
Accessing telephony services from the Internet

Vijay K. Gurbani and Xian-He Sun
Department of Computer Science
Illinois Institute of Technology

Chicago, Illinois
vkg@iit.edu, sun@cs.iit.edu

Abstract— Networks exist to provide services to users.
Increasingly, the networks on which the services reside are not
the same as the networks from which the services are accessed.
This leads to the problem on how to best provide such services
transparently when the access protocols differ. We discusses a
methodology to make available the existing services residing in a
network whose protocols are distinct from the network where the
access attempt is made. We propose a technique we term call
model mapping with state sharing and demonstrate it in the
telecommunication domain where we access traditional telephony
services residing on the telephone network from Internet
telephony endpoints residing on the Internet.

Keywords- SIP; H.323; services; PSTN; call models; SS7; state
machines

I. INTRODUCTION
The intrinsic value of a computer network is measured by

the services it provides to its users. As the number of such
networks increases, so do the chances that services residing on
one network will need to be accessed by users on a different
network. This is more true for telecommunication networks;
currently, there are two major networks in place: the Public
Switched Telephone Network (PSTN) and the Internet.
Increasingly, these networks are converging [1], which
necessitates access to services1 residing in one of these
networks from the other.

The convergence poses a number of problems to be solved.
In order to formulate the problem set consistently, we will
define some terms first. We call the network on which the
service runs natively as the local network (or domain) ;
alternatively, a foreign network (or domain) is one from which
a request to execute the service is made. The service and its
associated data reside on the local network.

The first problem in accessing services from a foreign
domain is that of differing network protocols. The PSTN and
Internet use dissimilar network protocols, and in fact, are
designed with different goals. While the PSTN is a highly
tuned network to transport voice, the Internet is a generalized
network that can transport any type of payload -- voice, video,
or data (text). Second, a request for service arriving from a

1 In the context of the PSTN and the Internet, we define
service as a value added functionality provided to the users by
the network; thus Call Waiting and Caller ID are examples of
PSTN services and email and ftp are examples of Internet
services.

foreign domain will start service execution in the local domain;
as such, the entities in the local and foreign domain need to be
synchronized. Third, when a service is accessed from a foreign
domain, the semantics of the service must be preserved (i.e. the
foreign network may have more capabilities -- or less
capabilities -- than the local network; in either case, the service
should function at a minimal acceptable level). Finally, local
networks that host services have already addressed important
issues such as scalability and reliability. There is a temptation
to port services to the foreign network and then revisit the same
issues in context of the foreign network. Instead, we believe
that the services and their associated data and procedures are
best left in the local network, with some technique created to
allow access to these services in a transparent manner from the
foreign network.

We describe a technique to address the problems outlined
above. The technique is most applicable to domains where
entities requesting and executing a service follow a finite state
machine of some sorts. Call controllers -- entities that are
responsible for setting up, maintaining, and tearing down a
voice call, or a multi-media session -- in PSTN and Internet
telephony readily subscribe to finite state machines. Thus, the
telecommunications domain provides us a rich palette on which
to focus the work described in this paper.

The rest of the paper is organized as follows: section II
provides a background and motivation for our investigation in
this area. Section III introduces our solution. The application
of the technique to the telecommunication domain is presented
in Section IV with emphasis on results obtained from an
implementation. Section V outlines related work, and our
conclusions are stated in the final section.

II. BACKGROUND

A. Motivation
The last few years have witnessed a rapid rise in academia

and the industry in Internet telephony; i.e. using the Internet for
real-time transfer of multi-media communications
incorporating both traditional circuit switched and wireless
networks and Internet applications such as the Web and email.
Internet telephony itself is not new; it has been around since the
1970's. However, the pace of acceptance accelerated in the
mid 1990's. As it stands right now, Internet telephony has
moved beyond the hobbyist/recreational stage and is
exceedingly being viewed as an additional means besides the
PSTN for transporting voice.

