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ABSTRACT 
Due to the infamous “memory wall” problem and a drastic 
increase in the number of data intensive applications, memory 
rather than processor has become the leading performance 
bottleneck of modern computing systems. Evaluating and 
understanding memory system performance is increasingly 
becoming the core of high-end computing. Conventional memory 
metrics, such as miss ratio, average miss latency, average memory 
access time, etc., are designed to measure a given memory 
performance parameter, and do not reflect the overall performance 
of a memory system. On the other hand, widely used system 
measurement metrics, such as IPC and Flops are designed to 
measure CPU performance, and do not directly reflect memory 
performance. In this paper, we proposed a novel memory metric, 
Access Per Cycle (APC), to measure overall memory performance 
with consideration of the complexity of modern memory systems. 
A unique contribution of APC is its separation of memory 
evaluation from CPU evaluation; therefore, it provides a 
quantitative measurement of the “data-intensiveness” of an 
application. The concept of APC is introduced; a constructive 
investigation counting the number of data accesses and access 
cycles at differing levels of the memory hierarchy is conducted; 
finally some important usages of APC are presented. Simulation 
results show that APC is significantly more appropriate than 
existing memory metrics in evaluating modern memory systems. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: design studies, measurement 
techniques, performance attributes.  

General Terms 
Measurement, Performance 

Keywords 
Memory performance measurement; memory metric; 
measurement methodology 

1. INTRODUCTION 
The rapid advances of semiconductor technology have driven 
large increases in processor performance over the past thirty 
years. However, memory performance has not experienced as 
dramatic a gain as that of processors; leaving memory 
performance lagging far behind CPU performance. This enlarging 
performance gap between processor and memory is referred to as 
the “memory wall” [1] [2]. The “memory wall” problem exists 
not only in main memory but also in the on-die caches. For 

example, in the Intel Nehalem architecture CPU, each L1 data 
cache has a 4-cycle hit latency; and each L2 cache has a 10-cycle 
hit latency [3]. Additionally, the IBM Power6 has a 4-cycle L1 
cache hit latency, and an L2 cache hit latency of 24 cycles [4]. 
These large performance gaps between the processor and memory 
hierarchy make the memory system the dominant performance 
factor in high-end computing. Intensive research has recently been 
conducted to improve the performance of memory systems. 
However, understanding the performance of modern hierarchical 
memory systems remains elusive for researchers and practitioners. 

Because hierarchical memory systems are a bottleneck of 
performance, measuring and evaluating memory systems has 
become an important issue facing the high performance 
computing community. Conventionally used performance metrics, 
such as IPC (Instruction Per Cycle) and Flops (Floating point 
operations per second) are designed from a computing-centric 
point-of-view, and measure the overall computing performance. 
They are comprehensive and affected by a multitude of factors 
such as instruction sets, CPU micro-architecture, memory 
hierarchy, compiler technologies, etc. and as such are not 
appropriate measurements of the performance of a memory 
system. On the other hand, existing memory performance metrics, 
such as miss rate, bandwidth, and average memory access time 
(AMAT), only measure a particular component of a memory 
system. They are useful in optimization and evaluation of a given 
component, but cannot accurately characterize the performance of 
the memory system as a whole. In general, a component 
improvement does not necessarily lead to an improvement in 
terms of overall computing performance or overall memory 
performance. For instance, in some cases when miss rate 
decreases, IPC will decrease instead of increasing (Please see 
section 4.2). When the non-blocking cache optimization method is 
used, the AMAT metric shows a misleading effect on IPC (Please 
see section 4.3).  

There are several reasons that traditional memory performance 
metrics cannot directly characterize the overall performance of a 
memory system. First, modern CPUs exploit several ILP 
(Instruction Level Parallelism) technologies to overlap ALU 
instruction executions and memory accesses. Out-of-order 
executions overlap CPU execution time and memory access delay, 
allowing an application to hide the miss penalty of an L1 data 
cache miss that hits the L2 cache. Multithreading technology, 
such as SMT [5] or fine-grained multithreading [6] could tolerate 
even longer misses through main memory by executing another 
thread. Speculation mechanisms are used to overcome control 



dependencies, which help to avoid CPU stalls. Speculation could 
also activate memory access instructions that are not committed to 
the CPU registers due to miss predictions. Incorrect speculations 
can aggravate the burden of data access, but the effect of miss 
speculations is hard to predict. A incorrect prediction is not 
always useless. If a wrongly predicted data load accesses the same 
cache block as the next data load, then the incorrect speculation 
can be seen as an effective data prefetch, and it benefits the 
memory performance. All of these scenarios make component-
based measurements unsuitable for the measurement of the overall 
performance of a modern memory system. 

