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Abstract—File and block storage are well-defined concepts
in computing and have been used as common components of
computer systems for decades. Big data has led to new types
of storage. The predominant data model in cloud storage is the
object-based storage and it is highly successful. Object stores
follow a simpler API with get() and put() operations to interact
with the data. A wide variety of data analysis software have
been developed around objects using their APIs. However, object
storage and traditional file storage are designed for different
purpose and for different applications. Organizations maintain
file-based storage clusters and a high volume of existing data are
stored in files. Moreover, many new applications need to access
data from both types of storage. In this paper, we first explore
the key differences between object-based and the more traditional
file-based storage systems. We have designed and implemented
several file-to-object mapping algorithms to bridge the semantic
gap between these data models. Our evaluation shows that by
achieving an efficient such mapping, our library can grant 2x-
27x higher performance against a naive one-to-one mapping and
with minimal overheads. Our study exposes various strengths and
weaknesses of each mapping strategy and frames the extended
potential of a unified data access system.
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I. INTRODUCTION

Historically, data are stored and accessed as files, blocks
or objects in equivalent storage systems. File and block stor-
age have been around for considerably longer than object
storage, and are something most people are familiar with.
These systems have been developed and highly optimized
through the years. Popular interfaces and standards such as
POSIX I/O [1], MPI-IO [2], and HDF5 [3] expose data to the
applications and allow users to interact with the underlying file
system through extensive APIs. In a large scale environment
the underlying file system is usually a parallel file system
(PFS) with Lustre [4], GPFS [5], PVFS2 [6] being some
popular examples or a distributed file system such as GoogleFS
or HDFS [7]. However, applications are increasingly dealing
with high volume, velocity, and variety of data which leads
to an explosion of storage requirements and increased data
management complexity [8]. Most of these file systems face
significant challenges in performance, scalability, complexity,
and limited metadata services [9], [10].

On the other hand, object storage was born from the need
to increase the scalability and programmatic accessibility of

storing data. It is widely popular in the cloud community and
there are a lot of different implementations freely available.
It offers simplistic APIs with basic get(), put(), and delete()
operations. Most notable examples include the Amazon S3 [11]
and the OpenStack Swift [12] API. So far, object storage has
been used widely for stale, archival data, which fits nicely
with the fact that changes are accommodated by creation of
new versions of data, rather than modifying existing data.
However, this seems to be changing and we see more high-
performance and low latency solutions. Few examples include
Cassandra [13], MongoDB [14], and HyperDex [15]. The
flat name space organization of the data in object storage,
in combination with its expandable metadata functionality,
facilitate its ease of use, its scalability, and its resiliency via
replicated objects. Lastly, object stores are the best option to
store, access, and process unstructured and semi-structured data
making them a widely used storage solution for Big Data
problems.

D. Reed and J. Dongarra in [16] point out that the tools
and cultures of HPC and BigData analytics have diverged,
to the detriment of both; unification is essential to address a
spectrum of major research domains. There is an increasingly
important need of a unified storage access system which will
support complex applications in a cost-effective way leading
to the convergence of HPC and BigData analytics. However,
such unification is extremely challenging with a wide range
of issues such as: a) gap between traditional storage solutions
with semantics-rich data formats and high-level specifications,
and modern scalable data frameworks with simple abstractions
such as key-value stores and MapReduce, b) difference in
architecture of programming models and tools, c) management
of heterogeneous resources and, d) management of diverse
global namespaces stemming from different data pools.

In this paper, we explore several ways to map files to objects.
Specifically, we designed and implemented three new mappings
of a typical POSIX file to one or more objects. These mappings
can cover MPI-IO as well since it is using POSIX files at its
core. We also implemented a novel mapping of an HDF5 file
to one or more objects. Our mappings pave the way towards
a unified storage access system. Using our mappings one can
efficiently utilize a file interface to access and process data that
reside to a totally different storage subsystem such as an object
store. With this extra functionality, we can leverage strengths of
each storage solution and complement each other for known
limitations. This is a powerful abstraction for the user who,
under our solution, still uses the familiar file interface while a



scalable and efficient object store supports all I/O operations.
The contributions of this paper are:

• We present key characteristics of file-based, block-based,
and object-based data models.

