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Abstract— Networks exist to provide services to users.  
Increasingly, the networks on which the services reside are not 
the same as the networks from which the services are accessed.  
This leads to the problem on how to best provide such services 
transparently when the access protocols differ.  We discusses a 
methodology to make available the existing services residing in a 
network whose protocols are distinct from the network where the 
access attempt is made.  We propose a technique we term call 
model mapping with state sharing and demonstrate it in the 
telecommunication domain where we access traditional telephony 
services residing on the telephone network from Internet 
telephony endpoints residing on the Internet. 

Keywords- SIP; H.323; services; PSTN; call models; SS7; state 
machines 

I.  INTRODUCTION 
The intrinsic value of a computer network is measured by 

the services it provides to its users.  As the number of such 
networks increases, so do the chances that services residing on 
one network will need to be accessed by users on a different 
network.  This is more true for telecommunication networks; 
currently, there are two major networks in place: the Public 
Switched Telephone Network (PSTN) and the Internet.  
Increasingly, these networks are converging [1], which 
necessitates access to services1 residing in one of these 
networks from the other. 

The convergence poses a number of problems to be solved.  
In order to formulate the problem set consistently, we will 
define some terms first. We call the network on which the 
service runs natively as the local network (or domain) ; 
alternatively, a foreign network (or domain) is one from which 
a request to execute the service is made.  The service and its 
associated data reside on the local network. 

The first problem in accessing services from a foreign 
domain is that of differing network protocols.  The PSTN and 
Internet use dissimilar network protocols, and in fact, are 
designed with different goals.  While the PSTN is a highly 
tuned network to transport voice, the Internet is a generalized   
network that can transport any type of payload -- voice, video, 
or data (text).  Second, a request for service arriving from a 
                                                           

1 In the context of the PSTN and the Internet, we define 
service as a value added functionality provided to the users by 
the network; thus Call Waiting and Caller ID are examples of 
PSTN services and email and ftp are examples of Internet 
services. 

foreign domain will start service execution in the local domain; 
as such, the entities in the local and foreign domain need to be 
synchronized.  Third, when a service is accessed from a foreign 
domain, the semantics of the service must be preserved (i.e. the 
foreign network may have more capabilities -- or less 
capabilities -- than the local network; in either case, the service 
should function at a minimal acceptable level).  Finally, local 
networks that host services have already addressed important 
issues such as scalability and reliability.  There is a temptation 
to port services to the foreign network and then revisit the same 
issues in context of the foreign network.  Instead, we believe 
that the services and their associated data and procedures are 
best left in the local network, with some technique created to 
allow access to these services in a transparent manner from the 
foreign network. 

We describe a technique to address the problems outlined 
above.  The technique is most applicable to domains where 
entities requesting and executing a service follow a finite state 
machine of some sorts. Call controllers -- entities that are 
responsible for setting up, maintaining, and tearing down a 
voice call, or a multi-media session -- in PSTN and Internet 
telephony readily subscribe to finite state machines.  Thus, the 
telecommunications domain provides us a rich palette on which 
to focus the work described in this paper. 

The rest of the paper is organized as follows: section II 
provides a background and motivation for our investigation in 
this area.  Section III introduces our solution.  The application 
of the technique to the telecommunication domain is presented 
in Section IV with emphasis on results obtained from an 
implementation.  Section V outlines related work, and our 
conclusions are stated in the final section. 

II. BACKGROUND 

A. Motivation 
The last few years have witnessed a rapid rise in academia 

and the industry in Internet telephony; i.e. using the Internet for 
real-time transfer of multi-media communications 
incorporating both traditional circuit switched and wireless 
networks and Internet applications such as the Web and email.  
Internet telephony itself is not new; it has been around since the 
1970's.  However, the pace of acceptance accelerated in the 
mid 1990's.  As it stands right now, Internet telephony has 
moved beyond the hobbyist/recreational stage and is 
exceedingly being viewed as an additional means besides the 
PSTN for transporting voice. 



