
IC-Data: Improving Compressed Data Processing in
Hadoop

Adnan Haider, Xi Yang, Ning Liu, Xian-He Sun
Computer Science Department

Illinois Institute of Technology

Chicago, United States of America

{ahaider3,xyang34,nliu8}@hawk.iit.edu, sun@iit.edu

Shuibing He
Computer School

Wuhan University

Wuhan, China

heshuibing@whu.edu.cn

Abstract—As dataset sizes for data analytic applications and
scientific applications running on Hadoop increases, data com-
pression has become essential to store this data within a rea-
sonable storage cost. Although data is often stored compressed,
currently Hadoop takes 49% longer to process compressed data
compared to uncompressed data. Processing compressed data
reduces the amount of task parallelism and creates uneven
workload distribution both of which are fundamental issues the
MapReduce parallel programming paradigm should alleviate. In
this paper, we propose the design and implementation of a Net-
work Overlapped Compression scheme, NOC, and Compression
Aware Storage scheme, CAS. NOC reduces data load time and
hides compression overhead by interleaving network I/O with
compression. CAS increases parallelism by dynamically changing
a file’s block size based on compression ratio. Additionally, we
develop a MapReduce Module which recognizes the characteris-
tics of compressed data to improve resource allocation and load
balance. Collectively, NOC, CAS, and the MapReduce Module
decrease job execution time on average by 66% and data load
time by 31%.

Index Terms—Big Data Processing; Data Compression;
Hadoop;

I. INTRODUCTION

As we continue to move forward in the big data era,

system administrators are using data compression to reduce

storage consumption and thus big data applications often have

their datasets compressed. The MapReduce paradigm, used for

running these applications, has continued to increase in popu-

larity [1]. Hadoop MapReduce, an open source implementation

of MapReduce, is in use for both scientific and data analytic

applications [2]. Currently, Hadoop processes compressed data

on average 49% slower than uncompressed data. However,

data compression reduces the amount of network and disk I/O

required for processing an application and thus has potential to

reduce job runtime, instead of increase it. Both scientific and

data analytic applications often have their datasets compressed.

Large scale scientific data processing using MapReduce is

common in Biomedical Imaging, Bioinformatics, and High

Energy Physics [3] [4] [5]. Bioinformatics applications, in

particular Next-Generation Sequencing (NGS), have terabyte

sized datasets. The parallelization from Hadoop has allowed

these applications to achieve better performance, but as the

size of datasets increases, compression needs to be deployed

to limit storage consumption. CloudBurst is a prime example

of a Bioinformatic application which needs to process large

amounts of data [6]. Compression has also become widely

adopted by companies who manage large amounts of data.

Large scale data warehouses, such as those at Facebook,

compress all their data. Facebook receives 600 TB of un-

compressed data as of 2014, which would lead to adding a

new rack of storage every three days. But assuming a modest

compression factor of 6, the amount of data needing to be

stored diminishes to 100 TB which is significantly more rea-

sonable [7]. Without compression, storing the vast amount of

data processed in data warehouses, which is expected to reach

8.6 zettabytes by 2018 [8], would be practically infeasible.

Twitter, another company dealing with large amounts of data,

went so far as to modifying the LZO compression scheme to

better fit their needs. This modified scheme is now running

24 hours a day at Twitter [9]. Both Facebook and Twitter use

Hadoop to process their compressed data.

Because compression is used across multiple fields of

science and industry, applications have their input data com-

pressed or in other words they process compressed data. Many

optimizations have been proposed for processing compressed

data. Parallel Database Management systems (PDMS) have

sophisticated mechanisms to compress data and process com-

pressed data, such as parallel compression during data loading

and a compression engine which allows processing of com-

pressed data without decompression [10]. Compared to these

complex techniques, Hadoop merely recognizes compressed

data so that it can decompress it. This simple mechanism has

been shown to perform worse than processing uncompressed

data in Hadoop [11], but the reason for the performance

decrease has not been studied. Often, the worse performance is

falsely attributed to the decompression latency which is needed

before running the application code on the data. Although this

does incur some overhead, we found that there are other issues

which lead to the degraded performance, and when overcome,

processing compressed data can be faster than processing

uncompressed data because of the reduction in the amount

of data needing to be read and transferred.

Two fundamental benefits of the MapReduce parallel pro-

gramming paradigm, parallelism and load balance, are greatly

reduced when processing compressed data. The performance

issues are caused by two current design components. First,

2015 IEEE 22nd International Conference on High Performance Computing

978-1-4673-8488-9/15 $31.00 © 2015 IEEE

DOI 10.1109/HiPC.2015.28

356

the Hadoop Distributed File System (HDFS) does not treat the

storage of compressed data any differently than uncompressed

data even though the processing requirements are quite dif-

ferent. Second, MapReduce’s resource allocation is based on

compressed data size, when in fact execution time and amount

of needed resources depends on the decompressed data size.

In detail, processing compressed data has three core issues

which lessen the benefits provided by Hadoop:

• The number of map tasks created is determined by

the compressed dataset size. Thus, the number of tasks

decreases as compression ratio decreases and the amount

of data each task must process increases as compression

ratio decreases. This results in less tasks which individu-

ally process more data resulting in decreased parallelism

and increased job runtime.

• The variation between each map task’s runtime increases

since the duration of a map task depends on the amount

of data it has to process which in turn depends on the

varying compression ratio for different files. Runtime

variation results in long running tasks which prolong job

execution time and reduce load balance.

• Compressing data is a significant overhead in warehouse

clusters as is the time to load data to clusters and

datacenters. Currently, compression and data transfer is

done sequentially which further increases the time till

users can process their data.

