
Preprint: to appear in ACM SIGMETRICS Performance Evaluation Review, Volume 40 Issue 2, 2012

APC: A Performance Metric of Memory Systems

Xian-He Sun

Department of Computer Science
Illinois Institute of Technology

Chicago, IL, USA 60616
sun@iit.edu

Dawei Wang
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA 60616

dwang31@iit.edu

ABSTRACT
Due to the infamous “memory wall” problem and a drastic
increase in the number of data intensive applications, memory
rather than processor has become the leading performance
bottleneck of modern computing systems. Evaluating and
understanding memory system performance is increasingly
becoming the core of high-end computing. Conventional memory
metrics, such as miss ratio, average miss latency, average memory
access time, etc., are designed to measure a given memory
performance parameter, and do not reflect the overall performance
of a memory system. On the other hand, widely used system
measurement metrics, such as IPC and Flops are designed to
measure CPU performance, and do not directly reflect memory
performance. In this paper, we proposed a novel memory metric,
Access Per Cycle (APC), to measure overall memory performance
with consideration of the complexity of modern memory systems.
A unique contribution of APC is its separation of memory
evaluation from CPU evaluation; therefore, it provides a
quantitative measurement of the “data-intensiveness” of an
application. The concept of APC is introduced; a constructive
investigation counting the number of data accesses and access
cycles at differing levels of the memory hierarchy is conducted;
finally some important usages of APC are presented. Simulation
results show that APC is significantly more appropriate than
existing memory metrics in evaluating modern memory systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: design studies, measurement
techniques, performance attributes.

General Terms
Measurement, Performance

Keywords
Memory performance measurement; memory metric;
measurement methodology

1. INTRODUCTION
The rapid advances of semiconductor technology have driven
large increases in processor performance over the past thirty
years. However, memory performance has not experienced as
dramatic a gain as that of processors; leaving memory
performance lagging far behind CPU performance. This enlarging
performance gap between processor and memory is referred to as
the “memory wall” [1] [2]. The “memory wall” problem exists
not only in main memory but also in the on-die caches. For

example, in the Intel Nehalem architecture CPU, each L1 data
cache has a 4-cycle hit latency; and each L2 cache has a 10-cycle
hit latency [3]. Additionally, the IBM Power6 has a 4-cycle L1
cache hit latency, and an L2 cache hit latency of 24 cycles [4].
These large performance gaps between the processor and memory
hierarchy make the memory system the dominant performance
factor in high-end computing. Intensive research has recently been
conducted to improve the performance of memory systems.
However, understanding the performance of modern hierarchical
memory systems remains elusive for researchers and practitioners.

Because hierarchical memory systems are a bottleneck of
performance, measuring and evaluating memory systems has
become an important issue facing the high performance
computing community. Conventionally used performance metrics,
such as IPC (Instruction Per Cycle) and Flops (Floating point
operations per second) are designed from a computing-centric
point-of-view, and measure the overall computing performance.
They are comprehensive and affected by a multitude of factors
such as instruction sets, CPU micro-architecture, memory
hierarchy, compiler technologies, etc. and as such are not
appropriate measurements of the performance of a memory
system. On the other hand, existing memory performance metrics,
such as miss rate, bandwidth, and average memory access time
(AMAT), only measure a particular component of a memory
system. They are useful in optimization and evaluation of a given
component, but cannot accurately characterize the performance of
the memory system as a whole. In general, a component
improvement does not necessarily lead to an improvement in
terms of overall computing performance or overall memory
performance. For instance, in some cases when miss rate
decreases, IPC will decrease instead of increasing (Please see
section 4.2). When the non-blocking cache optimization method is
used, the AMAT metric shows a misleading effect on IPC (Please
see section 4.3).

There are several reasons that traditional memory performance
metrics cannot directly characterize the overall performance of a
memory system. First, modern CPUs exploit several ILP
(Instruction Level Parallelism) technologies to overlap ALU
instruction executions and memory accesses. Out-of-order
executions overlap CPU execution time and memory access delay,
allowing an application to hide the miss penalty of an L1 data
cache miss that hits the L2 cache. Multithreading technology,
such as SMT [5] or fine-grained multithreading [6] could tolerate
even longer misses through main memory by executing another
thread. Speculation mechanisms are used to overcome control

dependencies, which help to avoid CPU stalls. Speculation could
also activate memory access instructions that are not committed to
the CPU registers due to miss predictions. Incorrect speculations
can aggravate the burden of data access, but the effect of miss
speculations is hard to predict. A incorrect prediction is not
always useless. If a wrongly predicted data load accesses the same
cache block as the next data load, then the incorrect speculation
can be seen as an effective data prefetch, and it benefits the
memory performance. All of these scenarios make component-
based measurements unsuitable for the measurement of the overall
performance of a modern memory system.

Additionally, modern memory systems use a large number of
advanced caching technologies to decrease average access
latency. Some widely used cache optimization methods, such as
non-blocking cache [7], pipelined cache [8], and multibanked
cache [9], allow cache accesses to overlap with each other. These
technologies make the relationship between memory access and
processor performance even more complicated, since the
processor could continue accessing memory under multiple cache
misses. Thus, the influence of the improvement of one particular
component in a memory system becomes increasingly tangled and
elusive. Evaluating memory systems from a single memory access
or on a single component does not reflect the complexity of
modern memory systems. Advanced memory technologies make
the behavior of memory access similar to instruction dispatch,
because they both execute several operations concurrently. As
with the measurement of instruction executions, memory system
evaluations should consider all the underlying parallelism and
optimizations to measure the overall performance of a memory
system.

