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Abstract Task scheduling is an integrated component of computing. With the 
emergence of grid and ubiquitous computing, newer challenges have arisen in task 
scheduling. Unlike traditional parallel computing, grid is a shared enterprising 
environment where is no central control. The goal of grid task scheduling is to achieve 
high system throughput and to match the application needs with the available computing 
resources. This matching of resources in a non-deterministically shared heterogeneous 
environment leads to concerns on Quality of Service (QoS). In this paper we introduce a 
novel QoS guided task scheduling algorithm for grid computing. This new algorithm is 
based on the general adaptive scheduling heuristics and an added in QoS guide 
component. It has been tested in a simulated grid environment. The experimental results 
show that the new QoS guided min-min heuristic can lead to significant performance 
gain in various applications, and it is as tolerable as existing heuristics for inaccurate 
inputs of computing resources. 
Key Words Task Scheduling, grid computing, Quality of Service (QoS), non-dedicated 
computing 

1 Introduction 
Task scheduling is an integrated part of parallel and distributed computing. Intensive 
research has been done in this area and many results have been widely accepted. 
However, with the emergence of the computational grid, new scheduling algorithms are 
in demand for addressing new concerns arising in the grid environment. 
 
The traditional parallel scheduling problem is to schedule the subtasks of an application 
to the parallel machines in order to reduce the turn around time. In a grid environment, 
the scheduling problem is to schedule a stream of applications from different users to a 
set of computing resources to maximize system utilization. This scheduling involves 
matching of application needs with resource availability and addressing the concern of 
the quality of the match, that is the quality of service. 
 
There are three main phases of scheduling on a grid [Scho02]. Phase one is resource 
discovery, which generates a list of potential resources. Phase two involves gathering 
information about those resources and choosing the best set to match the application 
requirements. In phase three the job is executed, which includes file staging and 
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cleanup. In the second phase, the choice of the best pairs of jobs and resources is a 
NP-complete problem [Fern89]. Many heuristics have been proposed to obtain the 
optimal match. A related traditional scheduling algorithm for the traditional scheduling 
problem is Dynamic Level Scheduling (DLS) algorithm [SiLe93]. Based on a DAG-
structured application, DSL aims at selecting the best subtask-machine pair for the next 
scheduling. To select the best subtask-machine pair, it provides a model to calculate the 
dynamic level of the task-machine pair. The overall goal is to minimize the computing 
time of the application.  
 
However, in a grid environment the scheduling algorithm no longer focuses on the 
subtasks of an application within a computational host or a virtual organization (clusters, 
network of workstations, etc.). The goal is to schedule all the incoming applications to 
the available computation power. In [MaAS99, BrSB98], some simple heuristics for 
dynamic matching and scheduling of a class of independent tasks onto a heterogeneous 
computing system have been presented. Also an extended suffrage heuristic was 
presented in [CaLZ00] for scheduling the parameter sweep applications which were 
implemented in AppLeS. It is well known that the min-min heuristics is now becoming 
the benchmark of such kinds of task/host scheduling problems.  
 
There are two different goals for task scheduling: high performance computing and high 
throughput computing. The former aims at minimizing the execution time of each 
application and generally used for parallel processing, whereas the latter aims at 
scheduling a set of independent tasks to increase the processing capacity of the 
systems over a long period of time. Our approach is to develop a high throughput 
computing scheduling algorithm. 
 
With the proliferation of grid, at least two new things need to be considered in a 
scheduling model. The first is the quality of service. In a grid environment, applications 
compete for the best QoS from the remote resources. The resources provide non-
dedicated services to the applications. The scheduler in the grid environment needs to 
consider the QoS to get a better match between applications and resources. The other 
issue is how to handle the non-dedicated network. For non-dedicated networks, since 
they have their own local jobs, they cannot provide exclusive service to remote jobs. So 
how to predict the job computation time for non-dedicated network needs to be 
addressed. Research has been done on QoS and its related resource management, 
such as in [FoRS00, DiSe97]. The most current QoS concerns, however, are at the 
resource management level rather than at the task/host scheduling level. In this study, 
we embed the QoS information into the scheduling algorithm to improve the efficiency 
and the utilization of a grid system.  
 