The initial stages in the introduction of Internet Telephony
(1995-2000) were characterized by a rush towards toll bypass;
i.e. the price advantage gained by using unregulated Internet
telephony over the highly regulated PSTN. As Internet
Telephony matures, the thrust is moving from toll bypass to an
important component: services. Services are an active area of
research in Internet Telephony [11, 12, 13, 14, 22]. In this
paper, we focus on services that reside on the PSTN but need to
be accessed in a scalable and transparent manner from Internet
endpoints.

In order to appreciate the need to access existing PSTN
services from Internet endpoints, consider that the majority of
services that PSTN users are accustomed to -- Call Waiting,
800-number translation, Caller ID, etc. reside on the PSTN.
Users on an Internet telephony endpoint should be able to avail
themselves of these services in the same transparent manner
that they do when using a traditional PSTN handset. There are
three ways [11] to accomplish this: first, the easiest, albeit the
most intrusive way would be to re-write all the existing PSTN
services for the Internet environment. This is not feasible since
it takes anywhere from 6 months to a year to get a PSTN
service specified, implemented, tested, and deployed. This
already assumes a stable service delivery infrastructure as it
exists in the PSTN. Internet telephony being a new medium
does not as yet have a well-specified services architecture that
can be leveraged to deploy new services. The service
architecture for Internet telephony is in the early stages of
being proposed [3,4,5,6]. Thus it is extremely difficult, and in
fact, undesirable, to replicate existing PSTN services from
scratch in the Internet domain.

Another way to enable services in dissimilar networks is to
use a language neutral service framework. Much like a Java
program can run on multiple architectures simply by porting
the Java Virtual Machine to each such architecture, one can
envision a service-specific language that is architecture and
platform neutral. Thus services programmed in such a
language can easily be ported from the PSTN domain to the
Internet domain. Unfortunately, such a platform-neutral,
domain-specific language does not exist. Although early
research proved that such a language was indeed feasible [15],
the industry interest was lacking to push it towards a standard.

A final option for accessing PSTN services in a transparent
manner is to devise a technique such that services running on a
local domain can transparently be accessed from foreign
domains. This preserves the (tested and) deployed service
infrastructure in the local domain, while at the same time,
allowing transparent and scalable access to the service from the
foreign domain. Service porting or re-writing is not necessary
as the service can be accessed in a network agnostic manner.

B. Contribution
The main contribution of this paper is a technique we term

call model mapping with state sharing (CMM/SS) to
transparently access services resident in local domains from a
foreign domain. This technique is most applicable when the
services are accessed during the signaling messages exchanged
at call setup, maintenance, and teardown.

The CMM/SS technique depends on, and assumes the
availability of a call model. A call model is a deterministic
finite state machine (FSM). States in the FSM represent how
far the call has progressed at any point in time. The current
state, plus a set of input stimuli transition the FSM to the next
state. In telecommunication signaling, these input stimuli
consist of timers firing and arrival/departure of signaling
messages resulting in the execution of significant events.
Events cause transition into and out of a particular state.

 Fortunately, call models are already an intrinsic part of
telecommunication signaling protocols. For instance, the
PSTN call model consists of 19 states and 35 input stimuli
[18,2,17] and the Internet telephony signaling protocol, SIP [7,
8, 9], consists of 8 states and 20 input stimuli (Figures 5 and 7
of reference [7]). Call models, besides providing a uniform
view of the call to all involved entities, also serve to
synchronize these entities.

CMM/SS consists of mapping the call model of a foreign
domain to that of a local domain so that the foreign domain can
access services resident in the local domain. Call mapping is
fairly prevalent in the telecommunications domain [19,20,21],
however, it has been used so far simply as an interworking
function to set up calls between different networks (i.e.
between PSTN and Internet, between SIP and H.323, etc.).
Our work described in this paper extends this use of call
mapping in two ways: first, the thrust is not on simply making
a call across different networks, but accessing services across
different networks. Secondly, consider that service execution
in a heterogeneous network implies saving the state of the call
in the foreign domain until the service has executed in the local
domain. Thus, the state of the call needs to be shared between
the foreign domain as well as the service execution function of
the local domain. CMM/SS allows us to do this in a
transparent manner.