A new metric for overall memory system performance, which is
separate from CPU performance but in the meantime correlates
with CPU performance, is needed. In the other words, it should
correlate with IPC but measure data access only. The notion of
correlating with IPC is important due to the fact that memory
performance is a determining factor of the overall performance of
modern computing systems. The requirement of separating
computing from data access is to provide a better understanding of
memory systems, a better understanding of the capacity of a
memory system to handle the so-call data-intensive applications,
and a better understanding of the match between computing
power and memory system performance. To reach this goal, the
Access Per Cycle (APC) metric is proposed following the design
philosophy of Instructions Per Cycle (IPC).

The introduction of APC is four-fold. First, the definition of APC
is introduced; next methods of determining the number of
accesses and access cycles are explored; then methods of
determining measurements at different memory hierarchy levels
are discussed; finally a series of simulations are conducted to
confirm that APC is significantly more appropriate than existing
memory performance metrics. The statistical variable correlation
coefficient is used to demonstrate that APC has a 0.97 correlation
coefficient value with the overall computing performance in terms
of IPC, whereas conventional metrics only have a 0.67 correlation
in the best scenarios.

The rest of this paper is organized as follows. Section 2 defines
APC, and describes how it is measured. Section 3 introduces the
experiment methodology and setup. Section 4 compares APC with
other conventional memory metrics by way of the correlation
coefficient. Section 5 discusses the application of APC and
provides a quantitative definition of data intensive from a memory

system point of view. Section 6 presents related works, and
Section 7 concludes this study.

2. INTRODUCTION TO APC
In this section, the formal definition of APC is provided and
investigation is carried out on the measurement of memory access
cycles of APC in advanced non-blocking memory structures.

2.1 APC Definition
IPC reflects overall performance in terms of the number of
executed instructions per cycle. After more than thirty years
development, the ILP and memory optimization technologies have
many key features in common. Table 1 lists a comparison of some
common technologies adopted by them.

Table 1. ILP and memory optimization comparison
ILP Tech. Memory Tech. Key feature in common

Pipelined stage
in CPU data path

Pipelined Cache Micro-operation
overlapping

Multiple
Function Unit

Multiport/Multibanked
Cache

Simultaneous operation
dispatching

Out-of-order
execution

Non-blocking Cache Do not stall ready
operations

Branch
prediction/
Speculation/
Runahead[10]

Data Prefetching Pattern recognizing and
only successful with
certain possibility

Based on the similarity between processors and memory systems,
and inspired by the success of IPC, APC (Access Per Cycle) is
proposed to evaluate memory system performance. Generally
speaking, APC is measured as the number of memory accesses
per cycle. Also, the APC metric can be used to evaluate the
memory performance at each level of a memory hierarchy. More
specifically, APC is the number of memory accesses requested at
a certain memory level (ie: L1, L2, L3, Main Memory) divided by
the number of memory access cycles at that level. Let M denote
the total data access (load/store) at a certain memory level, and T
denote the total cycles consumed by these accesses. According to
the definition of APC,

𝐴𝑃𝐶 =
𝑀
𝑇

 (1)

The definition is simple enough. However, because modern
memory systems adopt many advanced optimizations, such as
pipelined cache, non-blocking cache, and multibanked cache, etc.
several outstanding memory accesses may co-exist in the memory
system at the same time. Counting cycle T is not as simple as it
may seem. In the APC definition, it is defined as the total cycle T
to be measured based on the overlapping mode, which means
when there are several memory accesses co-existing during the
same cycle, T only increases by one. For memory accesses, the
non-overlapping mode is adopted. That is all the memory accesses
issued are counted, including all successful or non-successful
speculations and including all concurrent accesses. For example,
if two L1 cache load requests exist at the same time, M will
increase by two.
According to the APC definition, each memory level has its own
APC value. This paper focuses on APC for L1 cache and includes
discussions of the main memory APC. The APC of L1 reflects the
overall performance of the memory system, while the main
memory’s APC is important since it has the longest access latency
in the memory hierarchy without considering I/O and file systems.
The study of these two should be sufficient in illustrating the APC
concept and demonstrating its effectiveness. To avoid confusion,

the term APCD is used for L1 data cache, APCI is used for L1
instruction cache, which is the number of L1 data or instruction
cache accesses divided by the number of overall cache access
cycles of their own. Main memory APC is denoted as APCM,
which is the number of off-chip accesses divided by the number
of overall main memory access cycles.

2.2 APC Measurement Methodology
To cooperate with modern CPU out-of-order speculation, multi-
issue, multi-threading, and multi-core technologies, modern
CPUs, such as Intel Core [11], Itanium [12], and IBM POWER3
[13], employ non-blocking cache at each level of a memory
hierarchy in order to enhance memory access parallelism. Non-
blocking cache can continue supplying data under a certain
number of cache misses by adopting Miss Status Holding Register
(MSHR) [7]. MSHR is a structured table. It records cache miss
information such as access type (load/store), address, return
register, etc. When the MSHR table is full, the cache disallows
additional cache accesses, the CPU or up-level memory access
requests are blocked due to the lack of MSHR entry. When the
MSHR is attached to LLC (Last Level Cache) and full, designates
there are no more outstanding main memory accesses.
Calculating an accurate number of overall memory access cycles
in a non-blocking cache is not simple. There are two reasons.
First, unlike IPC, not every clock cycle has memory access;
therefore, any measurement scheme requires some form of access
detection. Secondly, many different memory accesses can be
overlapped. Ideally, only one cycle should be counted in the total
access cycles even if there are several different memory accesses
occurring at the same time. In practice, there could be many
different ways to measure the clock cycles under the overlapping
mode. In this study, we propose an APC measurement logic, as
illustrated in Fig. 1, that supports the overlapping mode to test the
potential of APC.