There are several ways to predict the computation time for a task/host pair. One method 
given in AppLeS [CaLZ00] is to predict the current job run time using the previous host 
performance. A short-term prediction method, NWS [WoSH99], is exploited in [CaLZ00]. 
Since the prediction is based on the short term, for example a 5 minutes period, it may 
work well when the application size is small and the host environment will not change 



                                                                                                            Page 3 of 15 

dramatically during the whole scheduling process. However, for large applications or 
non-stable running environments, a NWS based scheduling may become unsatisfactory 
due to the low quality of prediction.  In our scheduling design, we adopt a newly 
proposed long-term, application-level prediction model [GoSW02].  
 
Currently available scheduling models include: AppLeS [CaOB00, CaLZ00], Nimrod 
[BuMA02], and Condor [RaLS98]. The scheduling algorithm in AppLeS focuses on 
efficient co-location of data and experiments as well as adaptive scheduling. In addition 
to the prediction model adopted, our approach differs from AppLeS in that our work 
considers QoS in scheduling. The scheduling in Nimrod is based on deadlines for a grid 
economy model, which has totally different concerns from our work. Condor is designed 
for high throughput computing in a controlled local network environment. Its scheduling 
concern is different from a grid environment and is not meant for stream of applications. 
  
The organization of this paper is as follows. In section 2, our scheduling algorithm is 
introduced. In section 3, the experimental results are presented and discussed. We 
conclude this study in section 4. The implementation details of our scheduler are 
presented in Appendix A. 

2 QoS based Grid Scheduling Model  
The term quality of service (QoS) may mean different for different types of resources. 
For instance, QoS for network may mean the desirable bandwidth for the application; 
QoS for CPU may mean the requested speed, like FLOPS, or the utilization of the 
underlying CPU. In our study, a one dimension QoS is considered. We represent the 
QoS of a network by its bandwidth. 
 

In current grid task scheduling, tasks with or without QoS request compete for 
resources. While a task with no QoS request can be executed on both high QoS and 
low QoS resources, a task that requests a high QoS service can only be executed on a 
resource providing high quality of service. Thus, it is possible for low QoS tasks to 
occupy high QoS resources while high QoS tasks wait as low QoS resources remain 
idle. To overcome this shortcoming, we modify the Min-min algorithm to take the 
QoS matching into consideration while scheduling. Based on prediction model 
[GoSW02], our scheduling algorithm is designed for both dedicated and non-
dedicated distributed systems, where the distributed systems are shared 
asynchronously by both remote and local users.  

2.1 Grid and Application Model 
The grid considered in this study is composed of a number of non-dedicated hosts and 
each host is composed of several computational resources, which may be 
homogeneous or heterogeneous. To simulate the computational hosts, we profile each 
host with a group of local parameters, util, arri, servstd, representing the utilization, 
arrival rate, and standard deviation of service time, respectively. These parameters are 



                                                                                                            Page 4 of 15 

the recorded average performance of the computing hosts. We can read them from a file 
or input it manually. Also the QoS is included in host characteristics, such as network 
bandwidth and latency. Different applications may require different QoS.  
 
The grid scheduler does not own the local hosts, therefore does not have control over 
them. The grid scheduler must make best effort decisions and then submit the jobs to 
the hosts selected, generally as a user. Furthermore, the grid scheduler does not have 
control over the set of jobs submitted to the grid, or local jobs submitted to the 
computing hosts directly. This lack of ownership and control is the source of many of the 
problems yet to be solved in this area.  

2.2 Grid Scheduling Algorithm 
While there are scheduling requests from applications, the scheduler allocates the 
application to the host by selecting the “best” match from the pool of applications and 
pool of the available hosts. The selecting strategy can be based on the prediction of the 
computing power of the host [GoSW02].  Before moving to the scheduling heuristics, let 
us review some terms and definitions [MaAS99, Pine95]. 

