
Scalable Computing Software Lab, Illinois Institute of Technology 1

From Amdahl’s Law to Big Data:
A Story of

Mathematics and Technology

Asian Science Camp, July 30, 2019

Xian-He Sun

Illinois Institute of Technology
sun@iit.edu

12/27/2019 Scalable Computing Software Lab, Illinois Institute of Technology 2

Hot Issues

L2

L1
DF

Memory Wall

 AI and Deep Learning

 Big Data

 High Performance and Could Computing

Computing power

12/27/2019 Scalable Computing Software Lab, Illinois Institute of Technology 3

Summit: the World Fastest Computer

 148.6 petaflops (187.66 petaflop theoretical peak)
 2,282,544 IBM Power 9 core
 2,090,880 Nvidia Volta GV100 core
 Power efficiency 11.324gigaflop/watt

What is Parallel Processing

 Parallel Processing
 Several working entities work together toward a common goal

 Parallel Computer
 A computer designed for parallel processing

 Scalable Computing
 A parallel computing which can be scaled up to larger size

without losing efficiency

 Supercomputer (high performance computer, high end
computer, advanced computer)
 A general-purpose computer capable of solving individual problems

at extremely high computation speed

12/27/2019

Maximum
System
256 racks
3.5 PF/s
512 TB

850 MHz
8 MB EDRAM

4 cores

1 chip, 20
DRAMs

13.6 GF/s
2.0 GB DDR
Supports 4-way SMP

32 Node Cards
1024 chips, 4096 procs

14 TF/s
2 TB

72 Racks

1 PF/s
144 TB

Cabled 8x8x16
Rack

Petaflops
System

Compute Card

Chip

435 GF/s
64 GB

(32 chips 4x4x2)
32 compute, 0-2 IO cards

Node Board

Front End Node / Service Node

System p Servers

Linux SLES10

HPC SW:

Compilers

GPFS

ESSL

Loadleveler

Parallel Processing & Scalable Computing

Source: ANL ALCF

IBM BG/P

Parallel Processing & Scalable Computing

– Discretization
–Scalable

More accurate solution
Sufficient parallelism

Maintain efficiency

–Efficient in parallel
computing

Load balance
Communication

– Mathematically
effective

Adaptive
Accuracy

Why Scalable Computing

Reduced
Complexity

& Cost

Higher Quality
of Service

Increased
Productivity

Increased
Efficiency

Cloud Computing & Big Data

Improved
Resiliency

From High Performance Computing to Cloud to Big Data

The Journey of Supercomputing

 The Background of Parallel Processing
 Speedup
 Sources of overhead

 The Laws of Scalable Computing
 The Amdahl’s law
 The Gustafson’s law
 The Sun-Ni’s law

 Impacts and Discussions

Scalable Computing Software Lab, Illinois Institute of Technology 8

Page 9

Models of Speedup
 Speedup

 Ts = time for the best serial algorithm

 Tp= time for parallel algorithm using p processors

 Simple enough, but also unexpected complex

TimeExecutionParallel

TimeExecutionorUniprocess
pS

Performance of Parallel Processing

p

s
p T

T
S 

Page 10

Example

Processor 1

time

100

time

1 2 3 4

25 25 25 25 time

1 2 3 4

35 35 35 35

(a) (b) (c)

ationparallelizperfect

,0.4
25

100
pS

10 iscost synch but

 balancing loadperfect

,85.2
35

100
pS

Page 11

Example (cont.)

time

1 2 3 4

30 20 40 10
time

1 2 3 4

50 50 50 50

(d) (e)

imbalance loadbut

synch no

,5.2
40

100
pS

costsynch and

imbalance load

,0.2
50

100
pS

Page 12

Degradations of Parallel Processing

Unbalanced Workload

Communication Delay

Overhead Increases with the Ensemble Size

Overheads

• communication

• Load imbalance

• Synchronization

• Extra computation

Page 13

Principals of Architecture Design

 Make common case fast (90/10 Rule)

 Amdahl’s Law
 Law of diminishing returns

 Speedup
 Achieved performance improvement over original

Here performance is measured in Speed

Gene Amdahl

Page 14

Amdahl’s Law
Execution time of any code has two portions

Portion I: not affected by enhancement
Portion II: affected by enhancement

p2p1old timeexecution timeexecution timeexecution 

p is speedup factor of old/new
execution times for portion II

As p -> infinity, execution timenew ->  * execution timeold

   
p

old

oldnew

timeexecution
1 timeexecution timeexecution  

 is % of original code that cannot
benefit from enhancement

Execution timep1 Execution timep2

Page 15

Amdahl’s Law for Parallel Processing (1967)