Cache

MSHR

CPU

APC
Measurement

Logic

Figure 1. APC Measurement Structure

To avoid overlapping memory accesses from being counted
multiple times in an access cycle, the APC Measurement Logic
(AML) simultaneously detects memory access activities from
CPU, cache and MSHR. If at least one memory access activity
exists in the CPU/Cache interface bus or inside the cache, or if
outstanding cache miss/misses are registered in the MSHR, this
clock cycle is counted as one memory access cycle. Additionally,
the AML will count the number of CPU load/store accesses by
detecting CPU/Cache bus requests. If there are several memory
requests at the same time from the bus, all are counted. Through
this counting, the number of total accesses M and the total
memory access cycle T can be obtained, and the APC can be
calculated for this level of cache. The pseudo code of memory
access counting logic for on-chip caches including L1, L2, or even
L3 caches, is shown in Table 2. For L2 and L3 caches, while the
logic is the same, multiple buses between upper level caches and
itself may be detected in implementation simultaneously.

Table 2. Pseudo Code for Memory Access Cycle Counting Logic
If(MSHR table is not empty) //Having pending cache miss/misses

 Mem_Cycle ++;
Else if(Cache is accessing)//Cache lookup exists

 Mem_Cycle ++;
Else if(CPU/Cache bus is active)//Having a request or returning data

 Mem_Cycle ++;
Else
 Mem_Cycle does not change

In general, memory access cycles consist of three different timing
stages, namely CPU/Cache Transferring Cycle, Cache Cycle, and
MSHR Cycle. The three parts are mutually exclusive. The MSHR
Cycle is the time spent in MSHR, and reflects the next level of the
memory hierarchy ability to supply data. Only when the MSHR is
not working does the Cache Cycle start to count. The Cache Cycle
is the time spent in the cache determining if a hit or miss has
occurred. It reflects the local cache's ability to provide data. It
heavily depends on local cache organizations, such as cache
capacity, associativity, etc. If both MSHR and cache are not
working, then CPU/Cache Transferring Cycle starts to count. The
CPU/Cache Transferring Cycle is the time consumed by CPU and
Cache in transferring requests or data.
The AML consists of two registers (e.g. 64-bit register is
sufficient for most computer systems) and some detecting logic.
One register counts the total number of memory cycles; the other
counts memory accesses. Please notice that the memory accesses
count is already provided by existing CPU performance counters.
However, some detecting logic for counting the number of
memory cycles must be added. The detecting logic includes
CPU/Cache interface detecting logic, cache detecting logic, and
MSHR detecting logic. For MSHR, the detecting logic only needs
to detect whether the MSHR table is empty, and only one status
bit is required. Modern caches adopt pipelined structures for data
access. A typical pipeline structure consists of Decode, Compare
Tags, Rd/Wr Data, and Drive Out stages [14]. For the cache
detecting logic, only one bit for each stage is needed. Thus if the
length of the pipeline stage is four, then the width of the cache
detecting status register is four bits. For CPU/Cache interface
detecting logic, the command and/or data bus need to be detected.
The total bit-width of the command and data buses is usually less
than 512 bits [3]. Therefore, the length of the CPU/Cache
interface detecting logic should be less than or equal to 512 bits,
assuming using one bit to detect one bit line of the bus. Adding all
the detecting logic and the two registers, the total cost of AML is
less than 1K bits, which is negligible compared with modern
transistor sizes of a CPU.
The AML for L1 cache can be extended to main memory with
little variation. When measuring main memory APCM, main
memory access count and LLC MSHR Cycle are needed to be
detected. The former can be found in CPU performance counters;
and the latter, only need 1 bit to detect whether the MSHR table is
empty or not. As a result, there is almost no extra hardware cost to
measure the APCM. Therefore,

APCM=
Main Memory access count

LLC MSHR cycles (2)

With the modification to current cache structures, when running a
real benchmark on the computer, the APCs of all cache levels and
the IPC can be obtained.

3. EXPERIMENTS METHODOLOGY AND
SETUP
In this section, the mathematical concept of correlation coefficient
is introduced. With correlation coefficient as the proximity
measurement, a series of experiments are executed with different
cache and main memory parameters.

3.1 Introduction to Correlation Coefficient
The motivation of memory evaluation is due to the fact that the
final system computing performance is heavily influenced by
memory system performance. Therefore, an appropriate memory
metric should reflect the system performance. The mathematical
statistic variable correlation coefficient (CC) is used in this study
to determine which memory metric most closely trends with the
IPC variation. Correlation coefficient describes the proximity
between two variables' changing trends from a statistics
viewpoint. It measures how well two variables match with each
other.
The correlation coefficient is a number between -1 and 1. The
higher the CC absolute value is, the closer the relation between
the two variables would be. If it is 1 or -1, the two variables'
trends are perfectly match to each other; if it is 0, then there is no
relation between the two variables. Generally speaking, if the
absolute value is greater than 0.8, then it is believed the two
variables have a strong relation; if greater than 0.9, it is a
dominant relation. Also if the correlation coefficient value is
larger than 0, it is a positive relation. That means if one increases,
the other also increases; otherwise, if it is less than 0, it is a
negative relation between the two variables. That means if one
increases, the other decreases [15].

3.2 Experiment Setup
A detailed out-of-order CPU model in the M5 simulator [16] was
adopted, which models an Alpha 21264-like CPU. Unless stated
otherwise, the experiments assume the following default processor
and cache configuration showing in Table 3.

