
Scalable Computing Software Lab, Illinois Institute of Technology 1

From Amdahl’s Law to Big Data:
A Story of

Mathematics and Technology

Asian Science Camp, July 30, 2019

Xian-He Sun

Illinois Institute of Technology
sun@iit.edu

12/27/2019 Scalable Computing Software Lab, Illinois Institute of Technology 2

Hot Issues

L2

L1
DF

Memory Wall

 AI and Deep Learning

 Big Data

 High Performance and Could Computing

Computing power

12/27/2019 Scalable Computing Software Lab, Illinois Institute of Technology 3

Summit: the World Fastest Computer

 148.6 petaflops (187.66 petaflop theoretical peak)
 2,282,544 IBM Power 9 core
 2,090,880 Nvidia Volta GV100 core
 Power efficiency 11.324gigaflop/watt

What is Parallel Processing

 Parallel Processing
 Several working entities work together toward a common goal

 Parallel Computer
 A computer designed for parallel processing

 Scalable Computing
 A parallel computing which can be scaled up to larger size

without losing efficiency

 Supercomputer (high performance computer, high end
computer, advanced computer)
 A general-purpose computer capable of solving individual problems

at extremely high computation speed

12/27/2019

Maximum
System
256 racks
3.5 PF/s
512 TB

850 MHz
8 MB EDRAM

4 cores

1 chip, 20
DRAMs

13.6 GF/s
2.0 GB DDR
Supports 4-way SMP

32 Node Cards
1024 chips, 4096 procs

14 TF/s
2 TB

72 Racks

1 PF/s
144 TB

Cabled 8x8x16
Rack

Petaflops
System

Compute Card

Chip

435 GF/s
64 GB

(32 chips 4x4x2)
32 compute, 0-2 IO cards

Node Board

Front End Node / Service Node

System p Servers

Linux SLES10

HPC SW:

Compilers

GPFS

ESSL

Loadleveler

Parallel Processing & Scalable Computing

Source: ANL ALCF

IBM BG/P

Parallel Processing & Scalable Computing

– Discretization
–Scalable

More accurate solution
Sufficient parallelism

Maintain efficiency

–Efficient in parallel
computing

Load balance
Communication

– Mathematically
effective

Adaptive
Accuracy

Why Scalable Computing

Reduced
Complexity

& Cost

Higher Quality
of Service

Increased
Productivity

Increased
Efficiency

Cloud Computing & Big Data

Improved
Resiliency

From High Performance Computing to Cloud to Big Data

The Journey of Supercomputing

 The Background of Parallel Processing
 Speedup
 Sources of overhead

 The Laws of Scalable Computing
 The Amdahl’s law
 The Gustafson’s law
 The Sun-Ni’s law

 Impacts and Discussions

Scalable Computing Software Lab, Illinois Institute of Technology 8

Page 9

Models of Speedup
 Speedup

 Ts = time for the best serial algorithm

 Tp= time for parallel algorithm using p processors

 Simple enough, but also unexpected complex

TimeExecutionParallel

TimeExecutionorUniprocess
pS

Performance of Parallel Processing

p

s
p T

T
S

Page 10

Example

Processor 1

time

100

time

1 2 3 4

25 25 25 25 time

1 2 3 4

35 35 35 35

(a) (b) (c)

ationparallelizperfect

,0.4
25

100
pS

10 iscost synch but

 balancing loadperfect

,85.2
35

100
pS

Page 11

Example (cont.)

time

1 2 3 4

30 20 40 10
time

1 2 3 4

50 50 50 50

(d) (e)

imbalance loadbut

synch no

,5.2
40

100
pS

costsynch and

imbalance load

,0.2
50

100
pS

Page 12

Degradations of Parallel Processing

Unbalanced Workload

Communication Delay

Overhead Increases with the Ensemble Size

Overheads

• communication

• Load imbalance

• Synchronization

• Extra computation

Page 13

Principals of Architecture Design

 Make common case fast (90/10 Rule)

 Amdahl’s Law
 Law of diminishing returns

 Speedup
 Achieved performance improvement over original

Here performance is measured in Speed

Gene Amdahl

Page 14

Amdahl’s Law
Execution time of any code has two portions

Portion I: not affected by enhancement
Portion II: affected by enhancement

p2p1old timeexecution timeexecution timeexecution

p is speedup factor of old/new
execution times for portion II

As p -> infinity, execution timenew -> * execution timeold

p

old

oldnew

timeexecution
1 timeexecution timeexecution

 is % of original code that cannot
benefit from enhancement

Execution timep1 Execution timep2

Page 15

Amdahl’s Law for Parallel Processing (1967)