 Let = fraction of program (algorithm) that is serial and
cannot be parallelized. For instance:
 Loop initialization
 Reading/writing to a single disk
 Procedure call overhead

 Parallel run time is given by

sp T)
p

α
(αT 




1

Gene M Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS spring joint computer conference, 1967

   
p

old

oldnew

timeexecution
1 timeexecution timeexecution  

Page 16

Amdahl’s Law

 Amdahl’s law gives a limit on speedup in terms of 

 If we assume that the serial fraction is fixed, then the speedup
for infinite processors is limited by 1/

 For example, if =10%, then the maximum speedup is 10,
even if we use an infinite number of processors


1

lim  pp S

௣
௦

௣

௦

௦
௦

Page 17

Amdahl Law

Wp

W1

Wp Wp WpWp

W1 W1 W1 W1

1 2 3 4 5

Number of Processors (p)

Amount
of Work

Tp

T1

Tp Tp Tp

T1
T1

Tp

T1 T1

1 2 3 4 5

Number of Processors (p)

Elapsed
Time

 The sequential part becomes the dominate factor quickly

Page 18

Amdahl’s Law
   

p

old

oldnew

timeexecution
1 timeexecution timeexecution  

 
p
 


1

1

timeexecution

timeexecution
Speedup

new

old

overall

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40

S
p

ee
d

u
p

 o
ve

ra
ll

Page 19

Amdahl’s Law with Overhead







 pas

T
T

T
p

T
T

T
Speedup

overhead
overhead

FS

1

1
1

1 1
)1(

• To include overhead will be even worse
• The overhead includes parallelism and interaction

overheads

Amdahl’s law: argument against massively parallel systems

12/27/2019 20

History back to 1988

Cray X-MP
Fastest computer 1983-1985 Cray Y-MP

IBM 7030 Stretch IBM 7950 Harvest

All have up to 8
processors, citing
Amdahl’s law,

lim
௣→ஶ

𝑆 𝑝𝑒𝑒𝑑𝑢𝑝஺௠ௗ௔௛௟ =
1

α

Gene Amdahl

Bombshell: Gustafson, etc. Got Speedup of
more than 1,000 on Three Applications

12/27/2019 Scalable Computing Software Lab, Illinois Institute of Technology 21

John L. Gustafson, Gary R. Montry, and Robert E. Benner, “Development of Parallel Methods for
a 1024-Processor Hypercube,” SIAM Journal on Scientific and Statistical Computing, Vol. 9, No.4,
1988 (submitted 3/10/1988, accepted 3/25/1988, appeared April 1988)

John Gustafson, “Reevaluation of Amdahl’s Law,” Communications of the ACM, Vol. 31, No. 5,
May 1988.

 On a 1024-processor nCUBE parallel computer

 For three applications: wave mechanics, fluid dynamics, and
structural analysis.

 Introduced the concept of Scalable Computing, problem
size increases with the machine size

Page 22

Reevaluate Amdahl’s Law

 Amdahl’s Law is designed for technology improvement,
but has been widely used to against parallel processing in
terms of reducing execution time

 But: large computers are not (only) designed for solving
existing problem faster, they are designed for solving
otherwise unsolvable large problems

 The introduction of scalable computing, where problem
size increases with the machine size

Page 23

• Fixed-Time Speedup (Gustafson, 88)

o Emphasis on work finished in a fixed time

o Problem size is scaled from W to W'

o W': Work finished within the fixed time with

parallel processing

W
W

SolvingofTimeorUniprocess
'SolvingofTimeorUniprocess

'SolvingofTimeParallel
'SolvingofTimeorUniprocess'

W
W

S p 

W
W '

John L. Gustafson

Page 24

Fixed-Time Speedup (Gustafson)

Wp

W1 Wp

Wp

Wp
Wp

W1

W1

W1

W1

1 2 3 4 5

Number of Processors (p)

Amount
of

Work

Tp

T1

Tp Tp Tp

T1 T1

Tp

T1 T1

1 2 3 4 5

Number of Processors (p)

Elapsed
Time

 Solving a larger application within the time limit

Page 25

Reexam Amdahl Law (Fixed-Size Speedup)

Wp

W1

Wp Wp WpWp

W1 W1 W1 W1

1 2 3 4 5

Number of Processors (p)

Amount
of Work

Tp

T1

Tp Tp Tp

T1
T1

Tp

T1 T1

1 2 3 4 5

Number of Processors (p)

Elapsed
Time

 It is on time reduction for solving a fixed problem (size)

Gustafson’s Law (Without Overhead)

a 1-a time

p (1-a)p

ps

s

tt

t




ி்

If α=0.1

ி் = 0.1 + 0.9p

 Under Gustafson’s Law the parallel processing part is
changing with the number of processors, p, and problem size

 Linear speedup

But: Gustafson’s Applications are not
Scalable

12/27/2019

 Most applications cannot get more than 1,000 speedup
on a 1024-processor nCUBE parallel computer

Parallel Processing overhead

 Even the three applications are not Scalable (increase
problem size further does not help)

Why?