Additionally, modern memory systems use a large number of 
advanced caching technologies to decrease average access 
latency. Some widely used cache optimization methods, such as 
non-blocking cache [ 7], pipelined cache [ 8], and multibanked 
cache [9], allow cache accesses to overlap with each other. These 
technologies make the relationship between memory access and 
processor performance even more complicated, since the 
processor could continue accessing memory under multiple cache 
misses. Thus, the influence of the improvement of one particular 
component in a memory system becomes increasingly tangled and 
elusive. Evaluating memory systems from a single memory access 
or on a single component does not reflect the complexity of 
modern memory systems. Advanced memory technologies make 
the behavior of memory access similar to instruction dispatch, 
because they both execute several operations concurrently. As 
with the measurement of instruction executions, memory system 
evaluations should consider all the underlying parallelism and 
optimizations to measure the overall performance of a memory 
system. 

A new metric for overall memory system performance, which is 
separate from CPU performance but in the meantime correlates 
with CPU performance, is needed. In the other words, it should 
correlate with IPC but measure data access only. The notion of 
correlating with IPC is important due to the fact that memory 
performance is a determining factor of the overall performance of 
modern computing systems. The requirement of separating 
computing from data access is to provide a better understanding of 
memory systems, a better understanding of the capacity of a 
memory system to handle the so-call data-intensive applications, 
and a better understanding of the match between computing 
power and memory system performance. To reach this goal, the 
Access Per Cycle (APC) metric is proposed following the design 
philosophy of Instructions Per Cycle (IPC).  

The introduction of APC is four-fold. First, the definition of APC 
is introduced; next methods of determining the number of 
accesses and access cycles are explored; then methods of 
determining measurements at different memory hierarchy levels 
are discussed; finally a series of simulations are conducted to 
confirm that APC is significantly more appropriate than existing 
memory performance metrics. The statistical variable correlation 
coefficient is used to demonstrate that APC has a 0.97 correlation 
coefficient value with the overall computing performance in terms 
of IPC, whereas conventional metrics only have a 0.67 correlation 
in the best scenarios. 

The rest of this paper is organized as follows. Section 2 defines 
APC, and describes how it is measured. Section 3 introduces the 
experiment methodology and setup. Section 4 compares APC with 
other conventional memory metrics by way of the correlation 
coefficient. Section 5 discusses the application of APC and 
provides a quantitative definition of data intensive from a memory 

system point of view. Section 6 presents related works, and 
Section 7 concludes this study. 

2. INTRODUCTION TO APC  
In this section, the formal definition of APC is provided and 
investigation is carried out on the measurement of memory access 
cycles of APC in advanced non-blocking memory structures. 

2.1 APC Definition 
IPC reflects overall performance in terms of the number of 
executed instructions per cycle. After more than thirty years 
development, the ILP and memory optimization technologies have 
many key features in common. Table 1 lists a comparison of some 
common technologies adopted by them. 

Table 1. ILP and memory optimization comparison 
ILP Tech. Memory Tech. Key feature in common 

Pipelined stage 
in CPU data path 

Pipelined Cache Micro-operation 
overlapping 

Multiple 
Function Unit 

Multiport/Multibanked 
Cache  

Simultaneous operation 
dispatching  

Out-of-order 
execution 

Non-blocking Cache Do not stall ready 
operations 

Branch 
prediction/ 
Speculation/ 
Runahead[10] 

Data Prefetching Pattern recognizing and 
only successful with 
certain possibility 

Based on the similarity between processors and memory systems, 
and inspired by the success of IPC, APC (Access Per Cycle) is 
proposed to evaluate memory system performance. Generally 
speaking, APC is measured as the number of memory accesses 
per cycle. Also, the APC metric can be used to evaluate the 
memory performance at each level of a memory hierarchy. More 
specifically, APC is the number of memory accesses requested at 
a certain memory level (ie: L1, L2, L3, Main Memory) divided by 
the number of memory access cycles at that level. Let M denote 
the total data access (load/store) at a certain memory level, and T 
denote the total cycles consumed by these accesses. According to 
the definition of APC,  

𝐴𝑃𝐶 =
𝑀
𝑇

                   (1) 

The definition is simple enough. However, because modern 
memory systems adopt many advanced optimizations, such as 
pipelined cache, non-blocking cache, and multibanked cache, etc. 
several outstanding memory accesses may co-exist in the memory 
system at the same time. Counting cycle T is not as simple as it 
may seem. In the APC definition, it is defined as the total cycle T 
to be measured based on the overlapping mode, which means 
when there are several memory accesses co-existing during the 
same cycle, T only increases by one. For memory accesses, the 
non-overlapping mode is adopted. That is all the memory accesses 
issued are counted, including all successful or non-successful 
speculations and including all concurrent accesses. For example, 
if two L1 cache load requests exist at the same time, M will 
increase by two. 
According to the APC definition, each memory level has its own 
APC value. This paper focuses on APC for L1 cache and includes 
discussions of the main memory APC. The APC of L1 reflects the 
overall performance of the memory system, while the main 
memory’s APC is important since it has the longest access latency 
in the memory hierarchy without considering I/O and file systems. 
The study of these two should be sufficient in illustrating the APC 
concept and demonstrating its effectiveness. To avoid confusion, 



the term APCD is used for L1 data cache, APCI is used for L1 
instruction cache, which is the number of L1 data or instruction 
cache accesses divided by the number of overall cache access 
cycles of their own. Main memory APC is denoted as APCM, 
which is the number of off-chip accesses divided by the number 
of overall main memory access cycles.  