Because of these issues, we propose IC-Data which

Improves Compressed Data processing in Hadoop, hides

compression overhead, and reduces data load time. Our main

contributions are:

• We identify, formalize, and quantify the reasons for why

a job processing compressed data takes on average 49%

longer to execute than processing uncompressed data. The

causes are a reduction in the number of parallel tasks and

an increase in map task runtime skew.

• We develop a Network Overlapped Compression scheme,

which overlaps data compression with network transfer

in order to hide compression latency, limit network I/O,

and reduce data load time. In addition, we develop a

Compression Aware Storage scheme which allows HDFS

to recognize compressed data and dynamically change the

block size of a file based on the compression ratio. These

two schemes are bundled into an HDFS Module which

reduces data load time by an average of 31%.

• We develop a MapReduce module which consists of

a Compressed Task Divider and a Compressed Block

Reader. Together, they allow for efficient processing of

compressed data by using the uncompressed data size to

determine the number of resources for a job. The module

reduces job execution time by an average of 66% across

6 benchmarks and one real application.

The paper is organized as follows: Section II discusses

the background information and related work. Section III

describes the problems with compressed data processing. The

design and implementation of IC-Data is in Section IV. Section

V provides the experimental evaluations and Section VI is the

conclusion and future work.

II. BACKGROUND AND RELATED WORK

A. Background

Hadoop consists of the Hadoop Distributed File System

(HDFS) and Hadoop MapReduce, which processes the data

stored in HDFS. HDFS stores files by dividing them into

blocks, which by default are 128 MB. Each block is replicated

onto multiple datanodes (storage nodes), which by default is 3.

A Hadoop MapReduce job can be divided into a map phase

and reduce phase. The map phase consists of multiple map

tasks which each process a portion of the entire job’s input

data. Generally, each task processes a single HDFS block

or multiple blocks. Once a map task finishes, its output is

sent across the network to reduce tasks. Once every map task

finishes, the reduce phase can start. The reduce phase calls the

user’s reduce function and then stores the output to HDFS.

Data compression is used to reduce storage consumption

and I/O. Essentially, compression reduces I/O time and in-

creases compute time, a valuable tradeoff in the big data

era. Data compression can be used for map input data, map

output data, and reduce output data. This paper focuses on

compressed map input data, which requires compressed data

processing. The amount of reduction in I/O depends on the

compression ratio which depends on the patterns in the data

and the compression algorithm. We calculate compression

ratio as CompressedData
UncompressedData . A lower ratio means less storage

consumption and reduced disk and network I/O for a job.

If input data is compressed, a map task decompresses the

data and then calls the user’s map function. There are two

types of compression codecs (algorithms). The first type are

splittable codecs, meaning if input data is compressed with

this type of codec more than one task can process the data

in parallel. However if the codec is not splittable, then one

task processes the entire input data. This is required because

a single task may need data from other portions of the file in

order to decompress the data. Non-splittable codecs can cause

significant performance issues when the dataset is large. In

this paper, we do most tests with Bzip2 since it is one of the

few splittable codecs available, has low compression ratios,

but also has high decompression and compression overhead.

B. Related Work

Data compression is widely used in both Parallel Database

Management Systems (PDMS) and in high performance com-

puting (HPC). In addition, there has been some work dealing

with compression in the Hadoop framework.

PDMS have advanced software when it comes to com-

pressed data processing. In 1991, data compression was

analyzed for benefits other than reduction in storage con-

sumption [12]. An in production database management sys-

tem, Vertica, has a compression engine which can process

compressed data without decompression [10]. Another major

PDMS, can reduce execution time by 50% when processing

compressed data [11]. In the HPC field, compression was used

357

to limit network I/O by utilizing idle CPU resources [13].

Another work interleaved data compression with I/O to hide

the compression overhead for HPC systems [14].

Compression in Hadoop has achieved lesser attention than

its PDMS and HPC counterparts, but there have been few

works. One research group analyzed the impact of data com-

pression on power savings [15]. They showed how the ratio of

input to intermediate to output data can affect the benefits of

compression and how compression ratio should be considered

when deciding to compress data. Another work compared the

overall performance of Hadoop and PDMS [11]. They mention

that Hadoop’s compressed data processing was much worse

than PDMS’s, but the reason for the degradation was not dis-

cussed. Facebook created an Optimized Row Columnar (ORC)

file format partly to improve compressed data processing [16].

This work is designed for structured data and runs on Hive,

which focuses on data queries [17]. Our work focuses on

Hadoop, meaning large scale scientific and data analytic jobs.

However, the newly identified problems still exist in Hive

even with ORC files since Hive uses HDFS, where the issues

discussed in the next section stem from.

III. PROBLEMS WITH COMPRESSION IN HADOOP

In order to better understand the problems associated with

compressed data processing, we present a simple mathematical

model and then quantify the performance issues.

TABLE I: The mean and standard deviation of compression ratios
(2nd and 3rd column). Amount of uncompressed data (MB) processed
based on amount of compressed data read (4th and 5th column).

File Type Mean Std.Dev. 128MB 256MB
Fatsa 0.253 0.018 472.10-̃544.16 942.21-̃1077.25
Log 0.172 0.069 530.81-̃1256.40 1061.27-̃2495.21
CSV 0.212 0.065 461.42-̃871.96 922.84-̃1741.92

A. Formulating the Compression Problem

We present the issues with current compressed data process-

ing using a simple model. Suppose there exists a job which

needs to process f amount of uncompressed data. In addition,

assume the data is stored compressed with a compression ratio

c, where the ratio is calculated as in Section II. Lastly, suppose

the amount of compressed data distributed to each task is a,

which is often equal to the HDFS block size.

The number of tasks, t, will be equal to cf
a since c ∗ f is

the amount of compressed data stored and each task receives

the same amount of data. λ is the time it takes to process

a given amount of data and equals TimeToProcess
AmountOfDataProcessed .