The initial stages in the introduction of Internet Telephony 
(1995-2000) were characterized by a rush towards toll bypass; 
i.e. the price advantage gained by using unregulated Internet 
telephony over the highly regulated PSTN.  As Internet 
Telephony matures, the thrust is moving from toll bypass to an 
important component: services.  Services are an active area of 
research in Internet Telephony [11, 12, 13, 14, 22].  In this 
paper, we focus on services that reside on the PSTN but need to 
be accessed in a scalable and transparent manner from Internet 
endpoints.   

In order to appreciate the need to access existing PSTN 
services from Internet endpoints, consider that the majority of 
services that PSTN users are accustomed to -- Call Waiting, 
800-number translation, Caller ID, etc. reside on the PSTN. 
Users on an Internet telephony endpoint should be able to avail 
themselves of these services in the same transparent manner 
that they do when using a traditional PSTN handset.  There are 
three ways [11] to accomplish this: first, the easiest, albeit the 
most intrusive way would be to re-write all the existing PSTN 
services for the Internet environment.  This is not feasible since 
it takes anywhere from 6 months to a year to get a PSTN 
service specified, implemented, tested, and deployed.  This 
already assumes a stable service delivery infrastructure as it 
exists in the PSTN.  Internet telephony being a new medium 
does not as yet have a well-specified services architecture that 
can be leveraged to deploy new services.  The service 
architecture for Internet telephony is in the early stages of 
being proposed [3,4,5,6].  Thus it is extremely difficult, and in 
fact, undesirable, to replicate existing PSTN services from 
scratch in the Internet domain.   

Another way to enable services in dissimilar networks is to 
use a language neutral service framework.  Much like a Java 
program can run on multiple architectures simply by porting 
the Java Virtual Machine to each such architecture, one can 
envision a service-specific language that is architecture and 
platform neutral.  Thus services programmed in such a 
language can easily be ported from the PSTN domain to the 
Internet domain.  Unfortunately, such a platform-neutral, 
domain-specific language does not exist.  Although early 
research proved that such a language was indeed feasible [15], 
the industry interest was lacking to push it towards a standard. 

A final option for accessing PSTN services in a transparent 
manner is to devise a technique such that services running on a 
local domain can transparently be accessed from foreign 
domains.  This preserves the (tested and) deployed service 
infrastructure in the local domain, while at the same time, 
allowing transparent and scalable access to the service from the 
foreign domain.  Service porting or re-writing is not necessary 
as the service can be accessed in a network agnostic manner. 

B. Contribution 
The main contribution of this paper is a technique we term 

call model mapping with state sharing (CMM/SS) to 
transparently access services resident in local domains from a 
foreign domain.  This technique is most applicable when the 
services are accessed during the signaling messages exchanged 
at call setup, maintenance, and teardown. 

The CMM/SS technique depends on, and assumes the 
availability of a call model.  A call model is a deterministic 
finite state machine (FSM).  States in the FSM represent how 
far the call has progressed at any point in time.  The current 
state, plus a set of input stimuli transition the FSM to the next 
state.  In telecommunication signaling, these input stimuli 
consist of timers firing and arrival/departure of signaling 
messages resulting in the execution of significant events.  
Events cause transition into and out of a particular state. 

  Fortunately, call models are already an intrinsic part of 
telecommunication signaling protocols.  For instance, the 
PSTN call model consists of 19 states and 35 input stimuli 
[18,2,17] and the Internet telephony signaling protocol, SIP [7, 
8, 9], consists of 8 states and 20 input stimuli (Figures 5 and 7 
of reference [7]).  Call models, besides providing a uniform 
view of the call to all involved entities, also serve to 
synchronize these entities. 