2.2 APC Measurement Methodology 
To cooperate with modern CPU out-of-order speculation, multi-
issue, multi-threading, and multi-core technologies, modern 
CPUs, such as Intel Core [11], Itanium [12], and IBM POWER3 
[ 13 ], employ non-blocking cache at each level of a memory 
hierarchy in order to enhance memory access parallelism. Non-
blocking cache can continue supplying data under a certain 
number of cache misses by adopting Miss Status Holding Register 
(MSHR) [7]. MSHR is a structured table. It records cache miss 
information such as access type (load/store), address, return 
register, etc. When the MSHR table is full, the cache disallows 
additional cache accesses, the CPU or up-level memory access 
requests are blocked due to the lack of MSHR entry. When the 
MSHR is attached to LLC (Last Level Cache) and full, designates 
there are no more outstanding main memory accesses.  
Calculating an accurate number of overall memory access cycles 
in a non-blocking cache is not simple. There are two reasons. 
First, unlike IPC, not every clock cycle has memory access; 
therefore, any measurement scheme requires some form of access 
detection. Secondly, many different memory accesses can be 
overlapped. Ideally, only one cycle should be counted in the total 
access cycles even if there are several different memory accesses 
occurring at the same time. In practice, there could be many 
different ways to measure the clock cycles under the overlapping 
mode. In this study, we propose an APC measurement logic, as 
illustrated in Fig. 1, that supports the overlapping mode to test the 
potential of APC. 

Cache

MSHR

CPU

APC
Measurement 

Logic

 
Figure 1.  APC Measurement Structure 

To avoid overlapping memory accesses from being counted 
multiple times in an access cycle, the APC Measurement Logic 
(AML) simultaneously detects memory access activities from 
CPU, cache and MSHR. If at least one memory access activity 
exists in the CPU/Cache interface bus or inside the cache, or if 
outstanding cache miss/misses are registered in the MSHR, this 
clock cycle is counted as one memory access cycle. Additionally, 
the AML will count the number of CPU load/store accesses by 
detecting CPU/Cache bus requests. If there are several memory 
requests at the same time from the bus, all are counted. Through 
this counting, the number of total accesses M and the total 
memory access cycle T can be obtained, and the APC can be 
calculated for this level of cache. The pseudo code of memory 
access counting logic for on-chip caches including L1, L2, or even 
L3 caches, is shown in Table 2. For L2 and L3 caches, while the 
logic is the same, multiple buses between upper level caches and 
itself may be detected in implementation simultaneously. 

Table 2. Pseudo Code for Memory Access Cycle Counting Logic 
If(MSHR table is not empty) //Having pending cache miss/misses 

 Mem_Cycle ++;  
Else if(Cache is accessing)//Cache lookup exists 

 Mem_Cycle ++; 
Else if(CPU/Cache bus is active)//Having a request or returning data 

 Mem_Cycle ++; 
Else  
       Mem_Cycle does not change 

In general, memory access cycles consist of three different timing 
stages, namely CPU/Cache Transferring Cycle, Cache Cycle, and 
MSHR Cycle. The three parts are mutually exclusive. The MSHR 
Cycle is the time spent in MSHR, and reflects the next level of the 
memory hierarchy ability to supply data. Only when the MSHR is 
not working does the Cache Cycle start to count. The Cache Cycle 
is the time spent in the cache determining if a hit or miss has 
occurred. It reflects the local cache's ability to provide data. It 
heavily depends on local cache organizations, such as cache 
capacity, associativity, etc. If both MSHR and cache are not 
working, then CPU/Cache Transferring Cycle starts to count. The 
CPU/Cache Transferring Cycle is the time consumed by CPU and 
Cache in transferring requests or data. 
The AML consists of two registers (e.g. 64-bit register is  
sufficient for most computer systems) and some detecting logic. 
One register counts the total number of memory cycles; the other 
counts memory accesses. Please notice that the memory accesses 
count is already provided by existing CPU performance counters. 
However, some detecting logic for counting the number of 
memory cycles must be added. The detecting logic includes 
CPU/Cache interface detecting logic, cache detecting logic, and 
MSHR detecting logic. For MSHR, the detecting logic only needs 
to detect whether the MSHR table is empty, and only one status 
bit is required. Modern caches adopt pipelined structures for data 
access. A typical pipeline structure consists of Decode, Compare 
Tags, Rd/Wr Data, and Drive Out stages [ 14]. For the cache 
detecting logic, only one bit for each stage is needed. Thus if the 
length of the pipeline stage is four, then the width of the cache 
detecting status register is four bits. For CPU/Cache interface 
detecting logic, the command and/or data bus need to be detected. 
The total bit-width of the command and data buses is usually less 
than 512 bits [3]. Therefore, the length of the CPU/Cache 
interface detecting logic should be less than or equal to 512 bits, 
assuming using one bit to detect one bit line of the bus. Adding all 
the detecting logic and the two registers, the total cost of AML is 
less than 1K bits, which is negligible compared with modern 
transistor sizes of a CPU.  
The AML for L1 cache can be extended to main memory with 
little variation. When measuring main memory APCM, main 
memory access count and LLC MSHR Cycle are needed to be 
detected. The former can be found in CPU performance counters; 
and the latter, only need 1 bit to detect whether the MSHR table is 
empty or not. As a result, there is almost no extra hardware cost to 
measure the APCM. Therefore, 

APCM=
Main Memory access count

LLC MSHR cycles        (2) 

With the modification to current cache structures, when running a 
real benchmark on the computer, the APCs of all cache levels and 
the IPC can be obtained. 