  
The expected execution time ETij of task ti on machine mj is defined as the amount of 
time taken by mj to execute ti given that mj has no load when ti is assigned. The 
expected completion time CTij of task ti on machine mj is defined as the wall-clock 
time at which mj completes ti (after having finished any previously assigned tasks). Let m 
be the total number of the machines in the HC suite. Let K be the set containing the 
tasks that will be used in a given test set for evaluating heuristics in the study. Let the 
arrival time of the task ti be ai, and the beginning time of ti be bi. From the above 
definitions, CTij = bi + ETij. Let CTi be CTij, where machine j is assigned to execute task i. 
The makespan for the complete schedule is then defined as maxti∈ K (CTi). Makespan is 
a measure of the throughput of the heterogeneous computing system. The objective of 
the grid scheduling algorithm is to minimize the makespan. It is well known that the 
problem of deciding on an optimal assignment of jobs to resources is NP-complete. 
Heuristics are developed to solve the NP-complete problem. 
 
Existing mapping (matching and scheduling) heuristics can be divided into two 
categories: on-line mode and batch mode. In the on-line mode, a task is mapped onto 
a machine as soon as it arrives at the mapper. In the batch mode, tasks are not mapped 
onto the machines as they arrive; instead they are collected in a set that is examined for 
mapping at prescheduled times called mapping events. This independent set of tasks 
that is considered for mapping at mapping events is called a meta-task. In the on-line 
mode heuristics, each task is considered only once for matching and scheduling. The 
MCT (minimum completion time) heuristic assigns each task to the machine so that the 
task will have the earliest completion time [FrGA98]. The MET (minimum execution time) 
heuristic assigns each task to the machine that performs that task’s computation in the 
least amount of execution time. In batch mode, the scheduler considers a meta-task for 
matching and scheduling at each mapping event. This enables the mapping heuristics to 
possibly make better decisions, because the heuristics have the resource requirement 
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information for the meta-task, and know the actual execution times of a larger number of 
tasks (as more tasks might complete while waiting for the mapping event).  
 
Several simple heuristics for scheduling independent tasks were proposed in [MaAS99, 
CaLZ00]: Min-min, Max-min, Sufferage and XSufferage. These heuristics iteratively 
assign tasks to processors by considering tasks not yet scheduled and computing their 
expected Minimum Completion Time (MCTs). For each task, this is done by tentatively 
scheduling it to each host, estimating the task’s completion time and computing the 
minimum completion time over all the hosts. For each task, a metric is computed using 
their MCTs and the task with the best metric is assigned to the host that let it achieve its 
MCT. The process is then repeated until all tasks have been scheduled. The general 
algorithm is shown in Figure 1 [CaOB00]. 
 
 
 
 
 
 
 
 
 

 
Figure 1. The General Adaptive Scheduling Algorithm 

 
The four heuristics, MinMin, MaxMin, Sufferage, and Xsufferage, is defined by the 
different definitions of “f”.  
 
The general scheduling algorithm given in Figure 1 does not consider QoS, which 
affects its performance in a general grid environment. Regardless of their computing 
power request, some tasks may require high network bandwidth to exchange a large 
amount of data among processors, whereas others can be satisfied with low network 
bandwidth. For example, let us assume that there is only one cluster (or virtual 
organization) that has high bandwidth in a grid. If the scheduler assigns a task that does 
not require high bandwidth to the cluster, tasks requiring high bandwidth will then have 
to wait. Considering QoS in scheduling should lead to a better scheduling algorithm. 
Based on the general adaptive algorithm, a new QoS guided scheduling algorithm is 
proposed in Figure 2: 
 
 
 
 

(1) while there are tasks to schedule 
(2)     for all task i to schedule 
(3)    for all host j 
(4)         Compute CTi,j = CT(task i, host j) 
(5)    end for  
(6)    Compute metrici = f(CTi,1, CTi,2, ……) 
(7)     end for  
(8)     Select best metric match m 
(9)     Compute minimum CTm,n 
(10)   Schedule task m on n 
(10)end while 



                                                                                                            Page 6 of 15 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The QoS Guided Min-min heuristic 

 
In the algorithm, ETij denotes the expected execution time of task ti on host mj, defined 
as the amount of time taken by mj to execute ti given that mj has no load when ti is 
assigned. dj denotes the next available time of host mj, which is also the beginning time 
of next ti that is to be executed on mj. The expected completion time CTij of task ti on 
host mj is defined as the wall-clock time at which mj completes ti (after having finished 
any previously assigned tasks). 