• We design and implement a unified storage access system
that bridges the semantic gap between file-based and
object-based storage systems.

• We evaluated our solution and the results show that, in
addition to providing programming convenience and effi-
ciency, our library can grant higher performance avoiding
costly data movements between file-based and object-
based storage systems.

The rest of this paper is organized as follows. Section II pro-
vides the motivation of this work. In Section III we describe the
background and the related work. In Section IV we present the
design and implementation details of our mapping strategies.
Results of our library’s evaluation are presented and analyzed
in Section V. Finally, conclusions and future work are laid out
in Section VI.

II. MOTIVATION

The increasing ability of powerful HPC systems to run data-
intensive problems at larger scale, at higher resolution and with
more elements gave birth to a new category of computing,
namely High-performance Data Analytics (HPDA) [17]. In
addition, the proliferation of larger, more complex scientific
instruments and sensor networks to collect extreme amounts of
data pushes for more capable analysis platforms. Performing
data analysis using HPC resources can lead to performance and
energy inefficiencies [18]. In [19] the authors point out that
traditional offline analysis results in excessive data movement
which in turn causes unnecessary energy costs. Alternatively,
performing data analysis inside the compute nodes can elim-
inate the above mentioned redundant I/O, but can lead to
wastage of expensive compute resources and will slow down
the simulation job due to interference. Therefore, modern
scientific workflows require both high-performance computing
and high-performance data processing power. However, HPC
and HPDA systems are different in design philosophies and
target different applications.

The divergence of tools and cultures between HPC and
HPDA has led HPC sites to employ separate computing and
data analysis clusters. For example, NASA’s Goddard Space
Flight Center uses one cluster to conduct climate simulation,
and another one for the data analysis of the observation data
[20]. Periodically, simulation data are compared with observa-
tion data, and are used in data analysis. Similarly, observation
data and analysis results are used in simulation to increase
accuracy and efficiency. Due to the data copying between
the two clusters, the data analysis is currently conducted off-
line, not at runtime. However, runtime simulation/analysis will
lead to more accurate and faster solutions. The data transfer
between storage systems along with any necessary data trans-
formations are a serious performance bottleneck and cripples
the productivity of those systems. Additionally, it increases
the wastage of energy and the complexity of the workflow.

Another example is the JASMIN platform [21] run by the
Center of Environmental Data Analysis (CEDA) in the UK.
It is designed as a ”super-data-cluster”, which supports the
data analysis requirements of the UK and European climate
and earth system modeling community. It consists of multi-
Petabyte fast storage co-located with data analysis computing
facilities, with satellite installations at several locations in the
UK. A major challenge they face is the variety of different
storage subsystems and the plethora of different interfaces that
their teams are using to access and process data. They claim
that PFSs alone cannot support their mission as JASMIN needs
to support a wide range of deployment environments.

A radical departure from the existing software stack for
both communities is not realistic. Instead, future software
design and architectures will have to raise the abstraction level,
and therefore, bridge the semantic and architectural gaps. We
envision a data path agnostic to the underlying data model
and we aim to leverage each storage solutions strengths while
complementing each other for known limitations. With our
mapping strategies we strive for maximizing productivity and
minimizing data movement which leads to higher performance
and resource utilization.

III. BACKGROUND AND RELATED WORK

A. What is a file-based storage

A file storage stores data in a hierarchical structure. Data are
saved in files and directories and presented in the same format.
Data can be accessed via the Network File System (NFS) or the
Server Message Block (SMB) protocols. Files are basically a
stream of bytes and they are part of a namespace that describes
the entire collection in a certain file system. The file system
maintains certain attributes for each file such as its owner, who
can access the file, its size, the last time it was modified and
others. All this information follows the file and it is called
metadata.