The denominator is the processing amount (decompressed data

size). We make an assumption that λ is constant for a single

job. In actuality, λ varies based on node hardware or cluster

utilization. λ is constant to ensure all causes of suboptimal

performance is due to compressed data processing. Generally,

λ is larger for CPU bound jobs than I/O bound jobs.

We define S(t) as the sum of the latency required to sched-

ule/create t tasks and it is a constantly increasing function with

the number of tasks. Lastly, jobs can execute in iterations when

the number of available resources, r, is less than the number of

tasks, t. We calculate the number of iterations as � t
r �, where r

32

64

128

256
512

0

500

1000

1500

2000

2500

1
0.64

0.4
0.24

0.05

B
lo

ck
 S

iz
e

(M
B

)

Jo
b

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Compression Ratio

0-500 500-1000 1000-1500 1500-2000 2000-2500

Fig. 1: Relationship between compression ratio and block size.

can be represented as the number of map slots available [18].

The duration of each map task will then be λ· decompressed
size = λ · f

cf/a = λa
c . Using t = cf

a , the total map phase time

is represented in Equation 1.

�cf
ra

� · λa
c

+ S(cf/a) (1)

Equation 1 captures the following relationships:

1) As compression ratio decreases, it leads to a longer

processing time for each task and a decrease in the

amount of parallel tasks. But also there are benefits, the

number of iterations will decrease and the scheduling

and task creation delay will decrease.

2) The impact of compression ratio can be offset by adap-

tively altering the amount of data given to each map task,

a. For example, a task receiving data of low compression

ratio should receive less data so that the uncompressed

size is not too large for a single task.

Table 1 shows how tasks assigned different types of com-

pressed data can process a much larger amount than they read

due to decompression. The data was randomly selected from

multiple sources including the 1000 Genome Project [19]. The

fourth and fifth columns show the decompressed data size of

128 MB and 256 MB compressed blocks respectively. Each

entry in the fourth and fifth column represents a range of one

standard deviation from the mean compression ratio, which in

a normal distribution would be the middle 68% of the data. A

single task assigned a 128 MB block could actually call the

user’s map function on up to 1256 MB of data and up to 2495

MB of data for 256 MB blocks.

Figure 1 shows job runtime with different compression

ratios and block sizes. The blue region in the figure (execution

time less than 500 seconds) decreases in size as compression

ratio decreases, and completely vanishes for the best compres-

sion ratio (.05). Thus, the best compression ratio providing the

smallest storage consumption is not optimal for compressed

data processing.

Another trend is the effect of block size on compressed data.

Based on the sampled data in Table 1, a 0.24 compression

ratio is a common value in real world text files. But referring

358

to Figure 1, when using the default block size of 128 MB

with a 0.24 compression ratio, the execution time is 4x longer

than the shortest runtime. But with a smaller block size of

32 MB, the execution time is the shortest out of all runs.

Thus, Hadoop does not capture the potential performance im-

provement provided by compressed data. Performance seems

to be better for uncompressed data (compression ratio of 1)

than most of the compressed data runs, but this is because

the reduction in disk and network I/O is being masked by the

reduction in parallel tasks. In order to design and implement

an improved compressed data processing scheme, we first

quantify the current causes of the degraded performance.

B. Parallelism

Hadoop MapReduce deploys a key technique which has

allowed it to become widely used as a parallel programming

framework. It allows an application to be automatically par-

allelized by Hadoop with minimal work from the user. When

processing compressed data, the parallelization is not adequate

because Hadoop allocates too few resources.

The number of tasks for a job directly depends on the

amount of input data. A large job will have many tasks

executing concurrently while a small job will have a few

tasks. Most warehouse clusters, such as those at Facebook

and Yahoo, have more than 80% of their data set sizes on the

order of gigabytes and around 50% of the input data is on

the order of megabytes [20]. When compressing datasets of

these sizes, the amount of data on-disk will decrease. Thus

when processing this data, the number of tasks created, which

depends on the on-disk length, will decrease. However, the

amount of data which will be processed is the same before

and after compression. Although there will be less tasks, each

task will process more data than it reads since the data must

be decompressed before processing. This results in less tasks

which each process more data resulting in a reduction in

parallelism.

Figure 2 shows the individual map task time for each task in

a Wordcount job which processes 3 GB of uncompressed data.

For the uncompressed data run, there are 39 tasks (shown in

black) each reading and processing 128 MB worth of data.

After compressing this data with Bzip2 and achieving 5x

reduction in storage consumption, we ran the application again

which resulted in 9 tasks (shown in red). This is a 4x reduction

in parallelism. The data amount given to each task remained

the same as the uncompressed data run. Each task processed

more than 500 MB of data and total map phase time increased

by a factor of 2.4. The parallelism issue occurs because task

creation is based on on-disk data size not uncompressed data

size.

C. Map Task Skew

A well known issue when processing data in MapReduce is

the variation in task execution time (map task skew). Often,

such variation prolongs job runtime and leads to straggling

tasks [1]. This problem arises based on faulty hardware, low

performing hardware, data skew, and crossrack traffic [18].

0 100 200 300 400 500 600
1
5
9

13
17
21
25
29
33
37

Elapsed Time (Seconds)

Ta
sk

 ID

Uncompressed Compressed

Fig. 2: The execution time for each task.

The issue also arises when processing on heterogeneous hard-

ware [21]. We found that map task skew also arises when

processing compressed data but at an even greater magnitude.

For example, if a task is running on a node with low perform-

ing hardware and is processing compressed data, the runtime

will be further prolonged since processing compressed data

causes a task to process a larger data amount than normal.

In addition to these known causes of map task runtime

variation, there are two new causes of variation which only

arise when processing compressed data. First, if there are

multiple files with different compression ratios as shown in

Table 1, a task’s runtime will depend on which file’s data

it receives since the decompressed data size will vary as in

columns four and five. Second, slight variations in the amount

of compressed data given to each map task can result in large

variations in map task time.