 
In this QoS guided Min-min heuristic, we consider the matching of the QoS request and 
service between the tasks and hosts based on the conventional Min-min. Similar to Min-
min, the QoS guided Min-min computes the completion time of all the tasks on all the 
hosts at the start. Then, instead of mapping the whole meta-task to the hosts, we map 
the tasks with high QoS request first. In the first “do” loop, initially, for each task with 
high QoS request in the meta-task, the algorithm finds the earliest completion time and 
the host that obtains it, in all the QoS qualified host sets. Secondly, the algorithm finds 
the task with the minimum earliest completion time, and assigns the task to the host that 
gives the earliest completion time to it. Thirdly, the algorithm finalizes the loop by 
deleting the scheduled task from the meta-task, and updating dl and CTil for all i. After 
finishing the mapping all the tasks with high QoS request, we map the rest of the tasks 
(those with low QoS request) in meta-task. By repeating the same three steps as we 
described, the tasks with low QoS request are also mapped to the hosts. The QoS 
guided Min-min will be executed at every scheduling event. 
 
Table 1 gives a scenario in which the QoS guided Min-min outperforms the Min-min. It 
shows the expected execution time of four tasks on two hosts. The hosts are assumed 

(1) for all tasks ti in meta-task Mv (in an arbitrary order) 
(2)  for all hosts mj (in a fixed arbitrary order) 
(3)   CTij = ETij +  dj 
(4) do until all tasks with high QoS request in Mv are mapped 
(5) for each task with high QoS in Mv,  find a host in the QoS qualified  

host set that obtains the earliest completion time  
(6) find the task tk with the minimum earliest completion time  
(7)  assign task tk to the host ml that gives it the earliest completion time 
(8)  delete task tk from Mv 
(9)  update dl 
(10)  update CTil for all i 
(11)end do 
(12) do until all tasks with low QoS request in Mv are mapped 
(13)  for each task in Mv find the earliest completion time and the corresponding host 
(14)  find the task tk with the minimum earliest completion time 
(15)  assign task tk to the host ml that gives it the earliest completion time 
(16)  delete task tk from Mv 
(17)  update dl 
(18)  update CTil for all i 
(19)end do 
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to be idle. In this particular case, the Min-min heuristic gives a makespan of 17 and the 
QoS guided Min-min heuristic gives a makespan of 12. Figure 3 and 4 gives a pictorial 
representation of the assignments made for the case in Table 1.  

 
Table 1. A sample where the QoS guided Min-min outperforms the Min-min 

 M0 m1 

t0 5 X 

t1 2 4 

t2 7 X 

t3 3 8 

 
 
 
 
 
 

 
 
 
 
 
 

2.3 Computation Time Prediction Model  
The expected task run time is a critical component of scheduling. CTij is the expected 
computing time of task i on host j. CTij can be computed or retrieved from some 
database. We can use two different ways to calculate the value of CTij:  
 
�� Short Term Prediction Model 
During the first round of scheduling, the scheduler makes initial guess on actual task 
execution time for all tasks. Once tasks are completed, the scheduler uses observed 
execution times to improve accuracy by modifying the prediction algorithm. In AppLeS, it 
is shown that the average relative error of this prediction approach is about 11 percent.  
 
�� Long Term Prediction Model 
A long-term performance prediction model is presented in [GoSW02] to estimate task 
completion time in a non-dedicated computing environment. More recently, a 
performance measurement and prediction system, named Grid Harvest Service (GHS) 
[SuWu02], has been developed based on the long-term performance model. 

m0 m1 

t1

t3 
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Figure 3. the Min-min gives a makespan 
of 17 

Figure 4. the QoS guided Min-min 
gives a makespan of 12 
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Experimental results show that GHS provides a practical solution for long-term, 
application-level prediction. Its relative error is less than 10 percent. 

2.4 Quality of Information 
Quality of information is the impact of the performance estimation accuracy on different 
scheduling strategies. Different task/host selection heuristics may react differently on 
inaccurate estimation. Strategies with smaller vibration are more appropriate in practice. 
By simulating the completion time error percentage, we can investigate the tolerance of 
estimation accuracy of each scheduling algorithm. A good algorithm should be able to 
tolerate moderate prediction inaccuracy.  