3. EXPERIMENTS METHODOLOGY AND 
SETUP 
In this section, the mathematical concept of correlation coefficient 
is introduced. With correlation coefficient as the proximity 
measurement, a series of experiments are executed with different 
cache and main memory parameters.  



3.1 Introduction to Correlation Coefficient 
The motivation of memory evaluation is due to the fact that the 
final system computing performance is heavily influenced by 
memory system performance. Therefore, an appropriate memory 
metric should reflect the system performance. The mathematical 
statistic variable correlation coefficient (CC) is used in this study 
to determine which memory metric most closely trends with the 
IPC variation. Correlation coefficient describes the proximity 
between two variables' changing trends from a statistics 
viewpoint. It measures how well two variables match with each 
other.  
The correlation coefficient is a number between -1 and 1. The 
higher the CC absolute value is, the closer the relation between 
the two variables would be. If it is 1 or -1, the two variables' 
trends are perfectly match to each other; if it is 0, then there is no 
relation between the two variables. Generally speaking, if the 
absolute value is greater than 0.8, then it is believed the two 
variables have a strong relation; if greater than 0.9, it is a 
dominant relation. Also if the correlation coefficient value is 
larger than 0, it is a positive relation. That means if one increases, 
the other also increases; otherwise, if it is less than 0, it is a 
negative relation between the two variables. That means if one 
increases, the other decreases [15]. 

3.2 Experiment Setup 
A detailed out-of-order CPU model in the M5 simulator [16] was 
adopted, which models an Alpha 21264-like CPU. Unless stated 
otherwise, the experiments assume the following default processor 
and cache configuration showing in Table 3. 

Table 3. Simulation Configuration Parameters 
Parameter Value 
Processor 
Function units 
 
 
 
ROB, LSQ size 

1core, 2 GHz, 8-issue width, 
6 IntALU 1 cycle,  1 IntMul 3 cycles, 
2 FPAdd  2 cycles, 1 FPCmp 2 cycles, 
1 FPCvt   2 cycles,  
1 FPMul  4 cycles, 1 FPDiv 12 cycles 
ROB 192, LQ 32, SQ 32 

L1 caches  
 

32KB Inst/32KB Data, 2-way, 64B line,  
hit latency: 2 cycle Inst/2 cycle Data,  
ICache 10 MSHR Entry,  
DCache 10 MSHR Entry 

L2 cache 2MB, 8-way, 64B line,  
12-cycle hit latency, 20 MSHR Entry 

DRAM latency/Width 200-cycle access latency/64 bits 

There are some other experiment configurations based on the 
default configuration. Each of them only changes one or two 
parameter/s of the simulation. The detailed experiment 
configurations are shown in Table 4. 

Table 4. A Serials of Simulation Configurations 
ID Description Changed Parameter/s  
C1 L1:32KB,2way;  L2: 2MB,8way; 

Mem100ns 
Default  Config 

C2 L1:32KB,4way;  L2: 2MB,8way; 
Mem100ns 

L1 Cache Assoc. 

C3 L1:32KB,8way;  L2: 2MB,8way; 
Mem100ns 

L1 Cache Assoc. 

C4 L1:64KB,2way;  L2: 2MB,8way; 
Mem100ns 

L1 Cache Size 

C5 L1:64KB,4way;  L2: 2MB,8way; 
Mem100ns 

L1 Cache Size & 
Assoc. 

C6 L1:64KB,8way;  L2: 2MB,8way; 
Mem100ns 

L1 Cache Size & 
Assoc. 

C7 L1:I$32KB,2way, D$64KB,2way;   
L2: 2MB,8way; Mem100ns 

Only DCache Size 

C8 L1:I$64KB,2way, D$32KB, 2way;   Only ICache Size 

L2: 2MB,8way; Mem100ns 
C9 L1:I$64KB,4way, D$32KB, 2way;   

L2: 2MB,8way; Mem100ns 
Only ICache Size & 
Assoc. 

C10 L1:I$64KB,8way, D$32KB, 2way;   
L2: 2MB,8way; Mem100ns 

Only ICache Size & 
Assoc. 

C11 L1:32KB,2way;  L2: 4MB,8way; 
Mem100ns 

L2 Cache Size 

C12 L1:32KB,2way;  L2: 8MB,8way; 
Mem100ns 

L2 Cache Size 

C13 L1:32KB,2way;  L2: 2MB,16way; 
Mem100ns 

L2 Cache Assoc. 