B. What is a block-based storage

A block storage stores data in fixed-length volumes, also
referred to as blocks. It is typically used in storage-area
networks (SAN). Each block acts as an individual hard drive
and is configured as such. These blocks are controlled by
a server-based operating system. Data are accessed via a
Fibre Channel over Ethernet or a SCSI controller using the
appropriate protocol respectively. A collection of blocks (i.e.,
chunk of data) can form a file. Each block has an address
and data are accessed by a SCSI call to that address. There
are no metadata associated with the blocks except the address.
Applications control how blocks are combined or accessed.
That makes block storage a good candidate for storing file
systems or database.

C. File vs block storage

While block storage writes and retrieves data to and from
certain blocks, file storage requests data through user-level



TABLE I: Object vs File Storage

Category Object Storage File Storage
Data unit Objects Files
Update Create new object In-place updates
Protocols REST and SOAP NSF with POSIX
Metadata Custom Fixed attributes
Strengths Scalability Simplified access
Limitations Frequent updates Heavy metadata
Performance High throughput Streaming of data

data representation interfaces such as POSIX and HDF5. This
client-server method of communication occurs when the client
uses the data’s file name, directory location, URL and other
information. With block storage, the server receives the request,
looks up the data storage locations where the data is stored and
retrieves it using storage-level functions. The server does not
send the file to the client as blocks, but as bytes of the file. File-
level protocols cannot understand block commands, and block
protocols cannot convey file access requests and responses.
Because the main usage of block storage is implementing file
systems or databases, we will focus for the rest of the paper
on files and objects.

D. What is an object-based storage

An object storage manipulates data as discrete units called
objects. These objects are kept inside a single expandable pool
of data (e.g. repository) and are not nested as files inside
folders and directories. Object storage keeps the blocks of data
that make up a file together and adds all of its associated
metadata to that file. It also adds extended metadata to the
file which eliminates the hierarchical structure used in a file
storage, placing everything into a flat address space, called a
storage pool, or key space, or object space. A unique identifier
is assigned to each object and is used by the application to
retrieve this object.

E. Object vs file storage

Object storage overcomes many of the limitations that file
systems face (especially in scale) sometimes with a hit in
performance. As more and more data is generated, storage
systems have to grow at the same pace. As file systems grow
we may run into durability issues, hardware limitations and
management overheads. The flat name space organization of the
data, in combination with its expandable metadata functionality,
make object store a better choice for the Big Data era. However,
object storage is not the answer to all storage-related prob-
lems. File systems provide guarantees for strong consistency
which object stores cannot (most of the implementations offer
eventual consistency). Strong consistency is needed for real-
time systems where data are frequently being mutated. Table I
summarizes some of the key differences.

All these data models are supported by the respective storage
systems. Each system exposes data to the application via a
different API. Traditional applications written based on files

(i.e., POSIX interface) cannot access data residing in an object
store unless they either change their code to use the get/put
calls or by first moving the data in a file system and then use
the typical fread/fwrite calls. In this paper, we aim to solve this
limitation without affecting the application code. Our solution
is transparent to the user which simply connects the application
to our library, which then, is responsible to intercept the I/O
calls and map them to an object store.

F. Related work

Few distributed file systems replaced the way they store
data internally. Conventional PFSs split a file into smaller
pieces or stripes and store them separately on local file systems
of different storage nodes. This new category of distributed
file systems replaces the local file system with Object Stor-
age Devices (OSD) to distribute the smaller pieces of data.
CephFS [22] is a new type of distributed file system that
promotes the separation of data and metadata management.
CephFS is a POSIX-compliant filesystem that uses a Ceph
Storage Cluster to store its data. The Ceph filesystem uses the
same Ceph Storage Cluster system as Ceph Block Devices.
With this design, Ceph offers APIs that can support both
file operations and object operations. PanFS [23], [24] also
utilizes OSDs internally. Unlike other storage systems that
loosely couple parallel file system software with legacy block
storage arrays, PanFS combines the functions of a parallel file
system, volume manager, and scalable RAID engine into a
single holistic platform. Similarly, OBFS [25] utilizes OSDs
internally to create a distributed file system. Its design offloads
some administrative tasks on the disk itself making it run faster
for specific workloads.

