 1989 USENIX
Conf., pp. 101-112, San Diego, CA, Feb. 1989.
[2] D. Cherton, “The V Distributed System”, Communications of
the ACM, 31(3): 314-333, March 1988.
[3] K. Chanchio and X. H. Sun, “Communication State Transfer
for Mobility of Concurrent Heterogeneous Computing”, in

Proceedings of the International Conference on Parallel
Processing (ICPP 2001, Best Paper Award), September 2001.
[4] M. J. Wolfe, “High Performance Compilers for Parallel
Computing”, Addison-Wesley, 1995.
[5] K. Chanchio and X. H. Sun, “Data collection and restoration
for heterogeneous process migration”, Sofware—Practice and
experience, 32:1-27, April 2002.
[6] J. Dongarra, “The Linpack Benchmark: An Explanation”, in
Proceedings of the 1st International Conference on
Supercomputing, E. N. Houstis, T. S. Papatheodorou, and C. D.
Polychronopoulos, eds., pp. 456-474, Athens, Greece, June 8-12,
1987, Springer-Verlag 1988.
[7] Frederick Douglis, “Transparent Process Migration in the
Sprite Operating System”, PhD thesis, University of California,
Berkeley, Sep. 1990.
[8] E. Elnozahy, L. Alvisi, Y. Wang and D. B. Johnson, “A
Survey of Rollback-Recovery Protocols in Message-Passing
Systems”, ACM Computing Surveys, 34:3, September 2002, pp.
375-408.
[9] M. M. Theimer and B. Hayes, “Heterogeneous Process
Migration by recompilation”, in Proceedings of the 11th IEEE
International Conference on Distributed Computing Systems,
June 1991.
[10] I. Foster, C. Kesselman, J. Nick and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration”, June 2002.
[11] A. Geist et al, “PVM: Parallel Virtual Machine: A users’
guide and tutorial for networked parallel computing”, MIT press,
1994.
[12] Georg Stellner, “CoCheck: Checkpointing and Process
Migration for MPI”, in Proceedings of the10th International
Parallel Processing Symposium, April 1996.
[13] K. A. Iskra, F. van der Linden, Z. W. Hendrikse,
B.J.Overeinder, G.D. van Albada, and P.M.A. Sloot, “The
implementation of Dynamite - an environment for migrating
PVM tasks”, Operating Systems Review, vol. 34, July 2000.
[14] Feras Karablieh and Rida A. Bazzi, “Heterogeneous
Checkpointing for Multithreaded Applications”, in Proceedings
of 21st IEEE Symposium on Reliable Distributed Systems, Oct.
2002.
[15] K. F. Ssu and W. K. Fuchs, “Portable Recovery and
Checkpointing in Heterogenous Systems”, in Proceedings of
IEEE Fault-Tolerant Computing Symposium, pp.38-47, June
1998.
[16] M. Lizkow, M. Livny, and T. Tannenbaum. “Checkpoint
and Migration of UNIX Processes in the Condor Distributed
Environment”, April 1997.
[17] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason
Nieh, “The Design and Implementation of Zap: A System for
Migrating Computing Environment”, in Proceedings of the 5th
Operating System Design and Implementation. Dec 2002.
[18] B. Randell, "System Structures for Software Fault
Tolerance", IEEE Transactions on Software Engineering,
Volume SE--1, Number 3, pp. 221-232, June 1975.
[19] B. Ramkumar, V. Strumpen, “Portable Checkpointing for
Heterogeneous Architectures”, in Proceedings of the 27th
International Symposium on Fault-Tolerant Computing - Digest
of Papers, Seattle, WA, June 1997.
[20] P. Smith and N. Hutchinson, “Heterogeneous process
migration: The Tui system”, Tech rep 96-04 University of
British Columbia, Feb. 1996.

Figure 6. Performance of HPCM and Porch