C14 L1:32KB,2way;  L2: 4MB,16way; 
Mem100ns 

L2 Cache Size & 
Assoc. 

C15 L1:32KB,2way;  L2: 8MB,16way; 
Mem100ns 

L2 Cache Size & 
Assoc. 

C16 L1:32KB,2way;  L2: 2MB,8way; 
Mem30ns 

Main memory latency 

C17 L1:32KB,2way;  L2: 2MB,8way; 
Mem60ns 

Main memory latency 

C18 L1:32KB,2way, MSHR 1;   
L2: 2MB,8way; Mem100ns 

MSHR Entry 

C19 L1:32KB,2way, MSHR 2;   
L2: 2MB,8way; Mem100ns 

MSHR Entry 

C20 L1:32KB,2way, MSHR 16;   
L2: 2MB,8way; Mem100ns 

MSHR Entry 

The configuration C1~C17 are the basic cache/memory 
configurations, which only change the cache size, associativity, or 
memory latency. These basic configurations have 10 MSHR 
entries each. The C18 changes the cache model into a blocking 
cache structure. C19 and C20 increase memory level parallelism 
by increasing the MSHR entry to 2 and 16 respectively. By 
changing memory system configurations, it is possible to observe 
memory performance variation trends and IPC variation trends, 
and examine which memory metric has a performance trend that 
best matches that of IPC’s. 
The simulations were conducted with 26 benchmarks from SPEC 
CPU2006 suite [17]. Five benchmarks in the set were omitted 
because of compatibility issues with the simulator. The 
benchmarks were compiled using GCC 4.3.2 with -O2 
optimization. The test input sizes provided by the benchmark suite 
were adopted for all benchmarks. For each benchmark, one billion 
instructions were simulated to collect statistics, or all executed 
instructions if the benchmark finished before one billion 
instructions. 

4. EVALUATION RESULTS 
Based on the above configurations, the M5 simulator was used to 
collect the measurements of different memory metrics. Each 
memory metric is then correlated against the IPC from two 
approaches. First, based on one configuration, we correlate each 
application's memory metric with its IPC. Second, we focus on 
one application, while changing memory configurations, the 
variation similarity between each memory metric and IPC is 
observed. The first approach tests the correctness of each memory 
performance metric. The second tests the sensitivity of each 
memory performance metric. The combination of these two 
provides a solid foundation to determine the appropriateness of a 
metric. The results show that APC has the highest correlation 
value with IPC in both cases. Therefore, it is a clear winner. 

4.1 Proximity for different applications 
IPC with different memory metrics were compared. The memory 
metrics compared include, Access per Cycle (APC), Hit Rate 
(HR, the counterpart of Miss rate), Hits per 1K instruction (HPKI, 
the counterpart of Misses per 1K instructions), average miss 



penalty (AMP), and Average Memory Access Time (AMAT) 
[18]. For APC, HR, and HPKI, there should be a positive relation 
with IPC; for AMP and AMAT, there should be a negative 
relation with IPC. To show the proximity of different memory 
metrics with IPC, Spec CPU2006 was run for all configurations 
(C1~C20) with different L1, L2 cache, main memory, and MSHR 
configuring parameters. The correlation coefficient for each 
memory metric against IPC was calculated and shown in Fig. 2. 
From Fig. 2 it can be observed that APC has the strongest relation 
with IPC, whose average CC value is 0.876. This strong relation 
between APC and IPC also reflects the fact that the final system 
performance largely depends on the performance of the memory 
hierarchy. 

 
Figure 2.  Correlation coefficient of different memory metrics under 

different configurations 

Among other metrics, AMAT is the best one with average CC 
value of -0.672, since it considers both hit latency and miss 
penalty. Compared with AMAT, APC improves correlation value 
by 30.4%. Also, it is interesting to notice that the simple metric 
HR has approximately the same correlation value as AMAT. This 
is probably due to the performance gap between CPU and 
memory growing larger and larger, say 200~400 CPU cycles; 
therefore, AMAT is dominated by miss penalty, and miss penalty 
is largely determined by miss rate. Fig. 2 also shows that using 
HPKI as a form of hit rate to predict overall performance is not a 
smart choice. It has the smallest correlation value. 

4.1.1 Instruction Cache Affection 
According to the Von Neumann's architecture, memory access 
includes two parts, data access and instruction access. Whether 
the instruction is memory access or not, it should be read into 
CPU. Also, no matter what advanced technologies are adopted in 
instruction execution, if there are not enough instructions fetched 
into the CPU, these technologies are useless. Thus, to be accurate, 
one should consider both data access and instruction access in the 
measurement of memory systems. 