For all the above solutions, however, one needs to switch
the entire storage installation to their proposed system, and
applications need to be rewritten to use their APIs. Existing
installations of file systems and object stores, that one might
have, need to migrate all data to the above platforms. Thus,
the above systems do not aim to integrate file-based and
object-based data models but rather provide an enhancement
of supported features. Finally, the authors in [26], exposed the
limitations of a POSIX file interface and they proposed an
alternative interface to directly access the underlying storage
objects. Basically, they presented an extension to the POSIX
API that exposes a different abstraction for storing data.
However, it cannot be used on top of object stores whereas
our solution can bridge those two storage systems.

IV. DESIGN AND IMPLEMENTATION

In this section we first provide some implementation details
and then present our new mapping strategies. For POSIX files
we propose three new mapping strategies: a) balanced, b)
write-optimized, and c) read-optimized. Finally, we present our
novel mapping strategy of HDF5 files to objects (i.e., key-
value pairs). HDF5 is a data model and file format for storing
and managing data. It is designed for flexible and efficient I/O
and for high volume and complex data. It is also very popular
among the scientific community.



A. Library implementation details

Our solution consists of a middle-ware library that appli-
cations can link to (i.e., either compile with or preload it).
We intercept the file reads and writes and map them to gets
and puts transparently to the application. Our library is writen
in C++. We carefully optimized the code to run as fast as
possible and minimize the overhead of the library. The code is
optimized with state-of-the-art helper libraries. A few examples
include the following. For memory management we chose
Google’s tcmalloc library [27] that performs 20% faster than
the standard malloc and has a smaller memory footprint. For
hashing, we selected the CityHash functions by Google [28],
the fastest collection of hashing algorithms at this moment. We
specifically used the 64-bit version of the hashing functions.
For containers such as maps and sets, we used Google’s BTree
library [29] which is faster than the STL equivalent containers
and reduces memory usage by 50-80%. A prototype version
can be found online.1

Upon initialization of the library, a key-space crawler scans
the underlying key-value store to create the initial metadata
information. Additionally, if the user provides access to a file
system, the crawler will scan the file namespace and will
create a unified single key space for the user. All these library
metadata information are stored in a special object in the key-
value store. The library also loads this metadata object in
memory on bootstrap for faster queries. Our library does not
support directory operations. Deletion operations are handled
by invalidation and key-space garbage collection on application
exit. Note that our library does not aim to implement a file
system on top of a key-value store but rather bridge the two
systems under the file-based data model. Our mapping algo-
rithms aim to leverage, whenever possible, the strengths of the
underlying storage solution and applications might experience
a boost in performance.

B. Mapping Strategies

1) Naive mapping strategy

As the baseline mapping we consider the one where each
separate file is mapped into one object. This is a 1-to-1
mapping and each filename becomes the unique identifier for
the object store. While this naive mapping works, there are
many limitations with it. First, the file size is an arbitrary
number that could violate the limitations of the object store
for maximum object size (e.g. MongoDB has a 32MB limit,
Cassandra a 64MB). Second, this mapping exhibits extremely
poor performance. Each request returns the whole object (i.e.,
having size equal to the original file) which means excessive
unnecessary I/O. Third, with this mapping we do not take
advantage of any of the nice architectural advantages that
an object store offers. Therefore, we carefully designed and
implemented three new strategies for mapping POSIX files to
objects: a) balanced, b) write-optimized, and c) read-optimized.
These strategies aim to better serve respective workloads.

1Code will become available upon acceptance of this paper.

Fig. 1: Balanced mapping strategy.

2) Balanced mapping strategy

In this mapping strategy a file is divided into predefined,
fixed-size, smaller units of data we call buckets. The buckets
represent different locations in a file and they are based on
the offset. Therefore any fread() or fwrite() naturally maps
into one or more buckets according to a starting offset and
a total size of the operation. Each bucket becomes an object
and gets persisted in the underlying object store for any
subsequent reads or updates. Figure 1 demonstrates an example
of this mapping strategy. For this example, we assume that
the file was created earlier and therefore the objects too. We
also assume that the bucket size is 1MB. Finally, our object
creation follows a certain naming schema: filename base-offset.
Base offset here is the bucket size (i.e., 0 - 1MB - 2MB
etc). In this example, we have three read requests. First,
fread(buf,2097152,1,fh) gets two objects since it is
clearly within the boundaries of the object size. The next
fread(buf,2711552,1,fh) will get three objects. If we
look closer to the third object, our solution will fetch the entire
object but only deliver to the application the portion it needs. In
this example, it will only deliver from offset 4194304 to offset
4808704. Finally, the last fread(buf,2531328,1,fh)
will similarly fetch three objects and only deliver part of the
first object to the application.

