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Abstract—Shared-nothing and shared-disk are the two most
common storage architectures of parallel databases in the past
two decades. Both two types of systems have their own merits
for different applications. However, there are no much efforts
in investigating the integration of these two architectures and
exploiting their merits together. In this paper, we propose a
novel hybrid storage architecture for large-scale data processing,
to leverage the benefits of both shared-nothing and shared-disk
architectures. In the proposed hybrid system, we adopt a shared-
nothing architecture as the hardware layer and leverage a parallel
file system as the storage layer to combine the scattered disks on
all database nodes. We present an overall design of the new
scheme, including data and storage organization, data access
modes, and query processing methods. The proposed hybrid
scheme can achieve both high I/O performance as a shared-
nothing system, and high-speed data sharing across all server
nodes as a share-disk system. Preliminary experimental results
demonstrate that the hybrid scheme is promising and more
appropriate for large-scale and data-intensive applications than
each of the two individual types of systems.

Keywords-storage architecture, shared-nothing, shared-data,
parallel databases, parallel file systems

I. INTRODUCTION

Shared-nothing and shared-disk [1][2][3] are the two
widely-used storage architectures in parallel databases. Both
two architectures have their own positive and negative features,
but neither of them has the edge on the other in all aspects.
Figure 1 shows a sketch of the two storage architectures.
In a shared-nothing system, the data set is usually parti-
tioned [1][4][5] into several subsets and each node keeps
one subset in its native disks. Generally, the shared-nothing
systems provide a high degree of parallelism for both I/O and
computing [1]. Nevertheless, the shared-nothing systems also
have multiple nodes transaction [6][7], data shipping [5][8],
and data skew issues [4][5][8]. In a shared-disk system, data
is stored in a large centralized storage, which is accessible by
all database nodes. Since every node has direct access to all
disks, there is no need of data partitioning according to the
number of nodes, which eliminates the data skew problem. The
main drawbacks of shared-disk systems, however, are low I/O
bandwidth and poor scalability.

In an early stage of parallel database, the bandwidth and
latency of network is worse than accessing data to local disks,
hence it is natural to avoid accessing data from a remote disk
through network. For that reason, the shared-nothing and the
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Fig. 1. Shared-nothing and Shared-disk Parallel Databases

shared-disk architectures were presented separately. However,
network transmission bandwidth grows rapidly during the past
years. Nowadays, reading data from remote disks is no longer
limited by network in a cluster environment. The tradeoffs
between shared-disk and shared-nothing storage architectures
need to be reevaluated. On the other hand, in the domain
of data-intensive scientific computing, parallel file systems,
such as Lustre[9], PVFS2[10], and GPFS[11], are widely used
for high I/O performance. Compared with parallel databases,
parallel file systems are shared-nothing structured (as shown
in Figure 1), but they also unite all disks on multiple nodes
and provide a single namespace.

Inspired by the design of parallel file systems, we propose
a novel hybrid storage architecture for large-scale parallel
databases, by integrating parallel database with parallel file
system techniques together. It adopts shared-nothing for the
upper layer database instances, but also provides data sharing
through a lower-layer parallel file system. Therefore, the
proposed hybrid system can work both as a shared-nothing
system if each database node only accesses data on its own
disks, and as a shared-disk system if the database nodes access
data from the global namespace of the parallel file system.

The contribution of this study is three-fold. First, we ar-
gue that combining shared-nothing and shared-data in paral-
lel database systems, would be greatly beneficial for many
emerging data-intensive applications with the rapid advance of
interconnection technology and swift development of parallel
file systems. Second, we propose an innovative hybrid storage
architecture for parallel databases to carry the combination and
to have the merits of both two architectures. We introduce the



design of the proposed storage scheme, including data access
modes, data organization, and query processing methods.
Finally, we have conducted extensive experimentation to verify
the proposed storage design. The results demonstrate that the
hybrid system is promising in leveraging the advantages of
both shared-nothing and shared-data architectures and has a
real potential in parallel database architectures.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the related work in parallel database
architectures and parallel file systems. Section III describes the
system design of the proposed hybrid shared-nothing/shared-
data storage scheme. In Section IV we describe query and
transaction processing methods. Verification experiments of
the hybrid system are presented in Section V. Finally, Section
VI concludes this study and discusses future work.