 Let = fraction of program (algorithm) that is serial and
cannot be parallelized. For instance:
 Loop initialization
 Reading/writing to a single disk
 Procedure call overhead

 Parallel run time is given by

sp T)
p

α
(αT

1

Gene M Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS spring joint computer conference, 1967

p

old

oldnew

timeexecution
1 timeexecution timeexecution

Page 16

Amdahl’s Law

 Amdahl’s law gives a limit on speedup in terms of

 If we assume that the serial fraction is fixed, then the speedup
for infinite processors is limited by 1/

 For example, if =10%, then the maximum speedup is 10,
even if we use an infinite number of processors

1

lim pp S

௦

௦

௦
௦

Page 17

Amdahl Law

Wp

W1

Wp Wp WpWp

W1 W1 W1 W1

1 2 3 4 5

Number of Processors (p)

Amount
of Work

Tp

T1

Tp Tp Tp

T1
T1

Tp

T1 T1

1 2 3 4 5

Number of Processors (p)

Elapsed
Time

 The sequential part becomes the dominate factor quickly

Page 18

Amdahl’s Law

p

old

oldnew

timeexecution
1 timeexecution timeexecution

p

1

1

timeexecution

timeexecution
Speedup

new

old

overall

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40

S
p

ee
d

u
p

 o
ve

ra
ll

Page 19

Amdahl’s Law with Overhead

 pas

T
T

T
p

T
T

T
Speedup

overhead
overhead

FS

1

1
1

1 1
)1(

• To include overhead will be even worse
• The overhead includes parallelism and interaction

overheads

Amdahl’s law: argument against massively parallel systems

12/27/2019 20

History back to 1988

Cray X-MP
Fastest computer 1983-1985 Cray Y-MP

IBM 7030 Stretch IBM 7950 Harvest

All have up to 8
processors, citing
Amdahl’s law,

lim
→ஶ

𝑆 𝑝𝑒𝑒𝑑𝑢𝑝ௗ =
1

α

Gene Amdahl

Bombshell: Gustafson, etc. Got Speedup of
more than 1,000 on Three Applications

12/27/2019 Scalable Computing Software Lab, Illinois Institute of Technology 21

John L. Gustafson, Gary R. Montry, and Robert E. Benner, “Development of Parallel Methods for
a 1024-Processor Hypercube,” SIAM Journal on Scientific and Statistical Computing, Vol. 9, No.4,
1988 (submitted 3/10/1988, accepted 3/25/1988, appeared April 1988)

John Gustafson, “Reevaluation of Amdahl’s Law,” Communications of the ACM, Vol. 31, No. 5,
May 1988.

 On a 1024-processor nCUBE parallel computer

 For three applications: wave mechanics, fluid dynamics, and
structural analysis.

 Introduced the concept of Scalable Computing, problem
size increases with the machine size

Page 22

Reevaluate Amdahl’s Law

 Amdahl’s Law is designed for technology improvement,
but has been widely used to against parallel processing in
terms of reducing execution time

 But: large computers are not (only) designed for solving
existing problem faster, they are designed for solving
otherwise unsolvable large problems

 The introduction of scalable computing, where problem
size increases with the machine size

Page 23

• Fixed-Time Speedup (Gustafson, 88)

o Emphasis on work finished in a fixed time

o Problem size is scaled from W to W'

o W': Work finished within the fixed time with

parallel processing

W
W

SolvingofTimeorUniprocess
'SolvingofTimeorUniprocess

'SolvingofTimeParallel
'SolvingofTimeorUniprocess'

W
W

S p

W
W '

John L. Gustafson

Page 24

Fixed-Time Speedup (Gustafson)

Wp

W1 Wp

Wp

Wp
Wp

W1

W1

W1

W1

1 2 3 4 5

Number of Processors (p)

Amount
of

Work

Tp

T1

Tp Tp Tp

T1 T1

Tp

T1 T1

1 2 3 4 5

Number of Processors (p)

Elapsed
Time

 Solving a larger application within the time limit

Page 25

Reexam Amdahl Law (Fixed-Size Speedup)

Wp

W1

Wp Wp WpWp

W1 W1 W1 W1

1 2 3 4 5

Number of Processors (p)

Amount
of Work

Tp

T1

Tp Tp Tp

T1
T1

Tp

T1 T1

1 2 3 4 5

Number of Processors (p)

Elapsed
Time

 It is on time reduction for solving a fixed problem (size)

Gustafson’s Law (Without Overhead)

a 1-a time

p (1-a)p

ps

s

tt

t

ி்

If α=0.1

ி் = 0.1 + 0.9p

 Under Gustafson’s Law the parallel processing part is
changing with the number of processors, p, and problem size

 Linear speedup

But: Gustafson’s Applications are not
Scalable

12/27/2019

 Most applications cannot get more than 1,000 speedup
on a 1024-processor nCUBE parallel computer

Parallel Processing overhead

 Even the three applications are not Scalable (increase
problem size further does not help)

Why?