This mapping strategy is the same for both fread() and
fwrite() operations leading to a balanced and stable perfor-
mance for a mixed workload. The abstraction of buckets helps
map location in the file onto one or more objects. This could
possibly create extra reading of data for requests that are not
aligned to the bucket boundaries. However, this happens only
for the corner buckets and the maximum extra reading is less
than two bucket sizes. Therefore, the pre-configured bucket size
is really important and could potentially affect the performance.
For instance, if a very small bucket size such as 20 KB is
selected then for a simple fwrite() of 20 MB, the mapping will
create more than 1000 keys which will stress the underlying
object store. A more reasonable 2 MB bucket size will only
create 10 keys leading to better performance and latency. After
extensive testing, we found that a bucket size equal to the
median of all request sizes is the best and more balanced
choice. If the user does not have access to an I/O trace file
of his/her application then a default bucket size of 512 KB is
suggested. Lastly, in this strategy any update operation (i.e.,
fwrite() over existing data) might need to first get() an existing
object and update only portion of its value before it can put()
the updated object down to the object store. This extra get()



Fig. 2: Write-optimized mapping strategy.

Fig. 3: Read-optimized mapping strategy.

guarantees the data consistency for any future fread(). In this
strategy we always strive for strong consistency.

3) Write-optimized

In this mapping strategy we aim for very fast write operations.
To achieve this, we always create a new object for each request
and send it down to the object store. We also insert this newly
created object to a B+ tree structure that maps file offset
ranges to available keys within this range. This structure will
help future read operations to retrieve the correct data. If the
write operation updates existing data, we still create a new
object but we also invalidate the data in the previously inserted
object by adding the offset range in the invalidation list.
This list guarantees the data consistency for read operations.
Therefore, every fwrite()’s mapping could create overlapping
keys or even duplicate keys. The real work is done by the
read operation where the mapping needs to first find which
are the correct keys corresponding to the request. It then
performs one or multiple get() operations from the object store,
concatenates the correct data according to the invalidation list,
and returns to the caller of fread(). Figure 2 describes this
mapping strategy. Let us assume that we have three write
operations. The first fwrite(buf,2097152,1,fh) will
create one object. Similarly, the other two write operations will
similarly create one object each. The naming convention for
this mapping strategy is filename startingOffset-endingOffset.
The interesting thing happens when we get an update operation.
The fwrite(buf,319488,1,fh) at starting offset 204800
overwrites existing data. In the previous mapping, a get()
operation would be triggered, a concatenate operation and then
a new put(). In this mapping, we simply create a new object

Fig. 4: HDF5 mapping strategy.

and we invalidate the range of data this new write operation
updates. This slows down the read operations where multiple
objects are first retrieved and then, a concatenation of only the
valid data is performed. However, write operations are faster
since this mapping was designed for write-heavy workloads.

4) Read-optimized

In this mapping strategy we prioritize read operations over
write operations. To achieve a higher read performance, we
sacrifice write performance and also extra storage space.
Specifically, for every write request we create a plethora of
various-sized objects. The granularity of this object creation
is configurable but it is recommended to split objects down
to 512KB. This strategy also maintains a map of all available
keys for a given range of file offsets. Figure 3 demonstrates
this mapping. Let us follow an example to better explain this
mapping strategy. Assuming an fwrite() of 2 MB request size
and offset 0, and a granularity of object sizes of 512 KB,
the mapper will create the following keys: 1 key of 2MB, 2
keys of 1 MB and 4 keys of 512 KB. All of the created keys
correspond to the same data. Any update operation of existing
keys, needs to update all keys of the same data. However, a
subsequent fread() will access the best combination of these
keys trying to minimize the calls to the underlying object store
while maintaining a strong data consistency. For instance, let us
assume an fread() of 1 MB request size starting at the beginning
of the file. That will trigger the mapper to return one of the 1
MB keys which best fits the data. This strategy is recommended
for read-intensive workloads.