CMM/SS consists of mapping the call model of a foreign 
domain to that of a local domain so that the foreign domain can 
access services resident in the local domain.  Call mapping is 
fairly prevalent in the telecommunications domain [19,20,21], 
however, it has been used so far simply as an interworking 
function to set up calls between different networks (i.e. 
between PSTN and Internet, between SIP and H.323, etc.).  
Our work described in this paper extends this use of call 
mapping in two ways: first, the thrust is not on simply making 
a call across different networks, but accessing services across 
different networks.  Secondly, consider that service execution 
in a heterogeneous network implies saving the state of the call 
in the foreign domain until the service has executed in the local 
domain.  Thus, the state of the call needs to be shared between 
the foreign domain as well as the service execution function of 
the local domain.  CMM/SS allows us to do this in a 
transparent manner.   

We have successfully applied CMM/SS to access PSTN 
services from H.323 endpoints; reference [16] discusses that 
effort in detail.  In this paper, we attempt to formally codify 
CMM/SS and, to demonstrate its generality, we apply it to 
another Internet telephony signaling protocol, SIP.  The details 
of CMM/SS are described next. 

III. CALL MODEL MAPPING WITH STATE SHARING 
We begin by formally defining our state space and the call 

model mapping technique.  We then take a look at how the 
state is effectively shared between the domains to access 
services. 

A. Basic definitions 
Definition 1 (localized state): A localized state is a finite tuple 
sl of atomic states sj, with m ≥ 1, as shown in (1). 

                                           m 
                 sl = (sj)j=1     = (s1, s2, …, sm-1, sm)                          (1) 
 

Both foreign domains (F) and local domains (L) have their own 
localized states denoted by F[sl] and L[sl], respectively. 



Definition 2 (global state): A global state is a finite tuple sG 
of localized states F[sl] and L[sl] as shown in (2). 
 
                 sG = (F[sl], L[sl])                                                    (2) 
 

The call model mapping technique intrinsically assumes 
that there are 2 domains of interest: the local domain, L, and the 
foreign domain, F.  Furthermore, the states in F[sl] need to be 
mapped to the states in L[sl].  We express the mapping process 
using the following notation: 

                                                                 m 

                      (F → j L)j=1                                                 (3) 
 

i.e. ∀ states in F, there exists a mapping between each state in 
F  to an appropriate state in L. 

If the notation in (3) is expressed as a function ∅(x), with x 
being the domain (or the set of argument values for which is ∅ 
is defined) of ∅ and x ∈ F[sl], then 

                     ∅(x) = y, y ∈ L[sl]                                             (4) 
 

Or, L[sl] is the codomain of ∅(x).  In other words, for every 
state in F, there must exist a possible (maybe non-unique) 
mapping in L.  If any two random call models F and L exhibit 
(4) then they can be mapped to each other. 

B. Call Model Mapping 
In most mappings, the number of states in F and L may 

vary considerably.  It could very well be that L has more states 
than F.  In such cases, some states in L may not have an 
equivalent mapped state in F.  We term this condition as state 
starvation and it is depicted in Figure 1. 

On the other hand, it could very well be that F has more 
states than L, and thus, more than one state from F will map 
into a state in L.  We term this condition as state aggregation 
and it is depicted in Figure 2.  Regardless of state starvation or 
state aggregation, a mapping depicted in (4) is considered 
complete if there isn't any semantic loss of the protocol as a 
result of the call model mapping.  A mapping is, likewise, 
considered partially complete if there is a minimal semantic 
loss introduced as the result of call model mapping due to state 
starvation or aggregation. 

 

 

 

 

 

 
Figure 1: State Starvation                       Figure 2: State Aggregation 

It should be noted that unless two call models are exactly 
alike, all mappings will be partially complete.  This can be 
attributed to the fact that the design of two randomly picked 
call models is rarely alike in every respect; thus mapping one 

into another necessarily introduces some semantic loss.  
However, so long as the mapping does not distort how the call 
model behaves in L if the mapping was not applied in the first 
place, partially complete mappings are indeed the only 
outcome of call model mapping. 