Referring back to Figure 2, there is over a 300 second

difference (longest task minus shortest task) in runtime for the

compressed data run while only about 150 second difference

for the uncompressed run. In this case, the variation is caused

by slightly different amounts of data given to each map task.

For example, suppose a task receives 20 MB less data than all

the other tasks, then it will process 100 MB less data since

there is a compression ratio is 0.2 for the data in Figure 2.

This slight variation in task input data reduces load balance

and increases the application runtime since the reduce phase

can only start until after the last map task finishes.

One solution to solve map task skew distributes the data that

is left to process of a straggling task to other tasks [22]. This

solution cannot work when processing compressed data since

when processing compressed data, a task must decompress the

data in the same granularity in which it was compressed. For

example, if each HDFS block was compressed individually,

then the decompression must occur on each block and cannot

be split arbitrarily within a block. Because of this, other tasks

cannot simply start processing a straggling task’s data without

decompressing the entire block. This can waste both CPU and

network resources, and thus it would be more advantageous if

a method can detect compression ratio and task input amount

variation before tasks are scheduled.

359

�������	�
����

����
����

��	�����
����

����
������

����	
���������

���������

���������	

���
�
���	��

���	
����

��������� ��
���������

���������	

����
����	��

������

�������
���������	

����������� ������
�
���
���

������
�����������
�����

�������

Fig. 3: Design of IC-Data contains two modules in gray and brown.
Bold text represents the new techniques provided by IC-Data.

D. Compression Overhead and Data Load Time

The time to load data into a cluster is worth decreasing

because it determines how quick users are able to run their

applications. Data is often transferred between clusters within

the same datacenter as well as between datacenters. For

example, one of Facebook’s clusters receives 30 TB of data

everyday and thus is bottlenecked by network. In addition, the

cluster compresses the data after it has been stored on disk

incurring compression overhead [23]. Long load times can be

mitigated by compressing the data, but currently compression

and data loading are considered separately and done serially.

By compressing data either before or after the data is loaded,

the compression overhead is not hidden and is costly [11].

IV. IC-DATA DESIGN AND IMPLEMENTATION

We present the design of a compression processing scheme,

IC-Data, which consists of the HDFS Module and MapReduce

Module, shown in Figure 3. The HDFS module provides two

new methods to store data into HDFS and the MapReduce

module provides two components to improve compressed data

processing. Overall, the HDFS Module seeks to improve how

compressed data is stored, so when the data is processed the

MapReduce Module can use the modified storage layout to

help decrease job runtime. Besides the performance goals, we

abstract the complexity of IC-Data from the user.

A. HDFS Module

The HDFS module provides two new methods of data

storage, Network Overlapped Compression (NOC) and Com-

pression Aware Storage (CAS). Previously both compressed

and uncompressed data were stored the same way. NOC com-

presses data while being loaded into HDFS. CAS improves

storage of data that has already been compressed at a remote

destination by dynamically changing the HDFS block size.

The methods are differentiated based on file extension.

NOC and CAS have two design components which will

alleviate the issues described in Section III. First, NOC and

CAS increase parallelism by not reducing the number of HDFS

blocks when the data is compressed. Second, they allow for

constant decompressed data size, meaning that all blocks,

possibly belonging to different files, when decompressed will

have an equal size. This allows each task to process a constant

amount of data, thus eliminating the issues of individual tasks

���������	�
���
�
����

��������

�

����
�
�
�

���
�
�������
�������

������������������
���������������

������������
	�
����
����

���������	�
���
�
����

�������� ��������

����������
�
��

����
 ������������������

� �

�

��!������"�
���
���
��

��!������"�
���
���
��

��!������"�
���
���
��

#����������������������

�����$�%�&���'��������

�������
��������

(����� �)����
� ����

�

���������
�
���������

	

� �

���
�
���(�����

Fig. 4: The Network Overlapped Compression (NOC) design.

processing large amounts of data and map task skew caused

by compressed data..

1) Network Overlapped Compression (NOC): Network

Overlapped Compression (NOC) compresses data during data

loading by interleaving compression with network transfer. It

uses the overhead of replicating blocks to multiple datanodes

to hide the compression latency. By overlapping compression

with block transfer, the network traffic caused by loading large

amounts of data and disk I/O is reduced.

When a file is loaded into HDFS, the file is divided into

multiple blocks which are transmitted using 64 KB packets in a

pipeline fashion to multiple datanodes for the purpose of fault

tolerance. Typically, the data is not modified in the pipeline

and is simply copied from node to node. NOC compresses the

data, while in the pipeline.

For example, Figure 4 explains NOC. Here, the second

datanode in the write pipeline decides to compress the block

because it has available resources. Thus, for every packet of the

block the second datanode receives, it compresses the packet.

The Packet Modifier is responsible for modifying the packet

with the compressed data as shown in Figure 4. The second

datanode then writes the compressed data to its disk. The

third node detects the compressed data and reads a shorter

amount than the original packet length. The third node can

simply write the smaller amount of data to disk resulting in a

reduction in disk I/O without the compression overhead. The

second datanode, also sends a modified ack message to the first

datanode to notify that the block has compressed replicas.

NOC hides compression overhead and reduces data load

time in two ways. First, compression occurs in parallel with

other packet transfers and writes to disk. Second, after com-

pression all nodes further in the pipeline will have reduced

network transfer and disk I/O time, or in other words the

benefits of compression trickle down to nodes deeper in the

pipeline. NOC provides two features to improve processing of

compressed data.

