
Department of Computer Science

Illinois Institute of Technology

Hermes: A Heterogeneous-Aware Multi-Tiered

Distributed I/O Buffering System

HPDC’18

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun
akougkas@hawk.iit.edu

Tempe, AZ, USA June 15th, 2018

mailto:akougkas@hawk.iit.edu?subject=RE: ICS2018- IRIS paper

6/24/20182

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

HPDC’18

Backgrou

nd

Approach

Design

Evaluation

Conclusions

Q&A

Talk roadmap

Highlights of this work

Hermes
multi-tiered
I/O buffering

Heterogeneous
Aware

Selective
buffering

Data
placement

policies

Deep memory
and storage

hierarchy

Transparent to
the user

Hermes can
offer

5-7x
performance

gains over
baseline

2x better
performance
compared to

other buffering

Storage in HPC

• Parallel File Systems (PFS):

• Peak performance: ~2000GiB/s

• Capacity: >70PiB

• Interfaces:

• POSIX, MPI-IO, HDF5, etc.,

• Limitations:

• Scalability, complexity, metadata services

• Small file access, data synchronization, etc.,

6/24/2018 Slide 5
I/O 500 List (Nov 2017)

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

I/O Bottleneck
• I/O subsystems struggle to deal with

the degree of parallelism.

• Any computer system’s performance
is limited by its slowest component.
(Amdahl's “well-balanced” law)

• I/O performance bottlenecks, already
a concern at petascale, are likely to
become alarmingly narrow as we
start the ascent to the exascale.

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

6/24/2018 Slide 6

Source: © 2015 DataCore Software Corporation

I/O acceleration in HPC

Trends:

1. Fast storage devices inside compute nodes

2. Shared buffering nodes (a.k.a. burst buffers)

6/24/2018 Slide 7Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Deep Memory and Storage Hierarchy(DMSH)

• Multiple levels of memory and storage in a
hierarchy, called DMSH.

• New storage system designs incorporate non-
volatile burst buffers between the main memory
and the disks.

• HPC hierarchical storage systems with burst buffers
(BB) have been installed at several HPC sites.

• Ideally, the presence of multiple layers of storage
should be transparent to applications without
having to sacrifice I/O performance.

6/24/2018 Slide 8

Cori, a Cray XC40 system at NERSC
uses Cray’s DataWarp BB technology

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Challenges of I/O Buffering in DMSH

Increased
complexity of

data movement
between and

among the layers
of the DMSH.

Each DMSH layer
is an independent
system requiring

expertise to
manage.

Lack of
automated DMSH

buffering
management

software.

6/24/2018 Slide 9
Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Our Approach

a scalable, reliable, and high-performance software to efficiently and
transparently manage data movement.

DMSH
systems
require

new data placement algorithms, memory and metadata management,
and an efficient communication fabric.

DMSH
complexity
demands

application- and system-aware, and thus, hide lower level details
allowing the user to focus on his/her applications.

We envision a
buffering

platform that
can be

6/24/2018 Slide 10
Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

A heterogeneous-aware, multi-tiered
distributed I/O buffering system

• Vertical and horizontal distributed buffering in DMSH

• Selective layered data placement

• Dynamic buffering via system profiling

6/24/2018 11
Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

• Each compute node has access to
• Local NVMe or SSD device

• Shared Burst Buffers

• Remote disk-based PFS

• Hierarchy based on speed and
capacity (numbered in figure)

• Two data paths:
• Vertical (within node)

• Horizontal (across nodes)

6/24/201812

Architecture

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

Design

• Middle-ware library, written in C++,

• Link with applications
(i.e., re-compile or LD_PRELOAD)

• Wrap-around I/O calls

• Modular, extensible, performance-oriented

• Supports:
• POSIX

• HDF5

• MPI-IO (ongoing)