5) HDF5 files

HDF5 is a data model, library, and file format for storing and
managing data. It supports an unlimited variety of datatypes,
and is designed for flexible and efficient I/O and for high
volume and complex data. Unlike a POSIX file, which is just a
stream of bytes, a HDF5 file offers rich metadata information
on the file. Additionally, it allows storing and retrieving of por-
tions of data in a logical way while abstracting the complexity
of the underlined file. This potentially lets us access data or just
a portion of it more efficiently. This self-descriptive nature of
HDF5 file allows us to design our mapping strategies that could
take advantage of this rich metadata and intelligent sub-setting
features and therefore, efficiently mapping them to objects.
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In this strategy, we first create an object that contains all the
metadata information. Specifically, it contains the header and
the organization schema of the entire file. This metadata is kept
in-memory for the entire operation on the HDF5 file. This is
done to enable applications to access the metadata information
as fast as possible. It is persisted upon closing the file onto
the object store. As datasets and attributes are added to the
file, this object can expand its size. Then, since each dataset
can contain multiple dimensions (i.e., each having a type of
data such as integers etc.), our strategy maps these dimensions
into variable-sized objects. This granularity is configurable and
it depends on the type of data it contains (e.g., every 20
units of the type of data the dimension holds). The naming
schema for dimensions is: filename dataset dimension base-
offset. Figure 4 shows this mapping strategy. The benefit of
creating variable-sized objects according to the data type is
clear. Within dimensions we follow the balanced mapping
which gives us a balance performance for reads as well as
writes.

V. EVALUATION RESULTS

A. Experimental Setup

Testbed: All experiments were conducted on Chameleon sys-
tems [30]. More specifically, we used the bare metal configura-
tion offered by Chameleon. Each client node has a dual Intel(R)
Xeon(R) CPU E5-2670 v3 @ 2.30GHz (i.e., a total of 48 cores
per node), 128 GB RAM, 10Gbit Ethernet, and a local 200GB
HDD. Each server node has the same internal components but,
instead of Ethernet network, we used Infiniband 56Gbit/s to
avoid possible network throttling.
Software: The operating system of the cluster is CentOS 7.0,
the MPI version is Mpich 3.2, the PFS we used is OrangeFS
2.9.6, and the Object Store MongoDB 3.4.3. We used our
own synthetic benchmark (i.e., a workload generator) and as
an input, we used multiple workload characteristics such as
only-read, only-write, and mixed read-write. Additionally, we
run IOR [31], a famous I/O benchmark which measures I/O
performance at both MPIIO and POSIX level. Finally, we use
Montage [32], an astronomical image mosaic engine, to test
our mappings with a real application workload. All test results
are the average of five repetitions.
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B. Experimental Results

1) Mapping overhead

In this test we evaluate the mapping cost of our strategies. The
input is 65536 POSIX calls of 128KB size. We evaluate the
overhead per operation (i.e., fwrite() and fread()) and we report
the average time spend in mapping (I/O time is excluded) in
nanoseconds. As it can be seen in Figure 5, the naive mapping
shows overhead of 1200 ns since it simply maps each file to an
object. The balanced mapping demonstrates an overhead close
to 2000 ns per operation and lies between the write-optimized
and read-optimized which had less overhead for their respective
input. Note here that these numbers refer only to the time spent
in mapping each request.

2) Balanced mapping: performance with variable buckets

In this test we have as an input various workloads with median
request size 128 KB. We used a variable bucket size and
captured the overall completion time for the balanced mapping.
Bucket size is the unit of data that our library interacts with the
underlying object store therefore it is one of the optimization
knobs in our disposal. As it can be seen in Figure 6, a very
small bucket size (e.g., 2 KB) hurts the performance since many
objects are created and accessed. Similarly, for big buckets
such as 1 or 2 MB there is excessive reading and splicing
of the objects that contain the desired data and thus, lead to
some performance degradation. The best performance comes
by bucket sizes close to the median request size, in this test
with 128, 256 and 512 KB.