First, it allows the decompressed data size for each map task

to be equal to the original HDFS block size since each block

is compressed individually. For example, a datanode decides,

based on resource utilization, to compress data on the first

360

������
��		
�
���

�����

��	���
��
��

�	�����

����
�	
��		�

����
���	����	

��
��

�	

�����	���

���
���
����

�	
�
����	�
����	

����	�
���
	�

 �		�
��	���

�

�

�

������� ��
����

����
!����"
#���
�	

����
�
���
����	�

�	��
�
	

����
!����

#
����
����
��

	$����

%�&����

��	���

Fig. 5: The Compression Aware Storage (CAS) consists of a com-
pression ratio calculation phase (1), block size calculation phase (2),
and a stream modifying phase (3).

packet it receives for a block. If it decides to compress, all

packets for the block will be compressed. Thus when the block

is decompressed, the size must equal the original block size.

However, the on-disk (compressed) length of the block will

be smaller than the original block size.

Second, NOC maintains parallelism. Unlike standard com-

pression where the number of blocks decreases when the data

is compressed, NOC will have the same amount of blocks

as the uncompressed data but each block will be smaller.

The parallelism issue is improved since compression does

not decrease the amount of blocks and thus there is more

opportunity to divide work between tasks.

Although NOC compresses data packet by packet, the over-

all storage reduction remains the same as normal compression.

This is because after 128 KB buffer sizes compression ratio

does not improve significantly [24]. We fill this buffer size by

increasing the default packet size from 64 KB to 128 KB.
2) Compression Aware Storage (CAS): Currently, HDFS

does not differ in how it stores compressed data. Due to

the strong coupling between HDFS and Hadoop MapReduce,

how the data is stored greatly affects the job execution time

when the data is processed. Thus, in order to reduce the job

execution time when processing compressed data, we modify

how compressed data is stored in HDFS.

The drawback of NOC is that it can only be applied to data

which is not compressed. Often times data being loaded is

already compressed. Receiving compressed data is common

since transferring compressed data decreases data load time.

Compression Aware Storage (CAS) serves the purpose of

efficiently storing data which already arrives compressed in

HDFS. Because of the difference in processing requirements

for the two types of codecs, CAS stores data compressed with

splittable and non-splittable codecs differently.

As shown in Figure 5 for splittable codecs, CAS decreases

the block size dynamically based on a sampled compression

ratio. CAS modifies the stream of data packets before the

packets reach the datanodes. In Step 1, CAS copies the

compressed data portion of several packets in the data queue

into the decompression buffer. Then, CAS decompresses the

data in order to calculate the compression ratio. Once cal-

culated, the compression ratio contributes to the average file

compression ratio. To minimize decompression overhead, CAS

uses the packet’s wait time in the data queue to overlap with

Fig. 6: The compressed data length (in gray) and uncompressed data
length (gray plus blue) and decompressed size variation (striped) is
shown for different schemes.

decompression. CAS could continue copying more packets in

order to more accurately calculate the file’s compression ratio

but incur a larger overhead, or the process moves to Step 2.

Step 2 consists of a simple metric to calculate the new

block size based on a given compression ratio. In order to

keep a constant decompressed data size, the block size must

decrease by an amount dependent on the compression ratio.

Specifically, the new block size is calculated as old block
size ∗ compression ratio. If the sampled compression ratio is

accurate, when this block is decompressed for processing the

uncompressed size will be approximately equal to old block
size. In order to guard against the new block size being too

small and resulting in short reads, the Dynamic Block Size

Calculator contains a threshold which when crossed the old
block size used in the calculation will increase by a power of

two. After the new block size is calculated, it is sent to the

Packet Stream Modifier.

The Packet Stream Modifier injects an end of block packet

when the block boundary has been reached. Instead of using

the old block size for injecting an end of block packet, the

Packet Stream Modifier contains a counter of how much data

has been sent to the datanodes. Once the counter has reached

the new block size, the Packet Stream Modifier injects an

end of block packet earlier than normal in order to signal to

downstream datanodes the end of the block has been reached.

For non-splittable codecs, CAS stores the entire compressed

file into one block. Since this compressed file will be processed

by one task, the task will be able to process the entire file

locally. If the file was broken into multiple blocks, then the

single task will have to connect to multiple nodes in order

to remotely read the data causing network overhead. Fault

tolerance is maintained since CAS only reduces the number

of blocks to one but not the number of replicas.

CAS increases parallelism by reducing the block size which

increases the number of blocks for a file and thus provides

more opportunity to divide work between tasks. It also pro-

vides approximate decompressed size by using compression

ratio to determine block size.

Figure 6 describes how the different compression/storage

mechanisms compare in terms of decompressed size of a single

block. The gray blocks represent the on-disk (compressed)

length. The blue plus gray block represents the uncompressed

size. The striped block represents the variation in decom-

pressed size which can be caused by different compression

ratios between files. NOC allows the decompressed size to be

constant, while CAS causes some variation due to inaccurate

361

Fig. 7: The MapReduce Module design.

compression ratio sampling. Standard compression, by storing

the compressed data in one full block, has a large decom-

pressed size as well as a larger variation. NOC and CAS can

cause a single file to have blocks of different on-disk sizes.

The MapReduce Module abstracts the complexity created by

varied block lengths and improves resource allocation when

processing compressed data.

B. MapReduce Module

The MapReduce Module contains two components, the

Compressed Task Divider and Compressed Block Reader. The

former modifies the number of tasks (resources) by using the

uncompressed data size instead of traditional compressed data

size to determine the number of tasks for a job. It also detects

the type of compression mechanism, NOC, CAS, or standard,

in order to improve parallelism. The latter supports the Hadoop

I/O API for reading blocks of varied lengths.