Table 3. Simulation Configuration Parameters
Parameter Value
Processor
Function units

ROB, LSQ size

1core, 2 GHz, 8-issue width,
6 IntALU 1 cycle, 1 IntMul 3 cycles,
2 FPAdd 2 cycles, 1 FPCmp 2 cycles,
1 FPCvt 2 cycles,
1 FPMul 4 cycles, 1 FPDiv 12 cycles
ROB 192, LQ 32, SQ 32

L1 caches

32KB Inst/32KB Data, 2-way, 64B line,
hit latency: 2 cycle Inst/2 cycle Data,
ICache 10 MSHR Entry,
DCache 10 MSHR Entry

L2 cache 2MB, 8-way, 64B line,
12-cycle hit latency, 20 MSHR Entry

DRAM latency/Width 200-cycle access latency/64 bits

There are some other experiment configurations based on the
default configuration. Each of them only changes one or two
parameter/s of the simulation. The detailed experiment
configurations are shown in Table 4.

Table 4. A Serials of Simulation Configurations
ID Description Changed Parameter/s
C1 L1:32KB,2way; L2: 2MB,8way;

Mem100ns
Default Config

C2 L1:32KB,4way; L2: 2MB,8way;
Mem100ns

L1 Cache Assoc.

C3 L1:32KB,8way; L2: 2MB,8way;
Mem100ns

L1 Cache Assoc.

C4 L1:64KB,2way; L2: 2MB,8way;
Mem100ns

L1 Cache Size

C5 L1:64KB,4way; L2: 2MB,8way;
Mem100ns

L1 Cache Size &
Assoc.

C6 L1:64KB,8way; L2: 2MB,8way;
Mem100ns

L1 Cache Size &
Assoc.

C7 L1:I$32KB,2way, D$64KB,2way;
L2: 2MB,8way; Mem100ns

Only DCache Size

C8 L1:I$64KB,2way, D$32KB, 2way; Only ICache Size

L2: 2MB,8way; Mem100ns
C9 L1:I$64KB,4way, D$32KB, 2way;

L2: 2MB,8way; Mem100ns
Only ICache Size &
Assoc.

C10 L1:I$64KB,8way, D$32KB, 2way;
L2: 2MB,8way; Mem100ns

Only ICache Size &
Assoc.

C11 L1:32KB,2way; L2: 4MB,8way;
Mem100ns

L2 Cache Size

C12 L1:32KB,2way; L2: 8MB,8way;
Mem100ns

L2 Cache Size

C13 L1:32KB,2way; L2: 2MB,16way;
Mem100ns

L2 Cache Assoc.

C14 L1:32KB,2way; L2: 4MB,16way;
Mem100ns

L2 Cache Size &
Assoc.

C15 L1:32KB,2way; L2: 8MB,16way;
Mem100ns

L2 Cache Size &
Assoc.

C16 L1:32KB,2way; L2: 2MB,8way;
Mem30ns

Main memory latency

C17 L1:32KB,2way; L2: 2MB,8way;
Mem60ns

Main memory latency

C18 L1:32KB,2way, MSHR 1;
L2: 2MB,8way; Mem100ns

MSHR Entry

C19 L1:32KB,2way, MSHR 2;
L2: 2MB,8way; Mem100ns

MSHR Entry

C20 L1:32KB,2way, MSHR 16;
L2: 2MB,8way; Mem100ns

MSHR Entry

The configuration C1~C17 are the basic cache/memory
configurations, which only change the cache size, associativity, or
memory latency. These basic configurations have 10 MSHR
entries each. The C18 changes the cache model into a blocking
cache structure. C19 and C20 increase memory level parallelism
by increasing the MSHR entry to 2 and 16 respectively. By
changing memory system configurations, it is possible to observe
memory performance variation trends and IPC variation trends,
and examine which memory metric has a performance trend that
best matches that of IPC’s.
The simulations were conducted with 26 benchmarks from SPEC
CPU2006 suite [17]. Five benchmarks in the set were omitted
because of compatibility issues with the simulator. The
benchmarks were compiled using GCC 4.3.2 with -O2
optimization. The test input sizes provided by the benchmark suite
were adopted for all benchmarks. For each benchmark, one billion
instructions were simulated to collect statistics, or all executed
instructions if the benchmark finished before one billion
instructions.

4. EVALUATION RESULTS
Based on the above configurations, the M5 simulator was used to
collect the measurements of different memory metrics. Each
memory metric is then correlated against the IPC from two
approaches. First, based on one configuration, we correlate each
application's memory metric with its IPC. Second, we focus on
one application, while changing memory configurations, the
variation similarity between each memory metric and IPC is
observed. The first approach tests the correctness of each memory
performance metric. The second tests the sensitivity of each
memory performance metric. The combination of these two
provides a solid foundation to determine the appropriateness of a
metric. The results show that APC has the highest correlation
value with IPC in both cases. Therefore, it is a clear winner.

4.1 Proximity for different applications
IPC with different memory metrics were compared. The memory
metrics compared include, Access per Cycle (APC), Hit Rate
(HR, the counterpart of Miss rate), Hits per 1K instruction (HPKI,
the counterpart of Misses per 1K instructions), average miss

penalty (AMP), and Average Memory Access Time (AMAT)
[18]. For APC, HR, and HPKI, there should be a positive relation
with IPC; for AMP and AMAT, there should be a negative
relation with IPC. To show the proximity of different memory
metrics with IPC, Spec CPU2006 was run for all configurations
(C1~C20) with different L1, L2 cache, main memory, and MSHR
configuring parameters. The correlation coefficient for each
memory metric against IPC was calculated and shown in Fig. 2.
From Fig. 2 it can be observed that APC has the strongest relation
with IPC, whose average CC value is 0.876. This strong relation
between APC and IPC also reflects the fact that the final system
performance largely depends on the performance of the memory
hierarchy.