II. RELATED WORK

A. Shared-nothing and Shared-disk

In shared-nothing systems, data is partitioned and dis-
tributed across all the database nodes [1][4][5]. DeWitt and
Gray [1] introduced three well known partitioning methods:
round-robin, range and hash. Besides, there are some com-
bined strategies on multiple columns. When a query comes,
it will be routed to the appropriate database nodes according
to the data partitioning scheme. Complex queries, e.g. ‘multi-
join’ or ‘nested’, are often executed as recursive computing
and re-distributing phases [1][12] on multiple database nodes.
It is unlikely to find a universal partitioning strategy suitable
for all query types. As dataset and query pattern vary with
the time, a good partitioning scheme in the past may become
sub-optimal, resulting in load imbalance and performance
degradation. Dynamic or adaptive algorithms [4][5][13] were
introduced to deal with the load balance problems. Nowadays,
there are numerous database clusters using the shared-nothing
architecture, such as IBM DB2 UDB[14], Mysql Cluster [15],
and Teradata products[16], etc.

In shared-disk systems, data is stored in shared disks, and
every node has full access to the entire data [1]. There is no
need to partition data across multiple database nodes, which
eliminates the data skew problems. During query processing,
the collaboration of different nodes relies on inter-nodal mes-
sage and shared data access. Data sharing between memories
on different nodes can deliver a superior performance in
shared-disk system [3][17]. Cache fusion is a memory-sharing
technique applied by Oracle RAC version [18], which can
largely improve the query performance, because the high
transmission speed and low latency of network make it much
faster than data write back to shared disk and re-read courses.
Currently, the shared-disk systems usually adopt storage area
network (SAN) to provide high I/O performance, and it is
costly due to dedicated hardware.

B. Parallel and Distributed File Systems

Parallel file systems, such as Lustre[9], PVFS2[10], and
GPFS[11], are widely used in large-scale and data-intensive

applications, to provide high I/O capabilities to high-
performance computing (HPC) clusters. Normally, parallel file
systems provide high I/O performance by striping data files
over multiple storage nodes, and accessing these data strips in
parallel. I/O clients can access files by logic address as in a
single namespace, without the knowledge of physical layout.
The transparency of data block placement is a convenient
feature for users. Google file system (GFS)[19] and Hadoop
distributed file system (HDFS)[20] are scalable distributed file
systems for large distributed web search engine applications.
Both GFS and HDFS are designed with big file chunks (chunk
size is 64MB) and MapReduce [21] programming model.
The write-once-read-many data access manner means no data
modifications, in addition, MapReduce programming model
is not designed for low latency. For those reasons, GFS and
HDFS are not suitable for general purpose parallel databases.

There are some research efforts in integrating database and
parallel file system technologies. Some scientific computing
systems [22] employ databases for metadata management and
parallel file systems for data storage respectively. Hive[23]
and HBase[24] are built on HDFS and based on MapReduce
model. They are designed for special purpose, and the query
types and query processing manners are different from tradi-
tional databases. In addition, they are not suitable for low-
latency applications.

The proposed hybrid architecture is different from others
work. It is designed for general parallel databases. It has a
shared-nothing design in the hardware layer, and provides
data sharing through the underlying parallel file system. It
has the merits of both shared-nothing and shared-disk parallel
databases.

III. HYBRID DATABASE SYSTEM

A. System Architecture
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Fig. 2. Architecture of the Hybrid Parallel Database Storage Scheme

The proposed scheme adopts shared-nothing hardware in-
terconnection manner, but uses a parallel file system to unite
all scattered disks to provide data sharing capability. Figure 2
illustrates the system architecture of the proposed hybrid
storage scheme, which can leverage the advantages of both the
shared-nothing hardware structure and the shared-data facility
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Fig. 3. Data Layout in Parallel File Systems

of parallel file systems. In the proposed hybrid database, each
node runs a database instance, and serves as both a parallel
file system I/O server and an I/O client. Therefore, all database
instances can access data in the parallel file system, namely
data can be shared among different nodes conveniently. In a
word, it is shared-nothing in hardware layer, but it is also a
shared-data system.

Usually, in parallel file systems, data is striped across
multiple I/O servers in a round-robin way, thus one file is
divided into several sub-files on these servers. In the proposed
hybrid system, one file in parallel file system is called global
file, and a sub-file on one node is called local file. Thus, a
global file is mapped into a set of local files, as shown in
Figure 3. We introduce two data access modes in the proposed
hybrid systems: local mode and global mode.

• Local Mode: each database node accesses data via a local
file descriptor on its native disks.

• Global Mode: each database node accesses data via a
global file descriptor in the global namespace.

Data access pattern can be either local mode or global
mode, by calling read/write functions on a local file descriptor
or a global file descriptor respectively. Which data access
mode to use for query execution is determined by system
query optimizer, based on the costs of query execution of the
two modes. With high-speed interconnection techniques, the
proposed hybrid scheme can obtain the advantages of both
shared-nothing and shared-disk systems.