1) Compressed Task Divider: Compared to traditional

Hadoop which packs as much on-disk data that fits into a split,

the Compressed Task Divider packs as much uncompressed

data into a split. As shown as the first layer in Figure 7, the

gray block is the compressed data size and the blue block

plus the gray block is the uncompressed data size. A split

is the amount of data assigned to a task. Standard Hadoop

would fit as much of the gray blocks into a single split,

which would lead to two splits (two tasks) of large, varying

decompressed size. Instead, we pack as much uncompressed

data (gray plus blue) into 4 splits (4 tasks) in Figure 7. This

results in a constant and user-tunable (changing split size) data

processing amount for each task. In this way, the Compressed

Task Divider allocates sufficient resources.

In order for the Compressed Task Divider to use the

uncompressed data size, the data must be stored with NOC

or CAS. The Compressed Task Divider simply assigns tasks

to a single gray block which would typically be much less

than the default 128 MB split size. During execution, each

task will read an amount equal to the gray block size and

process an amount equal to gray plus blue. The value of NOC

and CAS for processing data comes from their assurance of

a constant (NOC) or approximate (CAS) decompressed data

size, which would be the gray plus blue blocks. In addition

by not reducing the number of blocks after compression (gray

blocks), there will be the same number of parallel tasks as the

uncompressed data.

The Compressed Task Divider also allows for increased

parallelism by detecting data stored with NOC. Since NOC

compresses each block individually, each block can be de-

compressed without needing data in another block. Thus, NOC

allows all compressed data to be splittable for all codecs. Gzip,

which is also used by Facebook [24], is a non-splittable codec

but can now be split and processed in parallel. In order to

split data that is from a non-splittable codec, the Compressed

Task Divider ensures each split contains all the data from a

single compressed block. This allows a job to have its data

decompressed in parallel and thus increase overall parallelism.

2) Compressed Block Reader: The Compressed Block

Reader supports the Hadoop I/O API for NOC and CAS be-

cause they cause varying compressed (on-disk) block lengths.

HDFS is designed such that blocks for the same file should

have the same size except for possibly the last block in

the file. In addition, tasks are assigned to data based on

the assumption each block is of constant size. In order to

circumvent this assumption, the Compressed Block Reader

provides the allusion that the blocks stored using NOC and

CAS are constant sized.

As shown in Figure 7 in the Compressed Block Reader

layer, in order to put compressed data into the decompression

buffer, two file pointers are created. The File Local Pointer

presents a logical uncompressed view of the file. In this view,

each block (pictured in different colors) has a constant size

and is uncompressed. If a seek for a particular offset in the

file occurs, the Local File Pointer is redirected to the initial

offset of the block which contains the desired file offset. Thus,

the File Local Pointer supports seeks between different blocks

of a file and hides the complexity of varied block lengths.

To read data, the Local File Pointer is set to the initial offset

of the block which needs to be read. Then, a Local Block

Pointer is created to fulfill the request. A Local Block Pointer

is aware of the compressed data length of the block and is

used to point to the compressed data bytes. The Local Block

Pointer has two main responsibilities. One, it has to update the

Local File Pointer once the whole block has been read. Second

since the initial request came in terms of the uncompressed

file view, it has to translate the end and start offsets from the

initial request to match the compressed block length.

In the Data Fetch layer, the Local Block Pointer sends the

corrected start and end offset to the Packet Sender. This will

correctly reduce the amount of packets which will be sent

and potentially also reduce network I/O if the request was a

362

�

�

�

�

�

�
���
���
���
���

����
����
����
����
����

�
	

	��

�

��
��

��
��

��
��

��
�

��
���

�

�

��
��

�
��

�
��

��
�!

��
��

�

��!��������� � "��"���
�������
��
��

#�
����!
���
��� ��"$�

Fig. 8: The performance comparison between NOC, CAS (1 iter-
ation), uncompressed, and standard compressed data processing is
shown by the four bars which correspond to the left axis. Storage
savings of NOC compared to uncompressed (U.C) for each applica-
tion’s dataset is shown by the yellow line which corresponds to the
right vertical axis. The higher this value the more storage savings.

remote read request. Once in the decompression buffer, the

data is decompressed and processed by the map task.

Overall, the MapReduce Module provides three features

which improve how Hadoop processes compressed data. First,

it allows tasks to be assigned based on uncompressed data

instead of compressed data thus ensuring a sufficient number

of parallel tasks for a single job. Second, it allows all com-

pressed data to be split and processed in parallel. This also

increases the number of codecs which are reasonable to use

with Hadoop. Third, it abstracts the complexity of varying

block lengths.

C. Implementation

IC-Data was implemented in the latest Hadoop re-

lease Hadoop-2.6.0. File type detection, packet modification,

packet stream modification, varying packet sizes, compression

buffers, decompression buffers, and compression ratio calcula-

tion were the major components which needed to be added for

the HDFS module. This required modifications in DFSOutput-
Stream, PacketReceiver, BlockReader, and DFSInputStream
java classes. For the MapReduce Module, the Compressed

Task Divider was implemented in FileInputFormat and Com-

pressed Block Reader’s two pointer types were implemented

in BlockReader, BlockSender, and DFSInputStream classes.

V. EXPERIMENTAL EVALUATION

We will examine the overall performance improvement

using IC-Data and examine the efficiency of NOC and CAS

as well as the reduction in data load time. Lastly, we will

evaluate the improvements in parallelism and map task skew.

All experiments were conducted on a 42 node Sun Fire

Linux Cluster. Each node has a 2.3GHz Opteron quad-core

processor, 8GB memory, and a 250 GB 7200 RPM SATA

hard drive. All nodes are connected through a gigabit ethernet

connection. All tests were done with Hadoop YARN enabled.

� ��� ��� ��� ��� ���� ���� ���� ���� ����

�������		
��
�����

�������		
��
��	
��
��

��������		
��
����

����		
��
����

����		
��
��	
��
��

����		
��
����

�������	��
���
������

Fig. 9: The performance for different codec types running Terasort.