Figure 2. Correlation coefficient of different memory metrics under

different configurations

Among other metrics, AMAT is the best one with average CC
value of -0.672, since it considers both hit latency and miss
penalty. Compared with AMAT, APC improves correlation value
by 30.4%. Also, it is interesting to notice that the simple metric
HR has approximately the same correlation value as AMAT. This
is probably due to the performance gap between CPU and
memory growing larger and larger, say 200~400 CPU cycles;
therefore, AMAT is dominated by miss penalty, and miss penalty
is largely determined by miss rate. Fig. 2 also shows that using
HPKI as a form of hit rate to predict overall performance is not a
smart choice. It has the smallest correlation value.

4.1.1 Instruction Cache Affection
According to the Von Neumann's architecture, memory access
includes two parts, data access and instruction access. Whether
the instruction is memory access or not, it should be read into
CPU. Also, no matter what advanced technologies are adopted in
instruction execution, if there are not enough instructions fetched
into the CPU, these technologies are useless. Thus, to be accurate,
one should consider both data access and instruction access in the
measurement of memory systems.

Figure 3. Normalized IPC, APCI, APCD, and APCAll

To optimize the accuracy of APC, the L1 instruction cache APC,
APCI is adopted. Using APCD to denote the L1 data cache APC,
APCAll, which equals APCD ×APCI, represents a new metric to
evaluate overall memory performance. The reason APCD and
APCI are correlated with multiplication is inspired by the

conditional possibility. Only when the instruction is efficiently
fetched into the CPU, can a data access request be generated. The
correlation coefficient of APCAll under the default configuration
(C1) improves by 2.18%. For all configurations (C1~C20), the
accuracy of APCAll is 0.899, an improvement of 2.58% on
average compared to APCD. The reason is that for most
applications the instruction accesses are almost perfect. Only very
small numbers of applications, such as gcc, GemsFDTD, and
h264ref, have large instruction miss rates. For these applications,
APCAll can add more accurate adjustments. The normalized
APCI, APCD, APCAll and IPC of default configuration (C1) are
shown in Fig. 3. The normalization is based on the magnitude of
each metric. From Fig. 3, it can be seen that the APCAll and IPC
have almost the same variation trends. Fig. 3 confirms that overall
application performance is largely determined by the memory
performance as can be expressed by the APC metric.

4.2 Proximity for different configurations
In this section, we focus on each application, in order to observe
the impact of memory configuration on performance and
correlation. Two groups of 20 simulation configurations are run.
The first group (C1~C17 in Table 4) changes basic cache/memory
configuration, each configuration inside this group changes L1/L2
cache size or associativity, or memory latency respectively. The
other group (C18~C20) changes non-blocking cache ability with
altering the number of MSHR entry. The simulation results of the
first group are presented in this section. In the next section,
simulations with both groups are conducted. To clearly show the
difference, APCD and APCAll are compared against the other four
memory metrics from Fig. 4 to Fig. 7. Similar to APC which has
two measures APCD and APCAll, every conventional memory
metric also has two measures which represent data cache
performance only and comprehensive cache performance (data
and instruction cache combined performance). For example, when
considering AMAT, AMATD is used to describe data cache
AMAT, and AMATAll (equal to AMATD×AMATI) is used to
describe comprehensive cache AMAT.
In Fig. 4 to Fig. 7, it can be seen that APCAll has the highest
correlation coefficient value with IPC, with a average value for all
applications of 0.9632, and this means that APCAll and IPC have a
dominant relation. For other memory metrics, AMATAll has the
closest relation with IPC, with an average value of -0.9393, a little
lower than APCAll. This shows if advanced data access
technologies, such as non-blocking, are not considered, AMAT is
a quite good metric in reflecting memory performance variation.
However, when considering non-blocking structure, AMAT is
misleading. (Please refer to next section for details). For other
metrics, there are some misleading indications as well. For
example, Hit Rate should have positive coefficient values, but for
several applications its coefficient values are negative or
approximate to zero. One reason for the divergence is that HR
does not explicitly include lower level cache performance factors,
such as miss latency information (whereas APC and AMAT do
consider lower level cache performance), so when L2 cache size
increases or main memory latency decreases, the IPC will
increase, but Hit Rate does not change. For instance, the
benchmark sjeng has the HR correlation value of 0.058, which is
mainly because when changing L2 and main memory's
parameters, the hit ratio of data cache and instruction cache
remain almost the same value, 0.8084 and 0.9671 respectively.
However, the IPC changes from 0.677 to 0.872. It is also found
for the benchmark zeusmp, when HR increases from 0.879 to
0.883, the IPC unexpectedly drops from 0.664 to 0.645 when
simulation configuration changes from C2 to C3. The main reason

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

APC HR HPKI AMP AMAT

0

0.2

0.4

0.6

0.8

1

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
sj

en
g

G
em

sF
D

TD
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp
ec

ra
nd

_f

APCD APCI APC(all) IPC

of the mismatch is believed to be the speculation mechanism.
When the cache associativity increases, it does not only decrease
misses count, but also decreases the memory access count,
because of omitting to execute mis-speculated instructions. As
stated earlier, not all mis-speculated memory accesses are
harmful. On the contrary, APC is much immune to speculation,
because when counting access cycles, the overlapping mode is
adopted, and the mis-speculated memory accesses are overlapped
with correctly speculated memory accesses. In contrast to HR and
HPKI missing information of lower level cache, AMP only
considers lower level cache miss access. When L1 data/instruction
cache size increases or associativity increases, the number of miss
accesses decreases, but the miss latency for each miss may not
change.