Discussions of call model mapping in the literature thus far 
have not included any state sharing between F and L.  State 
transition occurring in one domain cause the appropriate state 
transition in the other in an idempotent fashion.  In fact, a 
majority of telecommunication systems that employ call model 
mapping [19,20,21] do so in this manner (for example, a PSTN 
‘User Alerting’ message can be converted into a SIP ‘180 
Ringing’).  Call model mapping without state sharing is 
adequate for idempotent signaling messages that simply set up 
(or tear down) a session; no advanced services are involved 
during session setup (or tear down). 

C. State Sharing 
In order to access services resident in L using access 

protocols native to L, with the request for the service 
originating in F, we propose an addition to the call model 
mapping semantic to allow for state sharing across F and L.   

Under our technique, state is actually distributed and shared 
between F and L.  When a call request arrives at F, a state 
transition occurs to state p ∈ F[sl], and processing is 
temporarily suspended at F while the call state is handed to L 
for service execution (horizontal line from ‘a’ to ‘1’ in Figure 
3).  This initial handoff is a simple mapping of p ∈ F[sl] into an 
equivalent state p' ∈ L[sl]. 

 Since the services reside in L, they are executed in that 
domain.  Their execution leads to state transitions local to L 
until a certain point that control needs to be passed back to the 
same state p from which the transition occurred (Figure 3).  
Along with passing the control, L also imparts enough 
information to F, allowing it to transition to a certain state q ∈ 
F[sl] (p != q and q may not be the next adjacent state after p).  
The choice of state q depends on the service execution logic.  
For instance, if the service logic in L decides to terminate the 
call, L will affect the appropriate state transition in F.   Thus, in 
a sense, both F and L maintain global state sG of the call.  This 
synchronization is important because the call is actually being 
serviced by two different signaling protocols.  The global state 
sG reflects the shared and authoritative state of the call. 

 

 

 

 

 

 

 

 

                        Figure 3: Transitions in F and L 
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Note that in Figure 3, the state labeled 'b' in F appears not 
to be mapped to an equivalent state in L.  This is not an error, 
but in this particular example signifies that the service logic in 
L caused a state transition to occur to a non-adjacent state 
labeled 'c' in F. 

We believe that the CMM/SS technique is a good fit for 
transparent access to services resident in L, using protocols 
native to L, when the service request originates in F.  The call 
model and state sharing mechanism ensures that the different 
signaling protocols remain synchronized while the service is 
accessed and executed in L.   

IV. IMPLEMENTATION 
To prove the CMM/SS technique, we implemented it in a 

network consisting of SIP endpoints, a SIP proxy, and the 
PSTN service infrastructure.  This section describes the 
implementation, with a quick detour on PSTN service 
execution for readers who may not be familiar with it. 

A. Background: PSTN service execution 
The Intelligent Network (IN) is used in the PSTN to 

provide services such as 800-number translation, pre-paid 
calling, etc.  It is described in detail in [2]; here we provide a 
very rudimentary overview to aid the reader who may not be 
familiar with the concepts.  

Figure 4 shows a simplified PSTN/IN architecture in which 
the telephone switches called Service Switching Points (SSP) 
are connected via a packet network called Signaling System 7 
(SS7) to a general purpose computer called a Service Control 
Points (SCP).  This leads to a clean separation of components 
since call control and service switching functions are 
performed at the SSP, while the service control (and data) 
functions are hosted by the SCP.  Service logic resides at and is 
executed in the SCPs. 

SSPs run a call model called Basic Call State Model 
(BCSM) when handling a call.    A BCSM consist of states 
called Points In Call (PIC) and transitions between states called 
Detection Points (DPs).  The DPs are armed to provide 
services; the SSP may suspend the call on encountering an 
armed DP and send a message to a SCP for further instructions.  
When the SCP gets a request for service, it can reply with a 
single response (a simple number translation augmented by 
criteria like time of day or day of week), or, in turn, get into a 
complex dialog with the SSP which may involve playing or 
recording voice announcements and collecting digits.  The 
resulting protocol as well as the BCSM and DPs are 
standardized by the ITU-T and are known as the Intelligent 
Network Application Protocol (INAP) [2].   There are actually 
two BCSM: an originating side and a terminating side BCSM.  
Each BCSM provides services to a caller or a callee, 
respectively. 