A. Overall Performance Improvement

In order to analyze the performance benefits of IC-Data,

we compare its performance against processing uncompressed

data and processing standard compressed data. Comparing

against uncompressed data shows that users can achieve stor-

age savings without sacrificing performance, unlike before.

We compare the performance against 7 different bench-

marks. Wordcount and Grep are I/O and CPU intensive

respectively. Inverted Index, Ranked Inverted Index, Sequence

Count, and Term Vector come from the Puma Benchmarks and

were chosen because they are similar to real data intensive

applications which might run at data warehouses [25]. They

also have slightly different input data formats, thus lending

to different compression ratios and a thorough performance

analysis. Lastly, Cloudburst, a Bioinformatics application, was

tested to understand the performance on Fatsa file formats.

The input data sizes were roughly 40 GB and exhibited 4x to

7x storage savings depending on dataset. For most runs, the

compression codec used was Bzip2 since it is one of the few

codecs which allows input data to be split into multiple tasks.

In Figure 8, NOC reduces on average job execution time

by 66% compared to standard compressed data processing.

When compared to uncompressed data, it reduces runtime by

14% and allows 5.6x less storage, as can be seen from the

yellow line graph which corresponds to the right vertical axis

of Figure 8. This allows users to achieve both performance and

storage savings unlike standard compression. CAS achieves

similar results. The performance advantage is more signifi-

cant for CPU intensive applications since they benefit more

from the improved parallelism provided by IC-Data. Although

the parallelism for both IC-Data and uncompressed is the

same, the benefits of less network and disk I/O outweigh the

overhead of decompression. However for Cloudburst, IC-Data

performs slightly worse, which we believe is due to the binary

file format the input data is in. Using a compression codec with

less CPU overhead than Bzip2 should provide improvements.

Figure 9 shows the improvement in processing data from the

two codec types while running a sorting benchmark. Splittable

NOC and CAS provide a 35% reduction in execution time

compared to splittable standard. Non-splittable CAS does not

provide much improvement even though it provided 100%

local reads. This is because the remote reads for non-splittable

standard do not provide a significant overhead compared to

the decompression overhead. Even though 60% of the data is

read remotely for non-splittable standard, performance doesn’t

363

0 100 200 300 400 500 600 700 800 900

Bzip2
Gzip

Snappy
Uncompressed

Compress+load
Bzip2
Gzip

Snappy
Uncompressed

Compress+load
Bzip2
Gzip

Snappy
Uncompressed

Compress+load

2
3

4

Data Load Time (Seconds)

N
um

be
r o

f R
ep

lic
as

Fig. 10: Improvements in data load time for NOC data.

���� �!���
���� ���� ���� �

	�
��
��

�
���

�
���
	��
���
���
���
���

� � 	 � � �

�

��

�
���
��
��
��
�

�
��
��
��
��
��
��

��

�
��
��
�

 !��#�
������

��������
 �
��
��������

Fig. 11: The efficiency and accuracy of CAS for different iterations.

suffer. Thus, when processing compressed data the priority

for achieving local reads should be less than the priority of

running jobs on nodes which can provide high decompression

speeds.

B. Improvements in Data Load Time

We tested NOC using three compression codecs to measure

data load time in Figure 10. Bzip2 has the most overhead,

followed by Gzip, and with the least overhead but also

least compression ratio is Snappy. Besides using NOC with

three codecs, we also measured load time for the original

uncompressed 40 GB file and the time to compress the data

with Gzip and then load the data serially (compress + load),

which is the current data loading technique.

Overlapping compression with data transfer using NOC pro-

vided on average a 31% improvement from the conventional

compress+load. Snappy was able to beat the time to load

the uncompressed data. Since Snappy has faster compression

times, it was able to hide all the latency associated with

data compression using the reduced disk and network I/O and

reduced storage size to 48% of the original 40 GB file.
1) Compression Aware Storage Efficiency: CAS can be

measured using two metrics, accuracy and efficiency. Accuracy

is the percent error between the sample compression ratio

and the file’s actual compression ratio. The sampled ratio can

be made accurate by decompressing more packets, but the

overhead increases with the number of decompressed packets.

Figure 11 shows the data load time for different numbers

of sampling iterations (the number of packets decompressed).

The test was conducted on a 40 GB taken from the log data

also shown in Table 1. The data loaded was compressed with

Bzip2. From the figure, an iteration of 0 represents standard

�

����

����

����

����

����

����

� � 	� 	� �� �� �� �� �� ��

�
�

��
��

��
�

��
��

��
��

��
�

���������������

� �������!��
������� �"! #����
������

Fig. 12: The scalability of the compression techniques.

�

	�

��

��

��

��

	 ���� ��� ���� ����

�
	

�
�

��
��
��
	�

��
��
���

��

�	��
����	������	

������	��
�����
�� ����	��
�����
�������	��
�����
��������!	
"�#$�

����	��
�����
�� ������!	
"�#$�

����	��
�����
���������!	
"�#$�

����	��
�����

Fig. 13: Normalized job runtime for different ratios and block sizes.

data loading without CAS measurements. With a 3% increase

in runtime, CAS can get within a 22% error using one iteration.

It can get within a 8% error while incurring a 17% increase

in load time. A lower percent error results in less map task

skew and improved load balance.

C. Improved Parallelism

In Figure 12, we tested a CloudBurst job processing 40 GB

of data with a 0.2 compression ratio. Standard compression

processing does not decrease in runtime after 8 nodes, while

both NOC and uncompressed data processing continue to

decrease in runtime. Hadoop YARN allows an upper bound

on how many resources can be allocated on a single node

simultaneously. Thus, when the number of required resources

is greater than the number of available resources the tasks must

wait and thus more nodes provide improvement. After 8 nodes,

the amount of available resources was already larger than the

amount of needed resources for the standard compressed data

and thus more nodes didn’t provide improvement.