Figure 4. The Correlation Coefficients of APC and HR

Figure 5. The Correlation Coefficients of APC and HPKI

Figure 6. The Correlation Coefficients of APC and AMP

Figure 7. The Correlation Coefficients of APC and AMAT

4.3 Changing access parallelism in Cache
Structure
APC and AMAT have very similar correlation values with IPC
when changing basic cache/memory configurations. Here the
number of MSHR entries is altered to examine whether the two
memory metrics still have a similar relation with IPC. Fig. 8
shows the correlation coefficient of APC and AMAT for all the
twenty configurations listed in Table 4.

Figure 8. The Correlation Coefficients of APC and AMAT with

MSHR changes
Fig. 8 shows that APC still has the same correlation, with an
average value of 0.9696. However, AMAT could not correctly
reflect IPC for most applications. The reason is that when there
are not enough MSHR entries, the CPU will be blocked by the
memory system. APC can record the CPU blocked cycles by
counting MSHR Cycle, whereas AMAT cannot. On the contrary,
contention increases with the number of MSHR entries; therefore,
the individual data access time, that is AMAT, will increase as
well. The variation of IPC and APC matches well with each other.
However, AMAT gives a false indication about memory system
performance.
Through the above simulation and analyses, under different
applications and under different configurations, it can be seen that
the APC metric is the most appropriate performance metric for
memory systems. APC can directly determine the overall system
performance in all the testing. In contrast, other existing memory
metrics cannot accurately reflect the system performance, and
sometimes even mislead the performance.

5. DISCUSSION
In this section, some key usages of APC, which help to
understand application behaviors, are discussed. Also an
important quantitative definition of data intensive application
based on the APC concept is given.

5.1 Bottleneck inside memory system
From Fig.4 through Fig.8, with the dominating correlation
between APC and IPC, it is clear that the performance is now
determined by memory system performance. An important
question then is at which level of the memory system is the actual
bottleneck of performance. According to the APC's definition,
each level of memory hierarchy has its own APC values: L1 data
and instruction caches have APCD and APCI respectively; L2
cache has APCL2; and main memory has APCM. However, each
level's APC not only represent the performance of its memory
level, but also includes all the lower levels of the memory
hierarchy. For example, the value of APCD represents the
memory performance of L1 data cache, L2 cache and main
memory; and APCL2 represents the memory performance of L2
cache and main memory. Only APCM, which is the lowest level

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
sj

en
g

G
em

sF
D

TD
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp
ec

ra
nd

_f

APCD APC(all) HitRate D HitRate(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
sj

en
g

G
em

sF
D

TD
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp
ec

ra
nd

_f

APCD APC(all) HPKI D HPKI(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
sj

en
g

G
em

sF
D

TD
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp
ec

ra
nd

_f

APCD APC(all) AMP AMP(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
sj

en
g

G
em

sF
D

TD
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp
ec

ra
nd

_f

APCD APC(all) AMATD AMAT(all)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
sj

en
g

G
em

sF
D

TD
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
sp

hi
nx

3
sp

ec
ra

nd
_i

sp
ec

ra
nd

_f

APCD APC(all) AMATD AMAT(all)

in the memory hierarchy, represents main memory itself when
disk storage is not considered. Therefore, by correlating IPC with
APC at each level, one can find the lowest level that has a
dominating correlation with IPC and can quantitatively detect the
performance bottleneck inside the memory system. Fig. 9 shows
the correlation value of all level APCs for 26 benchmarks. For
example, for benchmark mcf, both APCAll and APCL2 have
dominant relation with IPC, but its APCM does not. That means
the performance of mcf application is determined by its L2 cache
performance, and has a good locality. For benchmark lbm, since
all levels of APC have dominating correlation with IPC, the
performance of lbm is determined by the performance of the
lowest level, namely the main memory level.

Figure 9. Correlation Coefficients of APCAll , APCL2, and APCM

5.2 A quantitative definition of data intensive
The term "Data-intensive Applications" and “Data-intensive
Computing” are widely-used terms in describing application or
computing where data movement, instead of computing, is the
dominate factor. However, there is no commonly accepted
definition of “data-intensive computing” or quantitative
measurement of “data intensive”. As APC characterizes the
overall memory performance, the IPC and APC correlation value
provides a quantitative definition of data intensive. The idea is
simple: if APCM dominates IPC performance, then the application
is data intensive. The degree of the domination provides a
measurement of data intensiveness. We use the correlation value
of APCM to quantify the degree of data intensive. There are three
reasons to use APCM instead of APCD to measure data intensive.
First, due to the "memory-wall" problem, memory latency
becomes the most important performance bottleneck in the
memory hierarchy and dramatically drags CPU speed. Next, we
do not count data re-use as part of data-intensiveness unless it has
to be read from main memory again. Finally, according to the
definition APCs, if the APCM has a dominate relation with IPC,
then APCL2 and APCD will have a dominate relation with IPC
too. In other words, we want to drop the cache hit influence, since
we are interested in data movement, not usage, concerning data
intensiveness. Also please note the hardware cost for measuring
APCM is almost zero.
Fig. 9 is sorted according to APCM correlation values in
ascending order (the farther to the left, the smaller the value of
APCM). The correlation value of APCM is divided into three
intervals, that is (-1, 0.3), [0.3, 0.9), and [0.9, 1). Thirteen
applications counted from the left side (from specrand_i to
gromacs) fall into the first interval. According to the three APC
values used in Figure 9, it can be concluded that the application
performance of these 13 applications are dominated by the L1
cache, not L2 or main memory because the correlation values of
APCL2 and APCM of these applications are negative or very
small, As the correlation value of APCM increases, the effect of