Memory Constrained Scaling:
Sun and Ni’s Law

 Scaling is limited by memory space (disk will increase
overhead significantly), e.g. fixed memory capacity/usage per
processor
 (ex) N-body problem

 Problem size is scaled from W to W*, W* is the work executed
under memory limitation

 The relation between memory & computing requirement is
determined by the underlying algorithm/program

 Memory-scaling function

)(* * MpGW 

X.H. Sun, and L. Ni , "Scalable Problems and Memory-Bounded Speedup," Journal of Parallel
and Distributed Computing, Vol. 19, pp.27-37, Sept. 1993 (SC90).

Scalable Computing Software Lab, Illinois Institute of Technology

Sun & Ni’s Law

a 1-a

p
(1-a)G(p)

time
Lionel M. NiXian-He Sun

ppG

pG

TimeWork

pTimepWork
SpeedupMB /)()1(

)()1(

)1(/)1(

)(/)(









12/27/2019 1

Assuming the problem needs ଷ computation and ଶ memory

Then
య

మ, and

ெ஻

ଷ
ଶ

ଷ
ଶ

存储受限理论

Page 30

Memory-Bounded Speedup 存储受限理论

(Sun & Ni, 90)

• Emphasis on work finished under current physical

limitation

° Problem size is scaled from W to W*

° W*: Work executed under memory limitation with

parallel processing

*

*
*

SolvingofTimeParallel

SolvingofTimeorUniprocess

W

W
S p 

Page 31

Memory-Bounded Speedup (Sun & Ni)

Tp

T1

Tp Tp Tp

T1 T1

Tp

T1 T1

1 2 3 4 5
Number of Processors (p)

Elapsed
Time

 In practice, memory-bounded performs better than fixed-time but
both hard to achieve linear speedup

p
T

T

Work

pWork
Speedup overhead

FT)1(
)1(

)(

1
 

ெ஻

Tp

T1

Tp Tp Tp

T1 T1

Tp

T1 T1

1 2 3 4 5
Number of Processors (p)

Elapsed
Time

Page 32

• Speedup

TimeExecutionParallel

TimeExecutionorUniprocess
S p 

Speed Sequential

SpeedParallel
pS

Rethinking of Speedup

• It is only the true speedup if problem size is fixed, but
now we have scalable computing

• Generalized speedup

X.H. Sun, and J. Gustafson, "Toward A Better Parallel Performance Metric," Parallel Computing,
Vol. 17, pp.1093-1109, Dec. 1991.

Page 33

X.-H. Sun, and L. Ni, “Another View of Parallel Speedup,” Proc. of IEEE Supercomputing'90, NY,
NY, Nov.12--Nov.16, 1990.

The Three Laws
 Tacit assumption of Amdahl’s law

 Problem size is fixed

 Speedup emphasizes on time reduction

 Gustafson’s Law, 1988
 Fixed-time speedup model

 Sun and Ni’s law, 1990
 Memory-bounded speedup model

𝛼 1- 𝛼

𝛼 (1-𝛼)p

Work: 𝛼+(1-𝛼)p

Work: 1

𝑆𝑝𝑒𝑒𝑑𝑢𝑝௙௜௫௘ௗି௧௜௠௘ =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

= 𝛼+ 1 − 𝛼 𝑝

𝑆𝑝𝑒𝑒𝑑𝑢𝑝௠௘௠௢௥௬ି௕௢௨௡ௗ =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

 =
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼 𝐺 𝑝 𝑝⁄

𝛼 (1-𝛼)G(p)

Work: 𝛼+(1-𝛼)G(p)

Page 35

The Three Laws: and their impact

 Amdahl’s law (1967) shows the inherent limitation of
parallel processing

 Gustafson’s law (scalable computing, 1988) shows there is
no inherent limitation for scalable parallel computing, except
engineering issues

 Sun-Ni’s law (memory-bounded, 1990) shows memory (data)
is the constraint of scalable computing (the engineering issue)

 The Memory-Wall Problem (1994) shows memory-bound is
a general performance issue for computing, not just for
parallel computing