We have successfully applied CMM/SS to access PSTN
services from H.323 endpoints; reference [16] discusses that
effort in detail. In this paper, we attempt to formally codify
CMM/SS and, to demonstrate its generality, we apply it to
another Internet telephony signaling protocol, SIP. The details
of CMM/SS are described next.

III. CALL MODEL MAPPING WITH STATE SHARING
We begin by formally defining our state space and the call

model mapping technique. We then take a look at how the
state is effectively shared between the domains to access
services.

A. Basic definitions
Definition 1 (localized state): A localized state is a finite tuple
sl of atomic states sj, with m ≥ 1, as shown in (1).

 m
 sl = (sj)j=1 = (s1, s2, …, sm-1, sm) (1)

Both foreign domains (F) and local domains (L) have their own
localized states denoted by F[sl] and L[sl], respectively.

Definition 2 (global state): A global state is a finite tuple sG
of localized states F[sl] and L[sl] as shown in (2).

 sG = (F[sl], L[sl]) (2)

The call model mapping technique intrinsically assumes
that there are 2 domains of interest: the local domain, L, and the
foreign domain, F. Furthermore, the states in F[sl] need to be
mapped to the states in L[sl]. We express the mapping process
using the following notation:

 m

 (F → j L)j=1 (3)

i.e. ∀ states in F, there exists a mapping between each state in
F to an appropriate state in L.

If the notation in (3) is expressed as a function ∅(x), with x
being the domain (or the set of argument values for which is ∅
is defined) of ∅ and x ∈ F[sl], then

 ∅(x) = y, y ∈ L[sl] (4)

Or, L[sl] is the codomain of ∅(x). In other words, for every
state in F, there must exist a possible (maybe non-unique)
mapping in L. If any two random call models F and L exhibit
(4) then they can be mapped to each other.

B. Call Model Mapping
In most mappings, the number of states in F and L may

vary considerably. It could very well be that L has more states
than F. In such cases, some states in L may not have an
equivalent mapped state in F. We term this condition as state
starvation and it is depicted in Figure 1.

On the other hand, it could very well be that F has more
states than L, and thus, more than one state from F will map
into a state in L. We term this condition as state aggregation
and it is depicted in Figure 2. Regardless of state starvation or
state aggregation, a mapping depicted in (4) is considered
complete if there isn't any semantic loss of the protocol as a
result of the call model mapping. A mapping is, likewise,
considered partially complete if there is a minimal semantic
loss introduced as the result of call model mapping due to state
starvation or aggregation.

Figure 1: State Starvation Figure 2: State Aggregation

It should be noted that unless two call models are exactly
alike, all mappings will be partially complete. This can be
attributed to the fact that the design of two randomly picked
call models is rarely alike in every respect; thus mapping one

into another necessarily introduces some semantic loss.
However, so long as the mapping does not distort how the call
model behaves in L if the mapping was not applied in the first
place, partially complete mappings are indeed the only
outcome of call model mapping.

Discussions of call model mapping in the literature thus far
have not included any state sharing between F and L. State
transition occurring in one domain cause the appropriate state
transition in the other in an idempotent fashion. In fact, a
majority of telecommunication systems that employ call model
mapping [19,20,21] do so in this manner (for example, a PSTN
‘User Alerting’ message can be converted into a SIP ‘180
Ringing’). Call model mapping without state sharing is
adequate for idempotent signaling messages that simply set up
(or tear down) a session; no advanced services are involved
during session setup (or tear down).

C. State Sharing
In order to access services resident in L using access

protocols native to L, with the request for the service
originating in F, we propose an addition to the call model
mapping semantic to allow for state sharing across F and L.

Under our technique, state is actually distributed and shared
between F and L. When a call request arrives at F, a state
transition occurs to state p ∈ F[sl], and processing is
temporarily suspended at F while the call state is handed to L
for service execution (horizontal line from ‘a’ to ‘1’ in Figure
3). This initial handoff is a simple mapping of p ∈ F[sl] into an
equivalent state p' ∈ L[sl].