 
Figure 3.  Normalized IPC, APCI, APCD, and APCAll 

To optimize the accuracy of APC, the L1 instruction cache APC, 
APCI is adopted. Using APCD to denote the L1 data cache APC, 
APCAll, which equals APCD ×APCI, represents a new metric to 
evaluate overall memory performance. The reason APCD and 
APCI are correlated with multiplication is inspired by the 

conditional possibility. Only when the instruction is efficiently 
fetched into the CPU, can a data access request be generated. The 
correlation coefficient of APCAll under the default configuration 
(C1) improves by 2.18%. For all configurations (C1~C20), the 
accuracy of APCAll is 0.899, an improvement of 2.58% on 
average compared to APCD. The reason is that for most 
applications the instruction accesses are almost perfect. Only very 
small numbers of applications, such as gcc, GemsFDTD, and 
h264ref, have large instruction miss rates. For these applications, 
APCAll can add more accurate adjustments. The normalized 
APCI, APCD, APCAll and IPC of default configuration (C1) are 
shown in Fig. 3. The normalization is based on the magnitude of 
each metric. From Fig. 3, it can be seen that the APCAll and IPC 
have almost the same variation trends. Fig. 3 confirms that overall 
application performance is largely determined by the memory 
performance as can be expressed by the APC metric. 

4.2 Proximity for different configurations 
In this section, we focus on each application, in order to observe 
the impact of memory configuration on performance and 
correlation. Two groups of 20 simulation configurations are run. 
The first group (C1~C17 in Table 4) changes basic cache/memory 
configuration, each configuration inside this group changes L1/L2 
cache size or associativity, or memory latency respectively. The 
other group (C18~C20) changes non-blocking cache ability with 
altering the number of MSHR entry. The simulation results of the 
first group are presented in this section. In the next section, 
simulations with both groups are conducted. To clearly show the 
difference, APCD and APCAll are compared against the other four 
memory metrics from Fig. 4 to Fig. 7. Similar to APC which has 
two measures APCD and APCAll, every conventional memory 
metric also has two measures which represent data cache 
performance only and comprehensive cache performance (data 
and instruction cache combined performance). For example, when 
considering AMAT, AMATD is used to describe data cache 
AMAT, and AMATAll (equal to AMATD×AMATI) is used to 
describe comprehensive cache AMAT.  
In Fig. 4 to Fig. 7, it can be seen that APCAll has the highest 
correlation coefficient value with IPC, with a average value for all 
applications of 0.9632, and this means that APCAll and IPC have a 
dominant relation. For other memory metrics, AMATAll has the 
closest relation with IPC, with an average value of -0.9393, a little 
lower than APCAll. This shows if advanced data access 
technologies, such as non-blocking, are not considered, AMAT is 
a quite good metric in reflecting memory performance variation. 
However, when considering non-blocking structure, AMAT is 
misleading. (Please refer to next section for details). For other 
metrics, there are some misleading indications as well. For 
example, Hit Rate should have positive coefficient values, but for 
several applications its coefficient values are negative or 
approximate to zero. One reason for the divergence is that HR 
does not explicitly include lower level cache performance factors, 
such as miss latency information (whereas APC and AMAT do 
consider lower level cache performance), so when L2 cache size 
increases or main memory latency decreases, the IPC will 
increase, but Hit Rate does not change. For instance, the 
benchmark sjeng has the HR correlation value of 0.058, which is 
mainly because when changing L2 and main memory's 
parameters, the hit ratio of data cache and instruction cache 
remain almost the same value, 0.8084 and 0.9671 respectively. 
However, the IPC changes from 0.677 to 0.872. It is also found 
for the benchmark zeusmp, when HR increases from 0.879 to 
0.883, the IPC unexpectedly drops from 0.664 to 0.645 when 
simulation configuration changes from C2 to C3. The main reason 
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of the mismatch is believed to be the speculation mechanism. 
When the cache associativity increases, it does not only decrease 
misses count, but also decreases the memory access count, 
because of omitting to execute mis-speculated instructions. As 
stated earlier, not all mis-speculated memory accesses are 
harmful. On the contrary, APC is much immune to speculation, 
because when counting access cycles, the overlapping mode is 
adopted, and the mis-speculated memory accesses are overlapped 
with correctly speculated memory accesses. In contrast to HR and 
HPKI missing information of lower level cache, AMP only 
considers lower level cache miss access. When L1 data/instruction 
cache size increases or associativity increases, the number of miss 
accesses decreases, but the miss latency for each miss may not 
change. 

 
Figure 4.  The Correlation Coefficients of APC and HR  

 
Figure 5.  The Correlation Coefficients of APC and HPKI  

 
Figure 6.  The Correlation Coefficients of APC and AMP  

 
Figure 7.  The Correlation Coefficients of APC and AMAT 

4.3 Changing access parallelism in Cache 
Structure 
APC and AMAT have very similar correlation values with IPC 
when changing basic cache/memory configurations. Here the 
number of MSHR entries is altered to examine whether the two 
memory metrics still have a similar relation with IPC. Fig. 8 
shows the correlation coefficient of APC and AMAT for all the 
twenty configurations listed in Table 4.  