3) Performance with synthetic benchmark

For the following tests, we deployed MongoDB on one server
node and we run the tests on a separate client machine. The
tests are single-threaded. The maximum disk speeds are 480
MB/s for read and 350 MB/s for write operations. We report
results in milliseconds (ms). Finally, We use three different
workloads as input: mixed, read-only and write-only.
POSIX files: In this test, each I/O call is of 1MB size and
the aggregated I/O is 32MB in total. As it can be seen in
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Fig. 7: Mapping performance.

Figure 7 (a), each mapping performs best for the workload
it was designed. When compared to the naive mapping, our
balanced mapping strategy performs 15x faster for the mixed
input. The read-optimized mapping strategy is 32x faster than
the naive for the read-only input but performed 4x slower
than the write-optimized for the write-only case since it writes
more objects on the underlying object store. Finally, the write-
optimized mapping strategy is 27x faster than the naive for
the write-only input and almost 2x faster than the balanced
mapping strategy.
HDF5 files: In this test, we use an HDF5 file with one dataset
of integers. Each I/O call is of 1MB size with an aggregated
total I/O of 32MB. As a baseline, we use a simple one to one
mapping where each HDF5 file is mapped into an object. As it
can be seen in Figure 7 (b), our mapping strategy outperforms
the naive mapping by 9x for write and 8x for read operations.

4) Performance with real applications

For the following tests, we deployed MongoDB and OrangeFS
on 4 separate server machines for each storage system and we
used up to 4 client machines. The scales are 16, 32, 64, and
128 processes.
IOR: In this test, we run IOR in MPI-IO mode with 2MB
block size and 512KB transfer size. Each process is performing
512MB of total I/O in its own separate file. We disable all
caching and IOR performs direct I/O. This test involves a mixed
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Fig. 9: I/O performance with Montage.

workload of both read and write operations, and therefore,
we only evaluate our balanced mapping strategy. The baseline
workflow refers to first copying the input data from the object
store into the parallel file system and then running IOR over
the PFS. As a reference, we also include the performance of
executing IOR over PFS with native I/O calls and without
the copying time. As it can be seen in Figure 8, our library
performs almost 2x faster than the baseline since it redirects
all I/O over the object store without copying the input data over
to PFS. Furthermore, our solution scales well under this strong
scaling scenario. Note that the time reported for our solution
includes the bootstrapping time of the library that happens only
once in the beginning.
Montage: In this test, we run Montage to evaluate our read-
optimized mapping strategy since the application is mostly
performing read operations to create a mosaic from multiple
input images. The total input size is 24GB and it remains the
same to create a weak scaling scenario as we increase the
number of processes. For the baseline, the input images reside
in the object store and therefore, they need to be first copied
to the PFS before the application starts. We also compare our
solution, which allows the input to be accessed directly over the
object store, with the native POSIX calls when the input data
already reside on the PFS. As it can be seen in Figure 9, our
library performs more than 2x faster than the baseline since
it redirects all I/O over the object store without copying the
input data over to PFS. Note that copying time dominates the



overall execution time as we scale it. The added overhead of
our library when compared with the native calls over the PFS
is considered minimal (i.e., only 4% for the 128 processes).

VI. CONCLUSIONS AND FUTURE WORK

In this study we first explored file, block and object data
models and the characteristics of their respective storage sys-
tems. We then presented several novel strategies to map a file to
one or more objects. We implemented four techniques that take
into consideration the input workload to offer the best possible
performance with minimum overheads. Our evaluation shows
that with better design of the mapping algorithms we can get
2x-30x higher performance compared to a naive mapping of
files to objects. Additionally, we showed that our library can
perform more than 2x faster when running real applications
since we avoid the costly data movements and transformations.

As a future step we plan to incorporate these mapping
strategies into a bigger I/O framework that integrates different
storage subsystems and thus, come closer to a true convergence
of parallel and distributed architectures. We believe these
mappings are a fundamental step towards this goal. We envision
a system that offers universal data access regardless of the
storage interface and our mappings are a fundamental step
towards this goal.
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