• Hinting mechanism to pass operations

6/24/201813

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

• Node Manager
• Dedicated multithreaded core per node

• MDM

• Data Organizer

• Messaging Service

• Memory management

• Prefetcher

• Cache manager

• RDMA-capable communication

• Can be deployed in I/O FL

6/24/201814

Node Design

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

Hermes’ Buffering Modes

Persistent
• Synchronous

• write-through cache,

• stage-in

• Asynchronous
• write-back cache,

• stage-out

1

Non-Persistent
• Temporary scratch space

• Intermediate results

• In-situ analysis and
visualization

2

Bypass
• Write-around cache

3

6/24/2018 Slide 15

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

6/24/2018 Slide 16

• Offer applications a fast cache for frequently accessed data

• Hotness score based on file access frequency

• Place hot data higher up in the hierarchy

• Ideal for workflows with a spectrum of hot-cold data

• Maximize performance applications experience

• Top-down approach, place data higher up and trigger down

• Balance between bandwidth, latency, and capacity of layer

• Default in Hermes

• Maximize buffer utilization

• Side-ways approach, place data in all layers based on dispersion unit

• Balance between capacity and data’s spatial locality

• Ideal for workflows that encapsulate partitioned I/O

• Supports user-defined buffering schemas

• Users submit an XML with requirements

• Parsed during initialization

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Maximum Bandwidth Maximum Data Locality

Hot Data User-defined

User XML

Background Approach Design Evaluation Conclusions

• Start from the top layer
• If free space > request size

• place data here

• If not, choose the best between
1. Place as much data as possible

here and the rest to the next layer
OR

2. Skip this layer and place data to
the next one
OR

3. First flush top layer and then place
data

• Recursive process

6/24/201817

Maximum Bandwidth

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

RAM

NVMe

Burst buffers

File.dat

• Data dispersion unit:
• POSIX files

• HDF5 datasets

• Etc.

• Place data based on:
• Location of previously

buffered data

• Ratio between layers

6/24/201818

Data Locality

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

1

2

3

A

Procs Files

B

C

B C

A

C

A

B
Burst buffers

RAM

NVMe

DMSH

• Place data based on:
• Spectrum of hot – cold data

• Higher layers hold hotter
data

6/24/201819

Hot data

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

RAM

NVMe

Burst buffers

File.dat

• RAM management
via buckets

• MDM and Messaging
via MPI RMA operations

6/24/201820

Hermes
Critical Components

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

• Testbed: Chameleon System
• Appliance: Bare Metal
• OS: Centos 7.1
• Storage:

• OrangeFS 2.9.6
• Redis 4.0.6
• Memcached 1.4.36
• NATS 1.0.4

• MPI: Mpich 3.2
• Programs:

• Synthetic benchmark
• VPIC
• HACC

• Buffering Platforms:
• Cray’s DataWarp
• LBNL Data Elevator

Slide 216/24/2018

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

6/24/2018 6/24/201822

Benchmarks

• MPI shared dynamic memory
window exposed in all nodes

• MPI_Put(), MPI_Get()
• If RDMA is present, MPI uses it

• No need for dedicated server

• Indexing of windows for fast
querying

• Complex data structures

• Update operations use
MPI_EXCLUSIVE which ensure
FIFO consistency

• Entire window with its index is
mmap’ed for fault tolerance

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

• 1 million fwrite() of various size and measured memory ops/sec
• 1 million metadata operations and measure MDM throughput ops/sec
• 1 million queue operations and measure messaging rate msg/sec

RAM MDM

Messaging
Service

6/24/2018 6/24/201823

Benchmarks

• File-per-process

• 1024 ranks each 64MB

• 16 phases resulting 1TB total I/O

• Alternating Compute – I/O :
• Data need to persisted
• Workloads:

• Data-intensive

• Balanced
• Compute-intensive

• Metric:
• Overall I/O time (write + flush)

• Repetitive Read:
• Temporary data
• Workloads:

• Read-once: 32MB read 1x time

• Readx4: 8MB read 4x times
• Readx16: 2MB read 16x times

• Metric:
• Overall I/O time (write + read)

Hermes offers 8x and 2x
higher write performance

on average when
compared to

No Buffering and state-of-
the-art buffering platforms

Hermes offers 38x and
11x higher read

performance for repetitive
patterns when compared

to
No Buffering and state-of-
the-art buffering platforms

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Alternating Compute – I/O

Repetitive Read

• Hermes hides flushing behind compute (similar to Data Elevator)
• Hermes also hides data movement between layers behind compute
• Hermes leverages the extra layers of the DMSH to offer higher BW

6/24/2018 6/24/201824

Benchmarks

• Strong scaled up to 1024 ranks

• 16 time steps

• VPIC:

• HDF5 files

• Metric:
• Overall I/O time (write + flush)

• HACC:

• MPI - I/O Independent

• Metric:
• Overall I/O time (write + read + flush)

Hermes offers 5x and 2x
higher write performance

on average when
compared to

No Buffering and state-of-
the-art buffering platforms

Hermes offers 7.5x and 2x
higher read performance

for repetitive patterns
when compared to

No Buffering and state-of-
the-art buffering platforms

Hermes: A Heterogeneous-Aware Multi-Tiered
Distributed I/O Buffering System

Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

VPIC

HACC

• Hermes utilizes a concurrent flushing
• Hermes also hides data movement between layers behind compute
• Hermes leverages the extra layers of the DMSH to offer higher BW

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Q&A

6/24/2018 Slide 25

Q: The DPE policies rely on the fact that users know the behavior of their
application in advance which can be a bold assumption.