 Since the services reside in L, they are executed in that
domain. Their execution leads to state transitions local to L
until a certain point that control needs to be passed back to the
same state p from which the transition occurred (Figure 3).
Along with passing the control, L also imparts enough
information to F, allowing it to transition to a certain state q ∈
F[sl] (p != q and q may not be the next adjacent state after p).
The choice of state q depends on the service execution logic.
For instance, if the service logic in L decides to terminate the
call, L will affect the appropriate state transition in F. Thus, in
a sense, both F and L maintain global state sG of the call. This
synchronization is important because the call is actually being
serviced by two different signaling protocols. The global state
sG reflects the shared and authoritative state of the call.

 Figure 3: Transitions in F and L

F L F L
 F L

4

c

b

a

3

2

1

Note that in Figure 3, the state labeled 'b' in F appears not
to be mapped to an equivalent state in L. This is not an error,
but in this particular example signifies that the service logic in
L caused a state transition to occur to a non-adjacent state
labeled 'c' in F.

We believe that the CMM/SS technique is a good fit for
transparent access to services resident in L, using protocols
native to L, when the service request originates in F. The call
model and state sharing mechanism ensures that the different
signaling protocols remain synchronized while the service is
accessed and executed in L.

IV. IMPLEMENTATION
To prove the CMM/SS technique, we implemented it in a

network consisting of SIP endpoints, a SIP proxy, and the
PSTN service infrastructure. This section describes the
implementation, with a quick detour on PSTN service
execution for readers who may not be familiar with it.

A. Background: PSTN service execution
The Intelligent Network (IN) is used in the PSTN to

provide services such as 800-number translation, pre-paid
calling, etc. It is described in detail in [2]; here we provide a
very rudimentary overview to aid the reader who may not be
familiar with the concepts.

Figure 4 shows a simplified PSTN/IN architecture in which
the telephone switches called Service Switching Points (SSP)
are connected via a packet network called Signaling System 7
(SS7) to a general purpose computer called a Service Control
Points (SCP). This leads to a clean separation of components
since call control and service switching functions are
performed at the SSP, while the service control (and data)
functions are hosted by the SCP. Service logic resides at and is
executed in the SCPs.

SSPs run a call model called Basic Call State Model
(BCSM) when handling a call. A BCSM consist of states
called Points In Call (PIC) and transitions between states called
Detection Points (DPs). The DPs are armed to provide
services; the SSP may suspend the call on encountering an
armed DP and send a message to a SCP for further instructions.
When the SCP gets a request for service, it can reply with a
single response (a simple number translation augmented by
criteria like time of day or day of week), or, in turn, get into a
complex dialog with the SSP which may involve playing or
recording voice announcements and collecting digits. The
resulting protocol as well as the BCSM and DPs are
standardized by the ITU-T and are known as the Intelligent
Network Application Protocol (INAP) [2]. There are actually
two BCSM: an originating side and a terminating side BCSM.
Each BCSM provides services to a caller or a callee,
respectively.

B. Implementation details
The goal of our research was to access from SIP endpoints,

in a transparent manner, certain benchmark IN services which
reside in the PSTN. The service logic and the protocol required
to access it in the PSTN were assumed immutable; neither the

logic, nor the protocol could not be modified or changed to
account for the fact that the service request was now being sent
by a SIP entity, and not a SSP.

 Figure 4: Simplified PSTN/IN architecture

The benchmarks IN services chosen to provide a proof of
implementation were:

• Originating call screening (OCS): This service restricts
the numbers that a phone subscriber can call. It can be
used for parental control, or enforcing business
practices. This is a caller oriented service (i.e. it is
executed on behalf of the caller).

• Abbreviated dialing (AD): AD is one of the Virtual
Private Network (VPN) service in the PSTN. It allows
a caller to substitute a unique, abbreviated dial string to
reach a party. This is a caller oriented service.

• Caller name delivery (CNAM): This service allows the
called party to view the name of the caller in a display
device. This is a callee oriented service.

• Call forwarding (CF): This service allows a phone
subscriber to forward calls arriving at his/her phone
number to an alternate destination. This is a callee
oriented service.