William Wulf, Sally Mckee, “Hitting the memory wall: implications of the obvious,” ACM
SIGARCH Computer Architecture News Homepage archive, Vol. 23 Issue 1, March 1995

I can improve
Amdahl’s law

I have a
huge
memory

Impact of Scalable Computing

1 103 106 109 1012 1015

KiloOPS MegaOPS GigaOPS TeraOPS PetaOPSOne OPS

1951
Univac 1

1949
Edsac

1976
Cray 1

1982
Cray XMP

1988
Cray YMP

1964
CDC 6600

1996
T3E

1823
Babbage Difference

Engine

1991
Intel Delta

1997
ASCI Red

2001
Earth

Simulator

2003
Cray X1

1943
Harvard
Mark 1

1959
IBM 7094

Page 37

Impact: Computing/Memory Trade-off

Silicon Area Distribution

Memory
86%

Processors
3%

Routers
3%

Random
8%

Power Distribution

Memory
9%

Processors
56%

Routers
33%

Random
2%

Courtesy of Peter Kogge, UND

Modern microprocessors such as the Pentium Pro, Alpha 21164, Strong Arm SA110,
and Longson-3A use 80% or more of their transistors for the on-chip cache

Impact of Memory-Bounded Speedup

 W = G(M) shows the trade-off between computing & memory
 W, the work in floating point operation
 M, the memory requirement
 G, the data reuse rate

 W = G(M) unifies the models
 G(p) = 1, Amdahl’s law

 G(p) = p, Gustafson’s law

 Reveal memory is the performance bottleneck
 Memory-bounded algorithms and analysis in

Dynamic programming, distributed optimization, search, convolution,
regression, etc.

 The Memory-Wall problem (1994)

Scalable Computing Software Lab, Illinois Institute of Technology 39

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year
P

er
fo

rm
an

ce

Memory

Uni-rocessor

Multi-core/many-core processor

Impact: The Memory-wall Problem

 Processor performance
increases rapidly
 Uni-processor: ~52% until

2004

 Aggregate multi-core/many-
core processor performance
even higher since 2004

 Memory: ~9% per year
 Storage: ~6% per year

 Processor-memory speed gap
keeps increasing

Source: Intel

Source: OCZ

25%

52%

20%

9%

60%

9%

Memory-bounded speedup (1990), Memory wall problem (1994)

Page 40

The Beauty of Mathematics

 The ability of abstract
 In depth understanding

of the engineering issues
 Creative thinking

 Complex Specificity, Simple Genericity
 Abstract the complex specificity into simple genericity
 Engineering, mathematics, philosophy
 Everybody understand something, at a different level
 Your understanding determine your ability to apply it

 厚积薄发，可遇不可求

Big Data Makes Memory-Bound Even Worse

 Source: Bob Colwell keynote ISCA’29 2002 http://systems.cs.colorado.edu/ISCA2002/Colwell-ISCA-
KEYNOTE-2002-final.ppt

Scalable Computing Software Lab, Illinois Institute of Technology 42

How do we solve the memory-
bound constraint or the
memory-wall problem

Page 43

Solution: Memory Hierarchy

Reg
File

L1
Data cache

L1
Inst cache

L2
Cache

Main
Memory

DISK
SRAM DRAM

Multi-core
Multi-threading
Multi-issue

Multi-banked Cache
Multi-level Cache

Multi-channel
Multi-rank
Multi-bank

CPU

Cache

Memory

Out-of-order Execution
Speculative Execution
Runahead Execution

Pipelined Cache
Non-blocking Cache
Data Prefetching
Write buffer

More on Memory Hierarchy & Concurrency

Parallel File System
Input-Output (I/O)

Disks

Pipeline
Non-blocking
Prefetching
Write buffer

1 2 4 4 10 20

100

400

0

50

100

150

200

250

300

350

400

450

ALU
Inst

FP
Cmp

FP
Mul

L1
Access

FP Div L2
Access

L3
Access

MM
Access

Extremely Unbalanced
Operation Latency

C
yc

le
s

IO Access 5~15M cycles

Assumption of Current Solutions

 Memory Hierarchy: Locality
 Concurrence: Data access pattern

o Data stream

Performances vary
largely

Scalable Computing Software Lab, Illinois Institute of Technology 46

How do we further solve the
memory-bound constraint or the
memory-wall problem

Welcome to my Research Team

12/27/2019 Scalable Computing Software Lab, Illinois Institute of Technology 47

Scalable Computing Software Lab, Illinois Institute of Technology 48

How can we produce
classical research
results?