3 Experimental Testing 
We have developed a simulated grid environment to evaluate the newly proposed QoS 
guided scheduling algorithm (see the Appendix A). In our experimental testing, we fixed 
the parameter for the hosts and used three task submission scenarios. The QoS guided 
Min-min and the conventional Min-min are compared on their makespans on the same 
set of tasks. At the same time, we compare the online mode and batch mode scheduling 
to investigate the effect of the scheduling frequency on both batch heuristics scheduling 
algorithms including the QoS guided Min-min and the conventional Min-min heuristics. In 
addition, we also investigate how the accuracy of the prediction algorithm affects the 
performance of the scheduling algorithms.  
 
The experimental evaluation of the heuristics is performed in three parts. In the first part, 
the QoS guided Min-min and the conventional Min-min heuristics are compared with 
three QoS request distributions in batch mode. In the second part, the performance of 
the scheduling is discussed using the online mode and the batch mode with three 
different scheduling frequencies. And in the third part, the quality of information is 
discussed based on the comparison given different accuracies of prediction. 

3.1 Comparison of the batch mode heuristics 
QoS requests have a big effect on the performance of task scheduling. Based on actual 
applications, three different scenarios are used in our simulation testing:  

��Scenario (a), most of the tasks have particular QoS requirement. Such as 75% 
tasks need network bandwidth no less than 1.0Gigabit/s and there is no 
bandwidth requirement for the rest of tasks.  

��Scenario (b), about half of the tasks have particular QoS requirement. Such as 
50% tasks need network bandwidth no less than 1.0Gigabit/s and there is no 
bandwidth requirement for the rest of tasks.  

��Scenario (c), only a few of the tasks have particular QoS requirement. Such as 
only 25% tasks need network bandwidth no less than 1.0Gigabit/s and there is 
no bandwidth requirement for the rest of tasks. 

 
For each of the scenarios, we compare the performance of the conventional Min-min 
heuristics and the QoS guided Min-min. For each scenario and each heuristic we create 
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100 tasks 100 times independently and get the average makespan of the 100 times. 
Table 2 and Figure 5 shows the comparison. The data is in seconds.  
 

Table 2. Makespan for three scenarios for two heuristics 

 Min-min QoS Guided Min-min Improvement 

scenario(a) 118.30 108.83 8.01%

scenario(b) 152.23 134.85 11.41%

scenario(c) 205.95 202.62 1.62%
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Figure 5. Makespan for three scenarios for two heuristics 

 
As shown in Figure 5, for all three scenarios the QoS guided Min-min outperforms the 
conventional Min-min heuristics. The makespan using QoS guided Min-min can be as 
much as 11% shorter than that using the conventional Min-min. For the scenario (b) 
where the tasks that request high QoS and the tasks that request low QoS are evenly 
distributed, the performance gain reaches as high as 11.41%. For the scenario (a), 
where the tasks that request high QoS are in higher density (75%), a satisfactory 
performance gain 8.01% is acquired. For scenario (c), where the tasks that request high 
QoS is only 25%, the performance gain of the QoS guided Min-min is relatively small, 
i.e., 1.62% better than the conventional Min-min. 

3.2 Effect of the scheduling frequency in the batch mode heuristics 
The scheduling frequency plays an important role in the efficiency of the scheduling 
algorithms. If the frequency is too high, we can only get the local optimum and if the 
interval between scheduling events is too long, some hosts may remain idle so that the 
resources cannot be fully utilized.  

Table 3. Makespan for two heuristics based on different scheduling frequency 

  Min-min QoS Guided Min-min Improvement 

online   150.05   

5 secs 153.05 134.93 11.84%

10 secs 152.23 134.85 11.41%

20 secs 156.95 138.98 11.45%
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Figure 6. Makespan for two heuristics based on different scheduling frequency 

 
Table 3 and Figure 6 show the comparison of the makespan of Min-min and the QoS 
guided Min-min for different scheduling frequencies including online mode. It is shown 
that for all scheduling frequencies, the makespan of the QoS guided Min-min is 11% –
12% shorter than that of the conventional Min-min on the same set of tasks.  
 