Implementing a set of these 4 services, which are a mix
between caller- and callee-oriented services provides an
empirical proof for the technique of CMM/SS. The service
logic programs for these services were executed on an SCP
simulator. It is imperative to state that the service logic was
not modified in any way; it was the same logic that would
normally be used on the PSTN network. PSTN callers and
PSTN callees were replaced by SIP-based callers and SIP-
based callees.

The simplest manner in which to implement CMM/SS was
to transform a SIP call processing entity into an Internet
equivalent of a SSP. The best suited SIP entity for this purpose
is a SIP proxy. The main task of a SIP proxy server is to route
requests from one SIP endpoint to another based on many
factors, including local registration information, DNS, SIP
CGI, and SIP CPL [10]. Since a SIP proxy is already a central
figure in the SIP network and is used by the endpoints to route
session requests, it appeared logical to fortify it as an Internet
SSP.

INAP INAP

Inter-SSP
signaling

SSP SSP

The problem, of course, is that SIP proxies do not run the
PSTN/IN call models; they use a SIP protocol state machine.
A SIP protocol state machine, depicted in Figure 5, is fairly
simple: it can be modeled with 6 states and 7 transitions
between them2. A Q.1204 PSTN/IN call model [2], on the
other hand consists of 19 states and 35 transitions (11 states
and 21 transitions in the originating BCSM, and 8 states and 14
transitions in the terminating one). Thus, a foremost task was
to map the PSTN/IN call model into the SIP protocol state
machine using the CMM/SS technique. A detailed discussion,
including state-by-state analysis on how the mappings were
established is documented in [17]. With respect to the
discussion in section III, the mappings in [17] exhibit state
starvation and are partially complete.

 Figure 5: Modeling the SIP protocol state machine

We authored two pieces of software: first was a portable
PSTN/IN call model which is a software layer written in C++,
and the second was a proxy SIP server that had hooks to this
call layer. After the mapping between the PSTN/IN call model
states and SIP had been rigorously specified, the PSTN/IN call
layer was then embedded into the SIP proxy.

In a SIP network with access to IN services, call requests
are received by the SIP proxy, which intimates the portable IN
call layer of this event through a functional interface, passing it
parameters that include the caller's telephone number, the
callee's telephone number and other pertinent information. The
PSTN/IN call layer, acting as a SSP, steps through the PICs,
and at appropriate points, executes the services by consulting a
SCP to for further instructions. Services are executed by the
PSTN/IN call layer sending an INAP request and transmitting
it (over IP) to the SCP. The SCP responds with the pertinent
answer encoded within the INAP response.

Once the call request has been thus serviced, control is
returned back to the SIP proxy, which continues processing the
call. The PSTN/IN call layer and the SIP proxy have to

2 The ‘Confirmed’ state is entered through an ACK for a
2xx-class response since in this case the ACK is considered a
separate transaction in SIP. For other responses, the ACK is
part of the INVITE transaction and we have chosen not to
explicitly model it with a state.

execute in lockstep since events can occur in either of the state
machines to affect the other. For example, if the caller hangs
up, the SIP proxy will get notified of this event first. It must
now propagate this event to the PSTN/IN call layer so that it
(the PSTN/IN call layer) can clean up any state associated with
that call. Likewise, if the PSTN/IN call layer gets the
notification to drop the call as a result of a service execution, it
must notify the SIP proxy so it can clean state associated with
the call.

Thus, an incoming call request is actually serviced by
distributing its state across different call controllers, each of
which used a dissimilar protocol. Call acceptance and final
disposition was performed by the SIP proxy using the SIP
protocol, while the services were accessed using PSTN
protocols and PSTN call models.

C. Network Topology
Our laboratory setup consisted of several SIP endpoints

(each running a SIP user agent client and a SIP user agent
server), a SIP proxy server fortified with the PSTN/IN call
layer, and an SCP simulation engine which serviced requests.
Figure 6 depicts this setup.

Each SIP UA was configured, upon boot up, to register
with the SIP proxy server using a telephone number. This is
important; the intent is to mimic PSTN/IN services offered on
the PSTN, hence endpoints are identified using telephone
numbers and not the more powerful and generic email-like SIP
URI. The SCP was configured with the data and logic
pertaining to the benchmark IN services.