 
Figure 8.  The Correlation Coefficients of APC and AMAT with 

MSHR changes 
Fig. 8 shows that APC still has the same correlation, with an 
average value of 0.9696. However, AMAT could not correctly 
reflect IPC for most applications. The reason is that when there 
are not enough MSHR entries, the CPU will be blocked by the 
memory system. APC can record the CPU blocked cycles by 
counting MSHR Cycle, whereas AMAT cannot. On the contrary, 
contention increases with the number of MSHR entries; therefore, 
the individual data access time, that is AMAT, will increase as 
well. The variation of IPC and APC matches well with each other. 
However, AMAT gives a false indication about memory system 
performance.  
Through the above simulation and analyses, under different 
applications and under different configurations, it can be seen that 
the APC metric is the most appropriate performance metric for 
memory systems. APC can directly determine the overall system 
performance in all the testing. In contrast, other existing memory 
metrics cannot accurately reflect the system performance, and 
sometimes even mislead the performance.  

5. DISCUSSION 
In this section, some key usages of APC, which help to 
understand application behaviors, are discussed. Also an 
important quantitative definition of data intensive application 
based on the APC concept is given. 

5.1 Bottleneck inside memory system 
From Fig.4 through Fig.8, with the dominating correlation 
between APC and IPC, it is clear that the performance is now 
determined by memory system performance. An important 
question then is at which level of the memory system is the actual 
bottleneck of performance. According to the APC's definition, 
each level of memory hierarchy has its own APC values: L1 data 
and instruction caches have APCD and APCI respectively; L2 
cache has APCL2; and main memory has APCM. However, each 
level's APC not only represent the performance of its memory 
level, but also includes all the lower levels of the memory 
hierarchy. For example, the value of APCD represents the 
memory performance of L1 data cache, L2 cache and main 
memory; and APCL2 represents the memory performance of L2 
cache and main memory. Only APCM, which is the lowest level 
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in the memory hierarchy, represents main memory itself when 
disk storage is not considered. Therefore, by correlating IPC with 
APC at each level, one can find the lowest level that has a 
dominating correlation with IPC and can quantitatively detect the 
performance bottleneck inside the memory system. Fig. 9 shows 
the correlation value of all level APCs for 26 benchmarks. For 
example, for benchmark mcf, both APCAll and APCL2 have 
dominant relation with IPC, but its APCM does not. That means 
the performance of mcf application is determined by its L2 cache 
performance, and has a good locality. For benchmark lbm, since 
all levels of APC have dominating correlation with IPC, the 
performance of lbm is determined by the performance of the 
lowest level, namely the main memory level. 

 
Figure 9.  Correlation Coefficients of APCAll , APCL2, and APCM  

5.2 A quantitative definition of data intensive  
The term "Data-intensive Applications" and “Data-intensive 
Computing” are widely-used terms in describing application or 
computing where data movement, instead of computing, is the 
dominate factor. However, there is no commonly accepted 
definition of “data-intensive computing” or quantitative 
measurement of “data intensive”. As APC characterizes the 
overall memory performance, the IPC and APC correlation value 
provides a quantitative definition of data intensive. The idea is 
simple: if APCM dominates IPC performance, then the application 
is data intensive. The degree of the domination provides a 
measurement of data intensiveness. We use the correlation value 
of APCM to quantify the degree of data intensive. There are three 
reasons to use APCM instead of APCD to measure data intensive. 
First, due to the "memory-wall" problem, memory latency 
becomes the most important performance bottleneck in the 
memory hierarchy and dramatically drags CPU speed. Next, we 
do not count data re-use as part of data-intensiveness unless it has 
to be read from main memory again. Finally, according to the 
definition APCs, if the APCM has a dominate relation with IPC, 
then APCL2 and APCD will have a dominate relation with IPC 
too. In other words, we want to drop the cache hit influence, since 
we are interested in data movement, not usage, concerning data 
intensiveness. Also please note the hardware cost for measuring 
APCM is almost zero. 
Fig. 9 is sorted according to APCM correlation values in 
ascending order (the farther to the left, the smaller the value of 
APCM). The correlation value of APCM is divided into three 
intervals, that is (-1, 0.3), [0.3, 0.9), and [0.9, 1). Thirteen 
applications counted from the left side (from specrand_i to 
gromacs) fall into the first interval. According to the three APC 
values used in Figure 9, it can be concluded that the application 
performance of these 13 applications are dominated by the L1 
cache, not L2 or main memory because the correlation values of 
APCL2 and APCM of these applications are negative or very 
small, As the correlation value of APCM  increases, the effect of 

main memory to the overall application becomes increasingly 
important. Therefore, in the second interval (from mcf to sjeng), 
some applications' performance are dominated by the L2 caches, 
e.g. mcf, milc. However, for some other applications, such as 
bzip2, L2 and main memory are both important. For the third 
interval, the applications' performances are dominatingly 
determined by main memory performance. This observation 
motivates us to define an application data intensive if its 
correlation coefficient of APCM and IPC is equal to or larger than 
0.9. Another reason for picking 0.9 as the threshold is that, 
according to mathematical definition of correlation coefficient, 
when the correlation value of two variables is equal to or larger 
than 0.9, then the two variables have a dominant relation. 
Therefore, here we define that an application is data intensive if 
and only if 
Data Intensive Application ≡ 𝑐𝑜𝑒(𝐴𝑃𝐶𝑀, 𝐼𝑃𝐶) ≥ 0.9, 
and the value of the correlation provides a quantitative 
measurement of the data-intensiveness. 