main memory to the overall application becomes increasingly
important. Therefore, in the second interval (from mcf to sjeng),
some applications' performance are dominated by the L2 caches,
e.g. mcf, milc. However, for some other applications, such as
bzip2, L2 and main memory are both important. For the third
interval, the applications' performances are dominatingly
determined by main memory performance. This observation
motivates us to define an application data intensive if its
correlation coefficient of APCM and IPC is equal to or larger than
0.9. Another reason for picking 0.9 as the threshold is that,
according to mathematical definition of correlation coefficient,
when the correlation value of two variables is equal to or larger
than 0.9, then the two variables have a dominant relation.
Therefore, here we define that an application is data intensive if
and only if
Data Intensive Application ≡ 𝑐𝑜𝑒(𝐴𝑃𝐶𝑀, 𝐼𝑃𝐶) ≥ 0.9,
and the value of the correlation provides a quantitative
measurement of the data-intensiveness.

6. RELATED WORK
Miss rate (MR), miss per kilo-instructions (MPKI), average miss
penalty (AMP), and average memory access time (AMAT) are
some commonly used performance metrics in evaluating memory
systems [18]. MR is defined as {the number of miss memory
accesses} over {the number of total memory accesses}. Similarly,
MPKI is defined as {the number of miss memory accesses ×
1000} over {the number of total committed Instructions}. AMP
equals {the summary of single miss latency} over {the number of
miss memory accesses}. Finally, AMAT = Hit time + MR×AMP.
MR and MPKI only reflect the proportion of the data in or out of
the cache; they don't reflect the penalty of the miss access. AMP
only catches the penalty of the cache miss access; it doesn't show
the hit in performance. Also for AMP, the single miss latency is
counted based on single miss access as if there were no other
memory access present. AMAT is a comprehensive memory
metric, but it is still based on the single data access point of view.
It is the average period between start time and finish time of a
single memory access. It does not consider the memory access
overlapping and parallelism. There have been several studies on
Memory Level Parallelism (MLP) [19] in recent years. MLP is a
main memory metric. It is the average number of long-latency
main memory outstanding accesses when there is at least one such
outstanding access [20]. So

𝑀𝐿𝑃 = �
𝑀𝐿𝑃(𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠 𝐶𝑦𝑐𝑙𝑒𝑠

𝑛

𝑡=0

 (3)

MLP(t) is MLP value at clock cycle t. The meaning of total
memory access cycles in Equation (3) is the same with APC
definition. Sorin’s fM parameter [21] has a similar definition to
the MLP in [20]. Sorin’s fM considers all main memory accesses,
while Chou [20] only considers useful long-latency main memory
access. Here, useful means that the data fetched by main memory
access is finally used by CPU. In the APC approach, APCM,
which is defined as the total number of off-chip access divided by
the number of total main memory access cycles, reflects main
memory access performance. Assuming each off-chip memory
access has a constant latency, say m cycles, then each memory
access will count m times when calculating different MLP(t)s, so
APCM=MLP/m. That means APCM is directly proportional to
MLP. Any analyzing indication from MLP on CPU micro-
architecture could also be gotten from APCM. A known limitation
of MLP is it only focuses on off-chip memory access based on the

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

sp
ec

ra
nd

_i
sp

ec
ra

nd
_f

G
em

sF
D

TD
om

ne
tp

p
sp

hi
nx

3
h2

64
re

f
po

vr
ay

to
nt

o
gc

c
na

m
d

as
ta

r
ca

lc
ul

ix
gr

om
ac

s
m

cf
so

pl
ex

ga
m

es
s

de
al

II
m

ilc
bz

ip
2

le
sl

ie
3d

ca
ct

us
A

D
M

bw
av

es
sj

en
g

ze
us

m
p

go
bm

k
lb

m

APC(all) APCL2 APCM

epoch memory access mode for some commercial or database
workloads [20]. These kinds of applications usually have much
more L1 and L2 cache misses, and their overall performances are
heavily determined by main memory access. But for some
traditional CPU intensive applications, only considering main
memory access is far from enough. In addition, advanced process
technology, such as EDRAM used in IBM POWER7, also
dramatically increase on-chip cache size up to 32MB [22]. Using
3D integration technology, one could implement multi-layer CPU
with one layer full of on-chip cache [23]. In contrast, APC not
only can be used to analyze commercial applications, but also to
analyze traditional scientific applications, so it has a much wider
application. Nevertheless, MLP is a new metric drawing much
attention for data intensive applications. Being a superset of MLP
demonstrates the preeminence of APC from another angle. In fact,
it makes APC and MLP mutually supporting to each other.