 Figure 6: Network topology

D. Service Details: OCS
We now present a detailed overview of realizing a service

based on the CMM/SS mapping technique. OCS is an
originating side service wherein the PSTN/IN service logic
ensures that the caller is authorized to place a call to the desired
number.

In the PSTN/IN, this service is accessed by arming DP 5
(known as the Collected_Info trigger) of the originating call
model. A partial mapping of the SIP protocol state machine
and the Q.1204 PSTN/IN call model to realize this service is
shown in Figure 7 (for a complete mapping, please see [17]).

SIP endpoints
SIP proxy

10/100 Mbps Ethernet

SIP endpoints

NULL

Initial

Proceeding

Completed

Confirmed Terminated

INVITE

1xx

2xx

ACK
BYE

INVITE: SIP request to start a
call
ACK: SIP request to confirm
call establishment
BYE: SIP request to tear a call
down
CANCEL: SIP request to stop
call establishment
1xx: Provisional responses
(during call establishment)
2xx: Successful final responses
(call established)
3xx-6xx: Unsuccessful final
response (call not established)

1xx

3xx,4xx,5xx,
6xx,

CANCEL

Figure 7: Partial mapping of SIP and PSTN/IN states

Given that the SIP protocol state machine has far fewer
states than its PSTN/IN counterpart, the Initial/Calling state
actually maps to more than one peer state in the PSTN/IN call
model. Specifically, for the OCS service, the first four
PSTN/IN states are mapped to the initial SIP state (the
complete mapping in [17] actually depicts the initial SIP state
mapping into the first seven PSTN/IN states).

The SIP proxy receives the incoming INVITE request and
extracts the relevant headers from the request (the most
important one for OCS are the Request-URI and the From
header field; the Request-URI in SIP is used to specify the
destination of the call and the From header is used to store the
caller’s information). Since the PSTN/IN services expect
phone numbers, both the Request-URI and the From headers
contain phone numbers. Once these headers are extracted, the
SIP proxy executes the initial state transfer to send these to the
portable IN call layer. Global state SG is now distributed
between the two domains with respect to the service execution.
The services subscribed to by the caller are loaded by the IN
call layer and processing continues as described next.

The first non-NULL state encountered in the IN call layer is
the Authorize_Origination_Attempt state. In this state, the
PSTN/IN confirms that the caller (From header) is indeed
authorized to make a call. If the caller has the authority,
control passes to the Collect_Info state through DP 3. In this
state, the PSTN/IN is responsible for collecting a dial string
from the caller and verifying the format of the string. In SIP,
en-bloc signaling is used; i.e. the proxy gets the entire dial
string in the Request-URI. Native PSTN endpoints, by
contrast, signal the switch for every digit pressed. Thus, the
Collect_Info state may be used to verify dial string before
transitioning to Analyze_Info through DP 5. Since DP5 is

armed, the portable call layer constructs an INAP request and
transmits it to the SCP. Key fields in the INAP request
contains information the portable IN call layer was passed
through the initial state transfer from the SIP proxy. The SCP
runs the OCS service and issues a response. If the caller
identified in the From SIP header is not allowed to place a call
to the number identified in the Request-URI, the call layer is so
informed through the INAP response. Global state SG is now
updated as the IN call layer now passes control back to the SIP
protocol state machine. The SIP protocol state machine
examines SG and issues an appropriate 4xx response.

E. Results
The results obtained from the implementation validate the
CMM/SS technique. We summarize them in Table 1. The first
column contains provisioning information required for the
column contains provisioning information required for the
service to operate (the 'data'). The second column contains the
behavior of the service in the PSTN; and the third column
details the behavior of the service in with the application of
CMM/SS. The behavior in the third column is almost identical
to that of the second column. This provides an empirical proof
of validation of the CMM/SS technique.