We can also see the impact of scheduling intervals on the makespan. It is found that 
when the scheduling interval is 10 seconds, both the min-min and QoS guided min-min 
scheduling algorithms get the minimum makespan. When the scheduling frequency is 
high, such as every 5 seconds once, the makespans of both scheduling algorithms 
increased, though still better than the online mode. When the scheduling frequency is as 
low as once in every 20 seconds, the makespans of both Min-min and QoS guided Min-
min increased to 156.95 and 138.98, since some of the hosts are idle for long during the 
interval between two scheduling events. In online mode, there is no difference between 
the new QoS guided min-min algorithm and the conventional min-min algorithm since in 
this mode once a task arrives it is scheduled, hence there is no priority for just one task 
as it has been done in the new QoS guided min-min algorithm. 

3.3 Quality of Information in the batch mode heuristics 
As we discussed earlier, the impact of the estimation accuracy on different scheduling 
heuristics should be studied. In this section, we focus on scenario (b) to present our 
results. In this experiment we introduced noise to the perfectly accurate estimates of the 
previous experiment by adding a random percentage error (uniformly distributed, both 
positively and negatively) to the computation forecasts. The errors occur in every task 
within a range, e.g. 10%, 30%. We increase the percentage error by 10%, 30% and 
50%, the comparison between the conventional Min-min and the QoS guided Min-min is 
show in Table 4 and Figure 7. 
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Table 4. Makespan for two heuristics based on four predication errors. 

  Min-min QoS Guided Min-min Improvement 

0% 152.23 134.85 11.42%

10% 157.68 138.78 11.99%

30% 157.25 138.55 11.89%

50% 156.45 139.00 11.15%

Relative error < 3.58% < 3.08%   

100

120

140

160

0%          10%        30% 
50%

M
ak

es
pa

n(
se

co
nd

s) Min-min
QoS Guided Min-min
S i 3

 
Figure 7. Makespan for two heuristics based on four predication errors 

 
From the Figure 7, we draw two conclusions. First, for all four prediction errors, 
compared to the length of their makespans, the QoS guided Min-min outperforms the 
Min-min 11% to 12%. Second, since there is no dramatic increase (less than 3.58% and 
3.08%) on the makespan as the percentage of the errors increases, one can see that 
both the conventional Min-min and the QoS guided Min-min depend on the forecast 
accuracy but they all can tolerate the bad quality of information to some extent. In 
addition, it can be seen that the QoS guided Min-min can tolerate inaccurate estimation 
at least as much as the conventional Min-min.  

4 Conclusion and Future Work  
To confront new challenges in task scheduling in a grid environment, we present in this 
study an adaptive scheduling algorithm that considers both quality of service (QoS) and 
non-dedicated computing. Similar to most existing grid task scheduling algorithms, this 
newly proposed scheduling algorithm is designed to achieve high throughput computing 
in a grid environment. A guided QoS component is added into the conventional min-min 
heuristic to form the QoS guided min-min heuristic, and the most recent results in 
performance prediction of non-dedicated computing is used to estimate the expected 
execution time. A simulation system was developed to test the QoS scheduling 
algorithm in a simulated grid environment. The experimental results show that the QoS 
guided min-min heuristic outperforms the traditional min-min heuristic in various system 
and application settings, and it also tolerates inaccurate execution estimations. 
Analytical and experiment results evince its real potential for grid computing. 
 
This study is a first attempt to support QoS in grid task scheduling. Many issues remain 
open. We have addressed only one-dimensional QoS issues. Embedding multi-
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dimensional QoS into task scheduling is still a topic of research. We have addressed 
only the concern of bandwidth of network. How to classify general QoS in a grid 
environment still needs more deliberation. In addition, how to choose scheduling 
frequency is another optimization problem that needs further investigation. Finally, we 
would like to adopt this newly proposed schedule algorithm in an actual grid 
environment for further testing and refinement.  