7. CONCLUSION AND FUTURE WORK
In this paper we proposed a new memory metrics APC, gave its
measurement methodology, and demonstrated its unique ability in
measuring the overall and layered performance of modern
hierarchical memory systems. Intensive simulations were
conducted with a modern computer system simulator, M5, to
verify the potential of APC and compared it with existing memory
performance metrics. Simulation and statistical results show that
APC is a significantly more appropriate memory metric than other
existing memory metrics when reflecting overall performance of a
memory system. APC can be applied on different levels of a
memory hierarchy. Based on the correlation coefficient with
different level APCs and IPC, the bottleneck of a memory
hierarchy can be identified. The ability to accurately measure
overall performance of a memory system has its practical
importance. With the overall performance, we can clearly
understand which component in a memory system should be
enhanced first, reducing the cache miss ratio or increasing the bus
bandwidth, for instance; we can better understand the matching of
processor and memory and the matching of application and
memory. In addition, the correlation of APC and IPC provides a
quantitative measurement of data-intensiveness of an application.
In this way, it provides a measurement of data-centric computing,
and could have profound impact in future data-centric algorithm
design and system development. In the future, we plan to extend
APC to multi-core environments and to file systems, and plan to
use APC to evaluate more advanced memory technologies, such
as hardware prefetching. Based on the insights of these studies,
new data-centric system optimizations will be investigated.

8. REFERENCES
[1] X.-H. Sun, and L. Ni, Another View on Parallel Speedup, Proc. of

IEEE Supercomputing'90, NY, Nov. 1990.
[2] W. Wulf and S. McKee. Hitting the wall: Implications of the

obvious. ACM SIGArch Computer Architecture News, Mar. 1995.
[3] Michael E. Thomadakis, The Architecture of the Nehalem

Processor and Nehalem-EP SMP Platforms, A research
report of Texas A&M University, Mar. 2011.
http://sc.tamu.edu/systems/eos / nehalem.pdf

[4] Robert Fiedler, Blue Waters Architecture, Great lakes
consortium for Petascale Computation. Oct. 2010.

[5] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, et.al
Exploiting Choice: Instruction Fetch and Issue on an

Implementable Simultaneous Multithreading Processor, in
Proceedings of the 23rd Annual International Symposium on
Computer Architecture, May 1996, 191~202.

[6] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle
Olukotun, Niagara: A 32-Way Multithreaded SPARC
Processor, IEEE Micro, 21-29, Mar. 2005.

[7] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache
Organization. In 8th International Symposium on Computer
Architecture (ISCA81), 81–87, 1981.

[8] Amit Agarwal, Kaushik Roy, T. N. Vijaykumar: Exploring
High Bandwidth Pipelined Cache Architecture for Scaled
Technology. 2003: 10778-10783

[9] Jude A. Rivers, Gary S. Tyson, Edward S. Davidson, et.al,
On High-Bandwidth Data Cache Design for Multi-Issue
Processors, IEEE Micro-30, Dec. 1997.

[10] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors, in
Proceedings of the 9th International Symposium on High-
Performance Computer Architecture (HPCA), 129-140,
Anaheim, CA, Feb. 2003.

[11] Intel White Paper, Inside Intel Core Microarchitecture and
Smart Memory Access, http://www.iuma.ulpgc.es/~nunez/
procesadoresILP/Intel64-Core-smartmemoryaccess-sma.pdf.
2011.

[12] Intel Reference Manual, "Introduction to Microarchitectural
Optimization for Itanium®2 Processors",
http://developer.intel.com, Apr. 2011.

[13] Stefan Andersson, Ron Bell, et.al, RS/6000 Scientific and
Technical Computing: POWER3 Introduction and Tuning
Guide, http://www.redbooks.ibm.com, Apr. 2011.

[14] Aneesh Aggarwal, Reducing Latencies of Pipelined Cache
Accesses Through Set Prediction, in Proceedings of the 19th
annual international conference on Supercomputing (ICS
'05), 2-9, Boston, MA, Jun. 2005.

[15] Jim Higgins, The Radical Statistician: A Practical Guide to
Unleashing the Power of Applied Statistics in the Real
World, Biddle Consulting Group, Apr. 2011.
http://www.biddle.com/documents/bcg_comp_chapter2.pdf,

[16] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S.
Reinhardt. The M5 simulator: Modeling networked systems.
IEEE Micro, 26(4):52, Jul. 2006.

[17] C. D. Spradling, SPEC CPU2006 benchmark tools. ACM
SIGARCH Computer Architecture News, 2007.

[18] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 4th edition,
Sep. 2006.

[19] A. Glew, “MLP yes! ILP no!,” in ASPLOS Wild and Crazy
Idea Session ‘98, Oct. 1998.

[20] Y. Chou, B. Fahs and S. Abraham, Microarchitecture
Optimizations for Exploiting Memory-Level Parallelism, in
31st International Symposium on Computer Architecture
(ISCA04), Jun. 2004.

[21] D. Sorin Vijay, S. Pai, Sarita V. Adve, Mary K. Vernon, and
David A. Wood, Analytic Evaluation of Shared-Memory
Systems with ILP Processors, in 25th International
Symposium on Computer Architecture, 1998

[22] William Starke, POWER7: IBM's Next Generation Balanced
POWER Server Chip, in Hotchip 21, Aug. 2009.

[23] Yuh-Fang Tsai, Feng Wang, Yuan Xie, Design Space
Exploration for 3-D Cache, in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 444 - 455, 2008.

	1. INTRODUCTION
	2. INTRODUCTION TO APC
	2.1 APC Definition
	2.2 APC Measurement Methodology

	3. EXPERIMENTS METHODOLOGY AND SETUP
	3.1 Introduction to Correlation Coefficient
	3.2 Experiment Setup

	4. EVALUATION RESULTS
	4.1 Proximity for different applications
	4.1.1 Instruction Cache Affection

	4.2 Proximity for different configurations
	4.3 Changing access parallelism in Cache Structure

	5. DISCUSSION
	5.1 Bottleneck inside memory system
	5.2 A quantitative definition of data intensive

	6. RELATED WORK
	7. CONCLUSION AND FUTURE WORK
	8. REFERENCES