Memory Constrained Scaling:
Sun and Ni’s Law

 Scaling is limited by memory space (disk will increase
overhead significantly), e.g. fixed memory capacity/usage per
processor
 (ex) N-body problem

 Problem size is scaled from W to W*, W* is the work executed
under memory limitation

 The relation between memory & computing requirement is
determined by the underlying algorithm/program

 Memory-scaling function

)(* * MpGW

X.H. Sun, and L. Ni , "Scalable Problems and Memory-Bounded Speedup," Journal of Parallel
and Distributed Computing, Vol. 19, pp.27-37, Sept. 1993 (SC90).

Scalable Computing Software Lab, Illinois Institute of Technology

Sun & Ni’s Law

a 1-a

p
(1-a)G(p)

time
Lionel M. NiXian-He Sun

ppG

pG

TimeWork

pTimepWork
SpeedupMB /)()1(

)()1(

)1(/)1(

)(/)(

12/27/2019 1

Assuming the problem needs ଷ computation and ଶ memory

Then
య

మ, and

ெ

ଷ
ଶ

ଷ
ଶ

存储受限理论

Page 30

Memory-Bounded Speedup 存储受限理论

(Sun & Ni, 90)

• Emphasis on work finished under current physical

limitation

° Problem size is scaled from W to W*

° W*: Work executed under memory limitation with

parallel processing

*

*
*

SolvingofTimeParallel

SolvingofTimeorUniprocess

W

W
S p

Page 31

Memory-Bounded Speedup (Sun & Ni)

Tp

T1

Tp Tp Tp

T1 T1

Tp

T1 T1

1 2 3 4 5
Number of Processors (p)

Elapsed
Time

 In practice, memory-bounded performs better than fixed-time but
both hard to achieve linear speedup

p
T

T

Work

pWork
Speedup overhead

FT)1(
)1(

)(

1

ெ

Tp

T1

Tp Tp Tp

T1 T1

Tp

T1 T1

1 2 3 4 5
Number of Processors (p)

Elapsed
Time

Page 32

• Speedup

TimeExecutionParallel

TimeExecutionorUniprocess
S p

Speed Sequential

SpeedParallel
pS

Rethinking of Speedup

• It is only the true speedup if problem size is fixed, but
now we have scalable computing

• Generalized speedup

X.H. Sun, and J. Gustafson, "Toward A Better Parallel Performance Metric," Parallel Computing,
Vol. 17, pp.1093-1109, Dec. 1991.

Page 33

X.-H. Sun, and L. Ni, “Another View of Parallel Speedup,” Proc. of IEEE Supercomputing'90, NY,
NY, Nov.12--Nov.16, 1990.

The Three Laws
 Tacit assumption of Amdahl’s law

 Problem size is fixed

 Speedup emphasizes on time reduction

 Gustafson’s Law, 1988
 Fixed-time speedup model

 Sun and Ni’s law, 1990
 Memory-bounded speedup model

𝛼 1- 𝛼

𝛼 (1-𝛼)p

Work: 𝛼+(1-𝛼)p

Work: 1

𝑆𝑝𝑒𝑒𝑑𝑢𝑝௫ௗି௧ =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

= 𝛼+ 1 − 𝛼 𝑝

𝑆𝑝𝑒𝑒𝑑𝑢𝑝௬ି௨ௗ =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑆𝑐𝑎𝑙𝑒𝑑 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

 =
𝛼 + 1 − 𝛼 𝐺 𝑝

𝛼 + 1 − 𝛼 𝐺 𝑝 𝑝⁄

𝛼 (1-𝛼)G(p)

Work: 𝛼+(1-𝛼)G(p)

Page 35

The Three Laws: and their impact

 Amdahl’s law (1967) shows the inherent limitation of
parallel processing

 Gustafson’s law (scalable computing, 1988) shows there is
no inherent limitation for scalable parallel computing, except
engineering issues

 Sun-Ni’s law (memory-bounded, 1990) shows memory (data)
is the constraint of scalable computing (the engineering issue)

 The Memory-Wall Problem (1994) shows memory-bound is
a general performance issue for computing, not just for
parallel computing