References  
[BrSB98] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. 
P. Robertson, M. D. Theys, and B. Yao, “A taxonomy for describing matching and 
scheduling heuristics for mixed-machine heterogeneous computing systems,” IEEE 
Workshop on Advances in Parallel and Distributed Systems, Oct. 1998, pp. 330-335. 
[BuMA02] Buyya, R, Murshed, M., and Abramson, D. “A Deadline and Budget 
Constrained Cost-Time Optimization Algorithm for Scheduling Task Farming 
Applications on Global Grids”, The 2002 International Conference on Parallel and 
Distributed Processing Techniques and Applications (PDPTA'02), Las Vegas, Nevada, 
USA, June 2002. 
[CaLZ00] Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov and Francine Berman, 
“Heuristics for Scheduling Parameter Sweep applications in Grid environments”,  
Proceedings of the 9th Heterogeneous Computing workshop (HCW'2000), pp349-363. 
2000. 
[CaOB00] Henri Casanova, Graziano Obertelli, Francine Berman and Rich Wolski, "The 
AppLeS Parameter Sweep Template: User-Level Middleware for the Grid", Proceedings 
of the Super Computing Conference (SC'2000), Nov. 2000. 
[DiSe97] C. Diot and A. Seneviratne. “Quality of Service in Heterogeneous Distributed 
Systems”. Proceedings of the 30th Hawaii International Conference on System Sciences 
HICSS-30. Hawai. January 1997. 
[Fern89] David Fernández-Baca. “Allocating modules to processors in a distributed 
system”, IEEE Transactions on Software Engineering, 15(11):1427-1436, November 
1989. 
[FoRS00] I. Foster, A. Roy and V. Sander, A Quality of Service Architecture that 
Combines Resource Reservation and Application Adaptation, Proc. of 8th Intl Workshop 
on Quality of Service, 181-188, 2000, June 5-7, Pittsburgh, PA, USA. 
[FrGA98] R. F. Freund, M. Gherrity, S. Ambrosius, M. Camp-bell, M. Halderman, D. 
Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust, and 
H. J. Siegel, “Scheduling resources in multi-user, heterogeneous, computing 
environments with SmartNet,” 7th IEEE Heterogeneous Computing Workshop (HCW 
’98), Mar. 1998, pp. 184–199. 
[GoSW02] L. Gong, X.H. Sun, and E. Waston, "Performance Modeling and Prediction of 
Non-Dedicated Network Computing'', IEEE Trans. on Computer, Vol 51, No 9, 
September, 2002. 
[MaAS99] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund, ``Dynamic 
mapping of a class of independent tasks onto heterogeneous computing systems,'' 8th 



                                                                                                            Page 13 of 15 

IEEE Heterogeneous Computing Workshop (HCW '99), San Juan, Puerto Rico, Apr. 
1999, pp. 30-44. 
[Pine95] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall, 
Englewood Cliffs, NJ, 1995. 
[RaLS98] Rajesh Raman, Miron Livny, and Marvin Solomon, “Matchmaking: Distributed 
Resource Management for High Throughput Computing”, Proceedings of the Seventh 
IEEE International Symposium on High Performance Distributed Computing, July 28-31, 
1998, Chicago, IL 
[Scho02] Jennifer M. Schopf, “A General Architecture for Scheduling on the Grid”, 
special issue of JPDC on Grid Computing, April, 2002. 
[SiLe93] Gilbert C. Sih and Edward A. Lee, "A compile-time scheduling heuristic for 
interconnection-constrained heterogeneous processor architectures", IEEE Trans. 
Parallel and Distributed Systems, vol.4, pp175-187, Feb.1993. 
[SuWu02] Xian-He Sun, and Ming Wu, “GHS: A Performance Prediction and Task 
Scheduling System for Grid Computing”, submitted for publication. 
[WoSH99] Rich Wolski, Neil Spring, and Jim Hayes, “The Network Weather Service: A 
Distributed Resource Performance Forecasting Service for Metacomputing”, Journal of 
Future Generation Computing Systems,Volume 15, Numbers 5-6, pp. 757-768, October, 
1999. 

Appendix A: The Grid Simulator 
The Grid simulator was developed to test the QoS based scheduling algorithm. The 
simulated test system is illustrated in Figure 8. The Grid simulator consists of a 
simulated Grid environment and a scheduler that implements different scheduling 
strategies. The whole system works as Figure 8.  
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Figure 8. The scheduling model in a simulated Grid environment 
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The simulation agent generates the tasks and computational resources, and sends the 
information to the allocation agent. The allocation agent implements two algorithms: the 
Min-min and the QoS guided Min-min. The two scheduling algorithms are tested on the 
same set of tasks and hosts generated by the simulation agent. 
 