B. Data Organization

In relational databases, data files are composed of record
pages. We design the stripe size in parallel file systems the
same as the record page size in the hybrid system, thus
database tables are naturally striped across all database nodes.
Figure 4 shows the organization of the relational tables in the
proposed hybrid system. Each table can be stored as a global
file, which is striped by record pages. Hence each local file is a
subset of original table, which could be regarded as a sub-table
for each database node. Especially, record assigned across
pages is not recommended, because it would lead to complex
data access behaviors like data shipping and distributed locks.
For that reason, we reserve a small area in each page, which
is also useful for updating records with variable lengths. The
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Fig. 4. File Striped by Record Pages in Hybrid Systems

percentage of reserved area in a record page is configurable,
like that in current commercial databases. With the design
of record page striping and reserved area, each node can be
regarded as a standalone sub-database in local data access
mode.

The data dictionary is modified to support two data access
modes in the proposed scheme. For local data access, each
node is a standalone sub-database, and it should keep all the
metadata information in the local data dictionary. This design
can eliminate the data dependency among different nodes.
Furthermore, some additional information should be included
on each node for global access. For example, file information
in data dictionary on each node must contain a local file name
and a global file name, as shown in Figure 5, to support for
both two data access modes. This data organization is quite
different from existing GFS and HDFS. In GFS and HDFS,
storage nodes do not contain the global data set information,
they have to turn to the dedicated metadata server for remote
data access.

IV. QUERY PROCESSING

A. Query Processing

In large-scale and data-intensive systems, query execution
can be roughly classified as two categories: simple merging
and recursive processing. Simple merging means a query is
executed in parallel on multiple database nodes independently
without data exchanging or inter-nodal message. The final
result is a combination of intermediate results from the execu-
tion nodes, such as web search engine applications. Recursive
processing means that query execution consists of multiple
computing and re-distribution phases. Usually, queries that in-
volve multi-join or nested-query are recursive processing types
in a clustered database. The execution control mechanisms is
much more complicated than simple merging queries.

The proposed hybrid scheme can significantly simplify data
migration between different nodes during query processing,
by hiding data migration details to the underlying parallel file
system. For example, data collecting from multiple databases
can be converted to data reading in global modes. In addition,
some recursive processing queries in shared-nothing systems
can be converted to simple merging queries in the hybrid
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system. Taking table lineitem and table partsupp in TPC-H
benchmark [25] for example, the query is as follows.

select l orderkey, l partkey, l suppkey,
l extendedprice * ( 1 - l discount ) -
ps supplycost * l quantity profit

from lineitem, partsupp
where l partkey = ps partkey

and l suppkey = ps suppkey
and l commitdate between(t1,t2);

This query lists the profit of each item in a certain period.
We compare the query execution plan with shared-nothing
systems to illustrate how this query is processed in a hybrid
system. In a shared-nothing system, table lineitem is primarily
partitioned by l orderkey across database nodes and secondar-
ily partitioned by l partkey on each node, and table partsupp is
primarily partitioned by ps partkey and secondarily partitioned
by ps suppkey. There must be a re-distribution phase of
lineitem before join, as shown in Figure 6(a). While in a hybrid
system, the table lineitem is also partitioned by l orderkey and
l partkey, but each database node can directly access data from
other database nodes in global mode. Thus it eliminates the re-
distribution phase in execution plan, as shown in Figure 6(b).

The proposed hybrid system simplifies the data migration
during query processing, and provides more performance
optimization choices. For the same reason, the hybrid sys-
tem can also simplify the control mechanism for transaction
processing.

V. PRELIMINARY EXPERIMENTS

A. Environment

We conducted a set of experiments to verify data file striping
by record pages, the performance of local and global data
access modes, and the performance of query processing. The
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Fig. 6. Query Execution Tree in Different Systems

experiments were conducted on a 64-node Sun Fire Linux-
based cluster. Each node was a Sun Fire X2200 server, with
dual 2.3GHz Opteron quad-core processors, 8GB memory, and
a 250GB 7200RPM SATA hard drive. All 64 nodes were
connected with Gigabit Ethernet. In addition, there were 16
nodes connected with 4X InfiniBand network. All these nodes



TABLE I
DATA ORGANIZATIONS OF TPC-H TABLES

Table Name Data Size Stripe Size Reserved(%)
Customer 2.43 GB 64 KB 5
Lineitem 72.42 GB 8 MB 0
Nation 2224 Bytes – –
Orders 16.36 GB 8 MB 0
Part 2.42 GB 64 KB 5
Partsupp 11.32 GB 8 MB 0
Region 389 Bytes – –
Supplier 142 MB 64 KB 10

Note: reserved percentage 0 means no reserved area in record pages, but
we also considered boundary alignment, adding some null characters in
the end of a page if necessary in order to guarantee no record aligned
across pages.

ran Ubuntu 9.04 (Linux kernel 2.6.28.10) operating system.
We employed PVFS2 as the underlying parallel file system.