B. Implementation details 
The goal of our research was to access from SIP endpoints, 

in a transparent manner, certain benchmark IN services which 
reside in the PSTN.  The service logic and the protocol required 
to access it in the PSTN were assumed immutable; neither the 

logic, nor the protocol could not be modified or changed to 
account for the fact that the service request was now being sent 
by a SIP entity, and not a SSP. 

 

 

 

 

 

 

  

 

         Figure 4: Simplified PSTN/IN architecture 

The benchmarks IN services chosen to provide a proof of 
implementation were: 

• Originating call screening (OCS): This service restricts 
the numbers that a phone subscriber can call.  It can be 
used for parental control, or enforcing business 
practices.  This is a caller oriented service (i.e. it is 
executed on behalf of the caller). 

• Abbreviated dialing (AD): AD is one of the Virtual 
Private Network (VPN) service in the PSTN.  It allows 
a caller to substitute a unique, abbreviated dial string to 
reach a party.  This is a caller oriented service. 

• Caller name delivery (CNAM): This service allows the 
called party to view the name of the caller in a display 
device.  This is a callee oriented service. 

• Call forwarding (CF): This service allows a phone 
subscriber to forward calls arriving at his/her phone 
number to an alternate destination.  This is a callee 
oriented service. 

Implementing a set of these 4 services, which are a mix 
between caller- and callee-oriented services provides an 
empirical proof for the technique of CMM/SS.  The service 
logic programs for these services were executed on an SCP 
simulator.  It is imperative to state that the service logic was 
not modified in any way; it was the same logic that would 
normally be used on the PSTN network.  PSTN callers and 
PSTN callees were replaced by SIP-based callers and SIP-
based callees.     

The simplest manner in which to implement CMM/SS was 
to transform a SIP call processing entity into an Internet 
equivalent of a SSP.  The best suited SIP entity for this purpose 
is a SIP proxy.  The main task of a SIP proxy server is to route 
requests from one SIP endpoint to another based on many 
factors, including local registration information, DNS, SIP 
CGI, and SIP CPL [10].  Since a SIP proxy is already a central 
figure in the SIP network and is used by the endpoints to route 
session requests, it appeared logical to fortify it as an Internet 
SSP. 

 

INAP INAP

Inter-SSP 
signaling 

SSP SSP



The problem, of course, is that SIP proxies do not run the 
PSTN/IN call models; they use a SIP protocol state machine.  
A SIP protocol state machine, depicted in Figure 5, is fairly 
simple: it can be modeled with 6 states and 7 transitions 
between them2.  A Q.1204 PSTN/IN call model [2], on the 
other hand consists of 19 states and 35 transitions (11 states 
and 21 transitions in the originating BCSM, and 8 states and 14 
transitions in the terminating one).  Thus, a foremost task was 
to map the PSTN/IN call model into the SIP protocol state 
machine using the CMM/SS technique.  A detailed discussion, 
including state-by-state analysis on how the mappings were 
established is documented in [17].  With respect to the 
discussion in section III, the mappings in [17] exhibit state 
starvation and are partially complete.  

 

 

 

 

 

 

 

 

 

 

     Figure 5: Modeling the SIP protocol state machine 

We authored two pieces of software: first was a portable 
PSTN/IN call model which is a software layer written in C++, 
and the second was a proxy SIP server that had hooks to this 
call layer.  After the mapping between the PSTN/IN call model 
states and SIP had been rigorously specified, the PSTN/IN call 
layer was then embedded into the SIP proxy. 

In a SIP network with access to IN services, call requests 
are received by the SIP proxy, which intimates the portable IN 
call layer of this event through a functional interface, passing it 
parameters that include the caller's telephone number, the 
callee's telephone number and other pertinent information.  The 
PSTN/IN call layer, acting as a SSP, steps through the PICs, 
and at appropriate points, executes the services by consulting a 
SCP to for further instructions.  Services are executed by the 
PSTN/IN call layer sending an INAP request and transmitting 
it (over IP) to the SCP.  The SCP responds with the pertinent 
answer encoded within the INAP response.   