The details of the simulation agent are given in A.1. The details of the allocation agent 
are given in A.2. The output files are explained in A.3. 

A.1 Simulation Agent 
The simulation agent generates the tasks following Poisson distribution. It calculates 
and adjusts task arrival rate λ. Each task is characterized by m subtasks and the 
demand of each subtask, w1, w2, w3,…, wm. The QoS of each task is also represented 
in the scheduling request of the task. 
 
To simulate the network of workstations or cluster of computing units, we profile each 
NOW or cluster with a group of parameters, util, arri, servstd, representing the utilization, 
arrival rate, and standard deviation of service time, respectively. These parameters are 
the recorded average performances of the computing resources. We can read them 
from a file or input them manually. In our implementation, the parameters of the 
computing resources are generated randomly within a range. Similarly, QoS, such as 
network bandwidth, is generated for each computational resource. 
 
Task Attributes 
100 independent tasks are created based on Poisson distribution. For each task, the 
attributes of the task include interarrival time, number of subtasks, QoS request, and the 
workloads of the subtasks. Since the tasks are created to follow the Poisson distribution, 
the interarrival time of tasks is generated based on exponential distribution. The number 
of the subtasks generated falls randomly between 1 and 20. Each subtask has a random 
work demand of 1000 to 2000. Our algorithm considers only one dimensional QoS 
(network bandwidth). The QoS is generated to be 100 or 1000 with the ratio following 
given distribution of the QoS request. We have three scenarios of the QoS distribution. 
See section 3.1 for details. The run time interval is one second. 
 
Host Attributes 
For each set of hosts, the attributes of the host include number of workstations (or 
computing nodes), QoS provided, and the information of each workstation, which 
includes the utilization, arrival rate, and standard deviation of service time. 
 
All configurations about the hosts will remain the same during the simulation in our 
experiment. The four non-dedicated networks are settled as follows. Each network 
has 20 workstations and the local parameters, such as util, arri and serstd, are 
generated randomly in given scope, such as util is from 0.0 to 1.0, arriving rate is 
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from 0.01 to 0.15 and serstd is about 25. This setup makes this Grid environment 
non-dedicated and heterogeneous. We implement one-dimensional QoS (network 
bandwidth). Network_0 and network_3 have 1.0Gigabit/s bandwidth and the other 
two networks have 100Megabit/s bandwidth only.  

A.2 Allocation Agent 
The allocation agent functions in the simulated Grid environment provided by the 
simulation agent. The allocation agent receives the task scheduling request, schedules 
the tasks to the hosts, and then writes the scheduling records to the files for statistical 
analysis. 
  
The allocation agent starts a listening thread that listens to the task requests. It receives 
the task objects and puts them into the task queue. While the task queue is not empty, 
the allocation starts the scheduling algorithm to find the right task/host match. To 
compare our QoS guided algorithm with the min-min heuristic, we implement both QoS 
guided heuristic and min-min heuristic to get the performance data.  
 
QoS guided heuristic 
The implementation of QoS guided heuristic follows the algorithm shown in Figure 2. 
First, the allocation agent begins to compute the Completion Time of the task on the 
given host. The Completion time of the task and host pair is computed by the function in 
[GoSW02]. The allocation agent then schedules all the tasks with high QoS request to 
the hosts that provide high QoS. Finally, all other tasks are scheduled on the available 
hosts set.  
 
Min-min heuristic 
The implementation of QoS guided heuristic follows the algorithm shown in Figure 1. 
The implementation complies with the QoS rules by matching high QoS request tasks to 
high QoS hosts only.  

A.3 Output 
While scheduling, the allocation agent writes the scheduling record to files. There are 
three files: util.txt, allo.txt, and sim.txt. The util.txt records the utilization information of 
each host. The allo.txt records the scheduling information on each task, including the 
queuing time of each task. The sim.txt records information on the tasks that are 
generated. From the util.txt we can get the makespan of all the tasks. 