6. RELATED WORK 
Miss rate (MR), miss per kilo-instructions (MPKI), average miss 
penalty (AMP), and average memory access time (AMAT) are 
some commonly used performance metrics in evaluating memory 
systems [18]. MR is defined as {the number of miss memory 
accesses} over {the number of total memory accesses}. Similarly, 
MPKI is defined as {the number of miss memory accesses × 
1000} over {the number of total committed Instructions}. AMP 
equals {the summary of single miss latency} over {the number of 
miss memory accesses}. Finally, AMAT = Hit time + MR×AMP. 
MR and MPKI only reflect the proportion of the data in or out of 
the cache; they don't reflect the penalty of the miss access. AMP 
only catches the penalty of the cache miss access; it doesn't show 
the hit in performance. Also for AMP, the single miss latency is 
counted based on single miss access as if there were no other 
memory access present. AMAT is a comprehensive memory 
metric, but it is still based on the single data access point of view. 
It is the average period between start time and finish time of a 
single memory access. It does not consider the memory access 
overlapping and parallelism. There have been several studies on 
Memory Level Parallelism (MLP) [19] in recent years. MLP is a 
main memory metric. It is the average number of long-latency 
main memory outstanding accesses when there is at least one such 
outstanding access [20]. So 

𝑀𝐿𝑃 = �
𝑀𝐿𝑃(𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠 𝐶𝑦𝑐𝑙𝑒𝑠

𝑛

𝑡=0

        (3) 

MLP(t) is MLP value at clock cycle t. The meaning of total 
memory access cycles in Equation (3) is the same with APC 
definition. Sorin’s fM parameter [21] has a similar definition to 
the MLP in [20]. Sorin’s fM considers all main memory accesses, 
while Chou [20] only considers useful long-latency main memory 
access. Here, useful means that the data fetched by main memory 
access is finally used by CPU. In the APC approach, APCM, 
which is defined as the total number of off-chip access divided by 
the number of total main memory access cycles, reflects main 
memory access performance. Assuming each off-chip memory 
access has a constant latency, say m cycles, then each memory 
access will count m times when calculating different MLP(t)s, so 
APCM=MLP/m. That means APCM is directly proportional to 
MLP. Any analyzing indication from MLP on CPU micro-
architecture could also be gotten from APCM. A known limitation 
of MLP is it only focuses on off-chip memory access based on the 
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epoch memory access mode for some commercial or database 
workloads [20]. These kinds of applications usually have much 
more L1 and L2 cache misses, and their overall performances are 
heavily determined by main memory access. But for some 
traditional CPU intensive applications, only considering main 
memory access is far from enough. In addition, advanced process 
technology, such as EDRAM used in IBM POWER7, also 
dramatically increase on-chip cache size up to 32MB [22]. Using 
3D integration technology, one could implement multi-layer CPU 
with one layer full of on-chip cache [23]. In contrast, APC not 
only can be used to analyze commercial applications, but also to 
analyze traditional scientific applications, so it has a much wider 
application. Nevertheless, MLP is a new metric drawing much 
attention for data intensive applications. Being a superset of MLP 
demonstrates the preeminence of APC from another angle. In fact, 
it makes APC and MLP mutually supporting to each other. 

7. CONCLUSION AND FUTURE WORK 
In this paper we proposed a new memory metrics APC, gave its 
measurement methodology, and demonstrated its unique ability in 
measuring the overall and layered performance of modern 
hierarchical memory systems. Intensive simulations were 
conducted with a modern computer system simulator, M5, to 
verify the potential of APC and compared it with existing memory 
performance metrics. Simulation and statistical results show that 
APC is a significantly more appropriate memory metric than other 
existing memory metrics when reflecting overall performance of a 
memory system. APC can be applied on different levels of a 
memory hierarchy. Based on the correlation coefficient with 
different level APCs and IPC, the bottleneck of a memory 
hierarchy can be identified. The ability to accurately measure 
overall performance of a memory system has its practical 
importance. With the overall performance, we can clearly 
understand which component in a memory system should be 
enhanced first, reducing the cache miss ratio or increasing the bus 
bandwidth, for instance; we can better understand the matching of 
processor and memory and the matching of application and 
memory. In addition, the correlation of APC and IPC provides a 
quantitative measurement of data-intensiveness of an application. 
In this way, it provides a measurement of data-centric computing, 
and could have profound impact in future data-centric algorithm 
design and system development. In the future, we plan to extend 
APC to multi-core environments and to file systems, and plan to 
use APC to evaluate more advanced memory technologies, such 
as hardware prefetching. Based on the insights of these studies, 
new data-centric system optimizations will be investigated. 
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