Once the call request has been thus serviced, control is 
returned back to the SIP proxy, which continues processing the 
call.  The PSTN/IN call layer and the SIP proxy have to 
                                                           

2 The ‘Confirmed’ state is entered through an ACK for a 
2xx-class response since in this case the ACK is considered a 
separate transaction in SIP.  For other responses, the ACK is 
part of the INVITE transaction and we have chosen not to 
explicitly model it with a state. 

execute in lockstep since events can occur in either of the state 
machines to affect the other.  For example, if the caller hangs 
up, the SIP proxy will get   notified of this event first.  It must 
now propagate this event to the PSTN/IN call layer so that it 
(the PSTN/IN call layer) can clean up any state associated with 
that call.  Likewise, if the PSTN/IN call layer gets the 
notification to drop the call as a result of a service execution, it 
must notify the SIP proxy so it can clean state associated with 
the call. 

Thus, an incoming call request is actually serviced by 
distributing its state across different call controllers, each of 
which used a dissimilar protocol.  Call acceptance and final 
disposition was performed by the SIP proxy using the SIP 
protocol, while the services were accessed using PSTN 
protocols and PSTN call models. 

C. Network Topology 
Our laboratory setup consisted of several SIP endpoints 

(each running a SIP user agent client and a SIP user agent 
server), a SIP proxy server fortified with the PSTN/IN call 
layer, and an SCP simulation engine which serviced requests.  
Figure 6 depicts this setup. 

Each SIP UA was configured, upon boot up, to register 
with the SIP proxy server using a telephone number.  This is 
important; the intent is to mimic PSTN/IN services offered on 
the PSTN, hence endpoints are identified using telephone 
numbers and not the more powerful and generic email-like SIP 
URI.  The SCP was configured with the data and logic 
pertaining to the benchmark IN services. 

 

 

 

 

 

 

 

 

    

     Figure 6: Network topology 

D. Service Details: OCS 
We now present a detailed overview of realizing a service 

based on the CMM/SS mapping technique.  OCS is an 
originating side service wherein the PSTN/IN service logic 
ensures that the caller is authorized to place a call to the desired 
number. 

In the PSTN/IN, this service is accessed by arming DP 5 
(known as the Collected_Info trigger) of the originating call 
model.  A partial mapping of the SIP protocol state machine 
and the Q.1204 PSTN/IN call model to realize this service is 
shown in Figure 7 (for a complete mapping, please see [17]). 
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Figure 7: Partial mapping of SIP and PSTN/IN states 

Given that the SIP protocol state machine has far fewer 
states than its PSTN/IN counterpart, the Initial/Calling state 
actually maps to more than one peer state in the PSTN/IN call 
model.  Specifically, for the OCS service, the first four 
PSTN/IN states are mapped to the initial SIP state (the 
complete mapping in [17] actually depicts the initial SIP state 
mapping into the first seven PSTN/IN states). 

The SIP proxy receives the incoming INVITE request and 
extracts the relevant headers from the request (the most 
important one for OCS are the Request-URI and the From 
header field; the Request-URI in SIP is used to specify the 
destination of the call and the From header is used to store the 
caller’s information).  Since the PSTN/IN services expect 
phone numbers, both the Request-URI and the From headers 
contain phone numbers.  Once these headers are extracted, the 
SIP proxy executes the initial state transfer to send these to the 
portable IN call layer.  Global state SG is now distributed 
between the two domains with respect to the service execution.  
The services subscribed to by the caller are loaded by the IN 
call layer and processing continues as described next. 