William Wulf, Sally Mckee, “Hitting the memory wall: implications of the obvious,” ACM
SIGARCH Computer Architecture News Homepage archive, Vol. 23 Issue 1, March 1995

I can improve
Amdahl’s law

I have a
huge
memory

Impact of Scalable Computing

1 103 106 109 1012 1015

KiloOPS MegaOPS GigaOPS TeraOPS PetaOPSOne OPS

1951
Univac 1

1949
Edsac

1976
Cray 1

1982
Cray XMP

1988
Cray YMP

1964
CDC 6600

1996
T3E

1823
Babbage Difference

Engine

1991
Intel Delta

1997
ASCI Red

2001
Earth

Simulator

2003
Cray X1

1943
Harvard
Mark 1

1959
IBM 7094

Page 37

Impact: Computing/Memory Trade-off

Silicon Area Distribution

Memory
86%

Processors
3%

Routers
3%

Random
8%

Power Distribution

Memory
9%

Processors
56%

Routers
33%

Random
2%

Courtesy of Peter Kogge, UND

Modern microprocessors such as the Pentium Pro, Alpha 21164, Strong Arm SA110,
and Longson-3A use 80% or more of their transistors for the on-chip cache

Impact of Memory-Bounded Speedup

 W = G(M) shows the trade-off between computing & memory
 W, the work in floating point operation
 M, the memory requirement
 G, the data reuse rate

 W = G(M) unifies the models
 G(p) = 1, Amdahl’s law

 G(p) = p, Gustafson’s law

 Reveal memory is the performance bottleneck
 Memory-bounded algorithms and analysis in

Dynamic programming, distributed optimization, search, convolution,
regression, etc.

 The Memory-Wall problem (1994)

Scalable Computing Software Lab, Illinois Institute of Technology 39

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year
P

er
fo

rm
an

ce

Memory

Uni-rocessor

Multi-core/many-core processor

Impact: The Memory-wall Problem

 Processor performance
increases rapidly
 Uni-processor: ~52% until

2004

 Aggregate multi-core/many-
core processor performance
even higher since 2004

 Memory: ~9% per year
 Storage: ~6% per year

 Processor-memory speed gap
keeps increasing

Source: Intel

Source: OCZ

25%

52%

20%

9%

60%

9%

Memory-bounded speedup (1990), Memory wall problem (1994)

Page 40

The Beauty of Mathematics

 The ability of abstract
 In depth understanding

of the engineering issues
 Creative thinking

 Complex Specificity, Simple Genericity
 Abstract the complex specificity into simple genericity
 Engineering, mathematics, philosophy
 Everybody understand something, at a different level
 Your understanding determine your ability to apply it

 厚积薄发，可遇不可求

Big Data Makes Memory-Bound Even Worse

 Source: Bob Colwell keynote ISCA’29 2002 http://systems.cs.colorado.edu/ISCA2002/Colwell-ISCA-
KEYNOTE-2002-final.ppt

Scalable Computing Software Lab, Illinois Institute of Technology 42

How do we solve the memory-
bound constraint or the
memory-wall problem

Page 43

Solution: Memory Hierarchy

Reg
File

L1
Data cache

L1
Inst cache

L2
Cache

Main
Memory

DISK
SRAM DRAM

Multi-core
Multi-threading
Multi-issue

Multi-banked Cache
Multi-level Cache

Multi-channel
Multi-rank
Multi-bank

CPU

Cache

Memory

Out-of-order Execution
Speculative Execution
Runahead Execution

Pipelined Cache
Non-blocking Cache
Data Prefetching
Write buffer

More on Memory Hierarchy & Concurrency

Parallel File System
Input-Output (I/O)

Disks

Pipeline
Non-blocking
Prefetching
Write buffer

1 2 4 4 10 20

100

400

0

50

100

150

200

250

300

350

400

450

ALU
Inst

FP
Cmp

FP
Mul

L1
Access

FP Div L2
Access

L3
Access

MM
Access

Extremely Unbalanced
Operation Latency

C
yc

le
s

IO Access 5~15M cycles

Assumption of Current Solutions

 Memory Hierarchy: Locality
 Concurrence: Data access pattern

o Data stream

Performances vary
largely

Scalable Computing Software Lab, Illinois Institute of Technology 46

How do we further solve the
memory-bound constraint or the
memory-wall problem

Welcome to my Research Team

12/27/2019 Scalable Computing Software Lab, Illinois Institute of Technology 47

Scalable Computing Software Lab, Illinois Institute of Technology 48

How can we produce
classical research
results?