TABLE I. CMM/SS RESULTS

Behavior
Service Configuration

data
Behavior in

PSTN
Behavior with

CMM/SS

OCS A 'blocked
number' list

Caller hears
'fast busy'
tone

Call request
rejected with '403
Forbidden'; some
SIP user agents
played a 'fast busy'
signal on receipt of
a 403

AD Telephone
numbers

The
abbreviated
number is
expanded and
routed to its
destination

The PSTN/IN call
layer returns a
translated URI to
which the SIP
proxy routes the
call

CNAM PSTN name
database

Callee's name
is displayed in
a caller ID
device

Callee's name is
displayed in the
SIP UA GUI

CF Telephone
numbers

Incoming call
is forwarded
to a new
destination

The PSTN/IN call
layer returns a
translated URI to
which the SIP
proxy routes the
call

V. RELATED WORK
There has been work done at the Swiss Federal Institute of

Technology (EPFL) on hybrid services [22]. These are
services that span many network technologies. However, the
intent of hybrid services leans towards establishing sessions
rather than accessing IN services. Furthermore, [22]
approaches the issue from an API point of view, not the

Initial/
Calling

NULL

DP 1

Auth. Orig. Att.

DP 3

Collect_Info

DP 5

Analyze Info

Exception

DP 6

Terminated

SIP PSTN/IN

Legend

Communication between
states in the same protocol

Communication between
IN layer and SIP to transfer
call state

Detection Point

IN PIC/
SIP State

Issue a 4xx response

signaling and call modeling approach outlined in this paper.
Other existing research in this area also focuses on APIs [23,
24, 25, 26, 27]. We eschew APIs in favor of direct access to
signaling headers and call models since these provide the most
amount of information to the developers. Services are best
executed when the service execution platform has unfettered
access to the signaling information; APIs tend shield the
programmer from the details of the signaling protocol.

VI. CONCLUSIONS
We have presented a technique to access services in

dissimilar networks. The entity making the service request is
in a foreign network, in relation to the network which hosts the
service (the local network). Thus, the state of a call request
with respect to service execution is actually distributed across
the two networks. In any distributed system, entity
synchronization becomes an important component for the
correct and deterministic functioning of such a system. The
technique we present in this paper, CMM/SS, serves to
distribute state across the networks and to synchronize the
attendant entities as well. The global state of a call is
maintained as a composite of each of the individual states.
Consistency is imposed by forcing state transitions between the
local and foreign networks.

The end result is that services written for one network can
be successfully and transparently accessed by entities in
another network, possibly using protocols unknown to the
network hosting the service.

REFERENCES:
[1] Faynberg, I., Gabuzda, L., Lu, H-L. "Converged Network and Services:

Interworking IP and the PSTN," John Wiley and Sons Publishers,
January, 2000.

[2] Faynberg, I., Gabuzda, L., Kaplan, M., and Shah N., "The Intelligent
Network Standards: Their Application to Services," McGraw Hill Series
on Telecommunications, 1997.

[3] Rosenberg, J., "Distributed Algorithms and Protocols for Scalable
Internet Telephony," Ph.D. Thesis, Graduate School of Arts and
Sciences, Columbia University, New York, New York, 2001.

[4] Rosenberg, J., Mataga, P., Schulzrinne, H., "An Application Server
Component Architecture for SIP," IETF Internet-Draft, Expired
September 2001.

[5] Dianda, J., Gurbani, V., and Jones, M. "SIP Services Architecture," Bell
Labs Technical Journal, Volume 7, Number 1, July 2002, Wiley
Periodicals, Inc. pp 3-23.

[6] Ubiquity Corporation, "SIP Service Architecture", White Paper,
<www.ubiquity.net/pdf/SIP-Service-Arch-WP1_0.pdf>, May 2001.

[7] Rosenberg, J., Schulzrinne, H., Sparks, R., Peterson, J., Johnston, A.,
Camarillo, G., Handley, M., and Schooler, E. "SIP: The Session
Initiation Protocol," IETF RFC 3261,
<http://www.ietf.org/rfc/rfc3261.txt?number=3261>, 2002.

[8] Sinnreich, H., Johnston, A. "Internet Communications using SIP," John
Wiley & Son Publishers, October 2001.

[9] Camarillo, G., Rosenberg, J., "SIP Demystified," McGraw Hill
Publishing Company, August 2001.