The first non-NULL state encountered in the IN call layer is 
the Authorize_Origination_Attempt state.  In this state, the 
PSTN/IN confirms that the caller (From header) is indeed 
authorized to make a call.  If the caller has the authority, 
control passes to the Collect_Info state through DP 3.  In this 
state, the PSTN/IN is responsible for collecting a dial string 
from the caller and verifying the format of the string.  In SIP, 
en-bloc signaling is used; i.e. the proxy gets the entire dial 
string in the Request-URI.  Native PSTN endpoints, by 
contrast, signal the switch for every digit pressed.  Thus, the 
Collect_Info state may be used to verify dial string before 
transitioning to Analyze_Info through DP 5.  Since DP5 is 

armed, the portable call layer constructs an INAP request and 
transmits it to the SCP.  Key fields in the INAP request 
contains information the portable IN call layer was passed 
through the initial state transfer from the SIP proxy.  The SCP 
runs the OCS service and issues a response.  If the caller 
identified in the From SIP header is not allowed to place a call 
to the number identified in the Request-URI, the call layer is so 
informed through the INAP response.  Global state SG is now 
updated as the IN call layer now passes control back to the SIP 
protocol state machine.  The SIP protocol state machine 
examines SG and issues an appropriate 4xx response. 

E. Results 
The results obtained from the implementation validate the 
CMM/SS technique.  We summarize them in Table 1.  The first 
column contains provisioning information required for the 
column contains provisioning information required for the 
service to operate (the 'data').  The second column contains the 
behavior of the service in the PSTN; and the third column 
details the behavior of the service in with the application of 
CMM/SS.  The behavior in the third column is almost identical 
to that of the second column.  This provides an empirical proof 
of validation of the CMM/SS technique. 

TABLE I.  CMM/SS RESULTS 

Behavior 
Service Configuration 

data 
Behavior in 

PSTN 
Behavior with 

CMM/SS 

OCS  A 'blocked 
number' list 

Caller hears 
'fast busy' 
tone 

Call request 
rejected with '403 
Forbidden'; some 
SIP user agents 
played a 'fast busy' 
signal on receipt of 
a 403 

AD Telephone 
numbers 

The 
abbreviated 
number is 
expanded and 
routed to its 
destination 

The PSTN/IN call 
layer returns a 
translated URI to 
which the SIP 
proxy routes the 
call  

CNAM PSTN name 
database 

Callee's name 
is displayed in 
a caller ID 
device 

Callee's name is 
displayed in the 
SIP UA GUI 

CF Telephone 
numbers 

Incoming call 
is forwarded 
to a new 
destination 

The PSTN/IN call 
layer returns a 
translated URI to 
which the SIP 
proxy routes the 
call 

 

V. RELATED WORK 
There has been work done at the Swiss Federal Institute of 

Technology (EPFL) on hybrid services [22].  These are 
services that span many network technologies.  However, the 
intent of hybrid services leans towards establishing sessions 
rather than accessing IN services.  Furthermore,  [22] 
approaches the issue from an API point of view, not the 
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signaling and call modeling approach outlined in this paper.  
Other existing research in this area also focuses on APIs [23, 
24, 25, 26, 27].  We eschew APIs in favor of direct access to 
signaling headers and call models since these provide the most 
amount of information to the developers.  Services are best 
executed when the service execution platform has unfettered 
access to the signaling information; APIs tend shield the 
programmer from the details of the signaling protocol.   

VI. CONCLUSIONS  
We have presented a technique to access services in 

dissimilar networks.  The entity making the service request is 
in a foreign network, in relation to the network which hosts the 
service (the local network).  Thus, the state of a call request 
with respect to service execution is actually distributed across 
the two networks.  In any distributed system, entity 
synchronization becomes an important component for the 
correct and deterministic functioning of such a system.  The 
technique we present in this paper, CMM/SS, serves to 
distribute state across the networks and to synchronize the 
attendant entities as well.  The global state of a call is 
maintained as a composite of each of the individual states.  
Consistency is imposed by forcing state transitions between the 
local and foreign networks.   

The end result is that services written for one network can 
be successfully and transparently accessed by entities in 
another network, possibly using protocols unknown to the 
network hosting the service.    
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