A: That is true. We suggest using profiling tools before hand to learn about
the application’s behavior and tune Hermes. Default policy works great.

Q: How does Hermes integrate to modern HPC environments?

A: As of now, applications link to Hermes (re-compile or dynamic linking).
We envision a system scheduler that also incorporates buffering resources.

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Q&A

6/24/2018 Slide 26

Q: How are Hermes’ policies applied in multi-user environments?

A: Hermes’ Application Orchestrator was designed for multi-tenant
environments. (this work is under review)

Q: What is the impact of the asynchronous data reorganization?

A: It can be severe but in scenarios where there is some computation
in between I/O then it can work nicely to our advantage.

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Q&A

6/24/2018 Slide 27

Q: What is the metadata size?

A: In our evaluation, for 1 million user files, the metadata created were
1.1GB

Q: Is Hermes open source?

A: Hermes will be open sourced by the end of this year. We are
currently improving the quality of the code and writing documentation.

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Q&A

6/24/2018 Slide 28

Q: How to balance the data distribution across different compute nodes especially
when the I/O load is imbalanced across nodes?

A: Hermes’ System Profiler provides the current status of the system (i.e.,
remaining capacity, etc) and DPE is aware of this before it places data in the DMSH.

Q: How to minimize extra network traffic caused by horizontal data movement?

A: Horizontal data movement can be in the way of the normal compute traffic.
RDMA capable machines can help. We also suggest using the “service class” of the
Infiniband network to apply priorities in the network.

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Q&A

6/24/2018 Slide 29

Q: How is the limited RAM space partitioned between applications and
Hermes?

A: Totally configurable by the user. Typical trade-off. More RAM to
Hermes can lead to higher performance. No RAM means skip the layer.

Q: Why not compare jemalloc which is commonly used by data-intensive
applications such as LevelDB and Redis?

A: We are looking into it. Great suggestion. We will follow up with this.

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Q&A

6/24/2018 Slide 30

Q: The authors claim: "We strive for maximizing productivity…” How?

A: We simply believe that the user should not be responsible to manage all layers
independently. Hermes can provide a certain level of automation.

Q: What is Hermes API?

A: Hermes captures existing I/O calls. Our own API is really simple consisting of
hermes::read(…, flags) and hermes::write(…,flags). Flag system implements active
buffering semantics (currently only for the burst buffer nodes).

Background Approach Design Evaluation Conclusions

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Q&A

6/24/2018 Slide 31

Q: How difficult is to tune Hermes’ configuration
parameters?

A: We expose a configuration_manager class which is
used to pass several Hermes’ configuration parameters.

Q: What is Hermes’ DPE complexity?

A: In the order of number of layers

Background Approach Design Evaluation Conclusions

In summary

6/24/2018 32
Background Approach Design Evaluation Conclusions

• Data movement among the layers of a deep memory
and storage hierarchy is significantly complex.

• Each layer of the DMSH is an independent system
that requires expertise to manage.

• The lack of automated data movement between tiers
is a burden currently left to the users.

• Hermes, is a new, multi-tiered, distributed buffering
platform that enables, manages, and supervises I/O
buffering into the DMSH.

• Hermes boosts I/O performance by more than 8x.

• Hermes outperforms other buffering platforms by 2x.

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System
Anthony Kougkas, akougkas@hawk.iit.edu

Thank you.
This work was supported by the

National Science Foundation
under grants no.
CCF-1744317,
CNS-1526887,

and CNS-0751200.

Anthony Kougkas
akougkas@hawk.iit.edu

https://sites.google.com/iit.edu/akougkas

Hermes
A Heterogeneous-Aware Multi-Tiered

Distributed I/O Buffering System

mailto:akougkas@hawk.iit.edu
https://sites.google.com/iit.edu/akougkas