[10] Gurbani, V., Chiang, T-C., Kumar, S., "SIP: A Routing Protocol," Bell
Labs Technical Journal, Volume 6, Number 2, July-December 2001,
Wiley Periodicals, Inc.

[11] Gurbani, V., "Enabling Services Through Protocol Interworking", Ph.D.
Proposal, Department of Computer Science, Illinois Institute of
Technology, Chicago, Illinois.

[12] Rosenberg, J., Lennox, J., and Schulzrinne, H., "Programming Internet
Telephony Services", IEEE Internet Computing, Vol 3., No. 3, 1999, pp
63-72.

[13] Lennox, J., and Schulzrinne, H., "Feature Interaction in Internet
Telephony", Proceedings of Feature Interaction in Telecommunication
and Software Systems VI, Glasgow, UK, May 2000.

[14] Lennox, J., Schulrzrinne, H., and La Porta T., "Implementing Intelligent
Network Services with the Session Initiation Protocol", Columbia
University Technical Report No. CUCS-002-99, unpublished, accessed
from <http://www.cs.columbia.edu/~lennox/cucs-002-99.pdf>

[15] Slutsman, L., Lu, H-L., Kaplan, M., and Faynberg, I., “The Application
Oriented Parsing Language (AOPL) as a way to achieve platform-
independent service creation environment,” Proceedings of the Third
International Conference on Intelligence in Networks (ICIN94), October
11-13, 1994.

[16] Chiang, T-C., Douglas, J., Gurbani V., Montgomery, W., Opdyke, W.,
Reddy, J., and Vemuri, K. “IN Services for Converged (Internet)
Telephony”, IEEE Communications Magazine, Vol. 38, No. 6, June
2000, pp 108-115.

[17] Gurbani, V., Haerens, F., and Rastogi, V., "Interworking SIP and
Intelligent Network (IN) Applications", IETF Internet-Draft, Expires
December 2002, Work in Progress, <http://search.ietf.org/internet-
drafts/draft-gurbani-sin-02.txt>

[18] ITU-T Q.1204: "Intelligent Network Distributed Functional Plane
Architecture", ITU-T Recommendation Q.1204, 1993.

[19] Camarillo, G., Roach, A., Peterson, J., Ong, L., "ISUP to SIP Mapping",
IETF Internet-Draft, Expires December 2002, Work in Progress, <
http://www.ietf.org/internet-drafts/draft-ietf-sipping-isup-03.txt>.

[20] Singh, K., Schulzrinne, H., "Interworking between SIP/SDP and H.323",
Proceedings of the 1st IP Telephony (iptel) Workshop, 2000.

[21] Vemuri, A., and Peterson, J., "SIP for Telephones (SIP-T): Context and
Architectures", IETF RFC 3372, < http://www.ietf.org/rfc/rfc3372.txt>,
September 2002.

[22] Gbaguidi, C., Hubaux, J.P., Pacifici, G., and Tantawi, A.N., “Integration
of Internet and Telecommunication Services: An Architecture for Hybrid
Services”, IEEE Journal on Selected Areas in Communications, August
1999.

[23] Anjum, F. Caruso, R. Jain, P. Missier, and A. Jordan, “ChaiTime: A
System for Rapid Creation of Portable Next-Generation Telephony
Services Using Third-Party Software Components”, Proceedings of the
2nd IEEE Conference on Open Architectures and Network Programming
(OPENARCH), New York, USA, March 1999.

[24] Moyer, S., and Umar, A., "The Impact of Network Convergence on
Telecommunications Software", IEEE Communication Magazine, Jan
2001, pp 78-84.

[25] Bergmark, D., and Keshav, S., "Building Blocks for IP Telephony",
IEEE Communications Magazine, April 2000, pp 88-94.

[26] De Keijzer, J., “Intelligent Agents and Java Advanced Intelligent
Network Architecture (JAIN)”, Proceedings of IATA, 1998,
<http://sokrates.cs.tu-
berlin.de/deutsch/news/tagungen/IATA89/main.html>

[27] Low, C., “Integrating Communication Services”, IEEE Communications
Magazine, Volume 35, Number 6, June 1997.