Global data access refers to data reading or writing from
PVFS2 mount point. While local file refers to a sub-file on
each storage node (file name like ***.stream). We verified
the performance potential of the proposed hybrid scheme with
TPC-H benchmarks.

B. Results and Analysis

Firstly, we designed experiments to verify striping tables in
parallel file systems by record pages. In this set of experiments,
TPC-H population scale is 100, meaning that total data size
is 100GB. We used dbgen(a data generating tool in TPC-H)
to generate the original testing data, and then re-organized
the data into record pages. After that we wrote these record
pages into PVFS2 files. We adopted different stripe sizes and
reserved percentage for different tables. Table I shows the data
stripe sizes and reserved percentages. For each table, the record
page size was equal to the stripe size. Table nation and region
were not striped because the data size was too small.

Next we conducted experiments to testing the I/O perfor-
mance in global and local data access modes. Figure 7 shows
the aggregate bandwidth of full table scan in hybrid systems.
We chose the biggest table lineitem, and the data size is shown
in Table I. We measured the data reading performance via both
Ethernet and InfiniBand interconnections. In Ethernet testing,
we used all 64 nodes. The number of clients were 1, 4, 16,
and 64, respectively. Each client read only one portion of the
whole table in global access mode. In InfiniBand testing, we
used 16 server nodes. The number of clients were 1, 2, 4, 8,
and 16, respectively. Label ‘local’ refers to local data access
mode, and ‘global-1c’ refers to 1 client in global data access
mode, and other labels are similarly defined. From the results
we can observe that, in both Gigabit Ethernet and InfiniBand
testing, local data access mode obtained the highest aggregate
bandwidth compared to all global data accesses, because each
database node read the native files independently. However, the
performance difference between local and global data access
was much larger in Gigabit Ethernet interconnection than that
in InfiniBand environment. This set of experiments verified
that, with high-speed interconnection, the hybrid architecture
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can also obtain high I/O bandwidth when table scanning in
global data access mode.

We then conduct experiments to test query execution time.
Figure 8 shows the execution time before ‘JOIN’ (SQL is
listed in Section IV and execution plan is shown in Figure 6).
The results were tested in the InfiniBand environment. We
scaled the total data size according to the nodes number,
so each database node had the same data size on average
(table lineitem had 12 million rows and table partsupp had
1.6 million rows for each node on average). In both shared-
nothing and hybrid systems, table lineitem was partitioned on
two columns l orderkey and l partkey. As shown in Figure 6,



in the shared-nothing architecture, the execution time includes
local data scan, data filtering and re-distribution. In the hybrid
architecture, the execution time includes global data scan and
filtering. The results demonstrate that the proposed hybrid
system can achieve much higher performance in all system
scales, about 82% higher on average. Since the query executor
can access tables in both global and local modes, it is much
more appropriate for applications with varieties of query types.

VI. CONCLUSIONS AND FUTURE WORK

In a large-scale and data-intensive system, there are various
of query patterns. Some queries are proper to be processed
in a shared-nothing architecture, while others are more proper
to be processed in a shared-disk architecture. In this study,
we propose a novel hybrid shared-nothing/shared-data scheme
for large-scale and data-intensive applications, to leverage the
benefits of both shared-nothing and shared-disk architectures.
We adopt a shared-nothing architecture as the hardware layer
and leverage a parallel file system as the storage layer to
combine the scattered disks on all database nodes. With
the idea of the new hybrid architecture, we first introduce
two data access modes: global and local data access modes,
which enable the new system can work as both a shared-
nothing system and a shared-disk system. Second, we present
the methodology of organizing data files in the underlying
parallel file system so that each node can run as a stan-
dalone sub-database. Third, we present query processing in the
new storage architecture. Analytical and experimental results
demonstrate that the proposed hybrid scheme can achieve both
high I/O performance as a shared-nothing system, and high-
speed data sharing across all server nodes as a share-disk
system.

While we have proposed and verified our design and
thought, this study has revealed more research issues than it
has solved. In the future, we plan to study cost estimation of
global and local access modes to optimize query execution. In
addition, we plan to further investigate data organization and
layout optimization in underlying parallel file systems.
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