When the number of nodes was only 4, NOC and uncom-

pressed still performed better than standard compression even

though there were a large number of tasks which had to wait to

be scheduled. This occurs for two reasons. First, the amount of

intermediate data per task is larger for standard compression.

Since each task processes a larger amount of data, it must

write a larger amount of intermediate data. This large amount

of intermediate data requires a single task’s internal buffer to

fill multiple times resulting in multiple spills to disk. NOC

and uncompressed will have less spills per task.

Second, map phase is overlapped with data shuffling to the

reduce tasks. Although the reduce phase cannot start until the

last map task finishes, the completed map tasks can have their

intermediate data sent to the reduce tasks. Since each task

364

takes longer to process, the amount of shuffling that can be

overlapped with the map phase is less for standard compressed.
Figure 13 shows how different compression ratios affect

performance. Lower compression ratios, although better for

storage consumption, limit the amount of parallelism. As seen

in Figure 13, as compression ratio decreases the performance

actually worsens for standard compressed data, but improves

for NOC due to reduction in network and disk I/O.

TABLE II: The standard deviation (Seconds) in map task runtime for
different storage schemes and causes of skew.

Cause of Skew U.C. Data NOC CAS Compressed
Input Data Var. 69.21 79.24 123.45 181.29

Compression Ratio Var. X 85.93 142.56 224.67
Node Hardware 113.54 200.21 286.46 375.45

D. Reduction in Map Task Skew
We measure the variations in map task duration caused by

different compression ratios, node hardware, and amounts of

input data in Table II.
The variation in map task duration using standard com-

pressed data storage is consistently the largest followed by

CAS. Recall Figure 6, CAS does not allow constant de-

compressed data size only an approximate estimation. The

accuracy depends on the number packets sampled for the

compression ratio. In this example, we took only one sample

(i.e. the first packet). Surprisingly, NOC has more variation

than uncompressed data (U.C. Data) even though it allows

constant decompression size. We believe this is caused by the

decompression latency which can become a source of signifi-

cant variation when node hardware performance is altered.

VI. CONCLUSION AND FUTURE WORK

Due to the need for storing compressed data to limit stor-

age consumption, data is stored compressed. Yet, processing

compressed data takes on average 49% longer. In this paper,

we first analyzed the current problems with compressed data

processing, which were decrease in parallelism, increase in

map task skew, and serial execution of compression and data

loading. After formulating, analyzing, and quantifying these

issues, we developed the HDFS Module and MapReduce Mod-

ule. The HDFS Module improved compressed data storage

by allowing constant/approximate decompressed data size. It

decreased data load time by 31% by overlapping compression

with data loading. By allocating tasks based on uncompressed

data size, the MapReduce Module decreased job runtime by

66% compared to standard compressed data processing and

14% compared to uncompressed data processing, allowing

users to achieve both performance and storage savings.
As future work, we will extend these solutions into in-

memory big data processing engines. In these frameworks,

due to limited memory capacity, achieving both performance

and storage savings will be even more essential.

VII. ACKNOWLEDGMENT

The authors would like to thank the partial support from

NASA AIST 2015 funding. This research is also supported in

part by NSF under NSF grants CNS-0751200, CNS-1162540,

and CNS-1526887.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing on
Large Clusters,” in Proceedings of USENIX Symposium on Operating
Systems Design and Implementation, 2004.

[2] Apache Software Fundation. (2014, Mar.) Apache Hadoop Project.
[Online]. Available: http://hadoop.apache.org

[3] C. Zhang, H. Sterck, A. Aboulnaga, H. Djambazian, and R. Sladek,
“Case study of scientific data processing on a cloud using hadoop,” in
High Performance Computing Systems and Applications, 2010.

[4] M. Gaggero, S. Leo, S. Manca, F. Santoni, O. Schiaratura, and
G. Zanetti, “Parallelizing bioinformatics applications with mapreduce,”
in CCA-08: Cloud Computing and its Applications, 2008.

[5] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data inten-
sive scientific analyses,” in IEEE Fourth International Conference on
eScience, 2008.

[6] M. Schatz, “Cloudburst: highly sensitive read mapping with mapreduce,”
in Bioinformatics, 2009.

[7] http://www.enterprisetech.com/2014/04/11/facebook-compresses-300-
pb-data-warehouse/, 2014.

[8] “Cisco global cloud index: Forecast and methodology, 2013-2018.”
http://cisco.com/c/en/us/solutions/collateral/serviceprovider/global-
cloud-indexgci/Cloud Index White Paper.html, [Last accessed November
2014].

[9] http://blog.cloudera.com/blog/2009/11/hadoop-at-twitter-part-1-
splittable-lzo-compression/, 2009.

[10] “Vertica,” http://www.vertica.com/.
[11] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden,

and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in SIGMOD’09, 2009.

[12] G. Graefe and L. Shapiro, “Data compression and database perfor-
mance,” in Proceeding of the 1991 Symposium on Applied Computing,
1991.

[13] B. Welton, D. Kimpe, J. Cope, C. Patrick, K. Iskra, and R. Ross,
“Improving i/o forwarding throughput with data compression,” in In-
ternational Conference on Cluster Computing (CLUSTER), 2011.

[14] E. R. Schendel, S. Pendse, J. Jenkins, D. A. Boyuka II, Z. Gong,
S. Lakshminarasimhan, Q. Liu, H. Kolla, J. Chen, S. Klasky, R. Ross,
and N. F. Samatova, “Isobar hybrid compression-i/o interleaving for
large-scale parallel i/o optimization,” in Proc. International Symposium
on High-Performance Parallel and Distributed Computing, HPDC 12,
2012.

[15] Y. Chen, A. Ganapathi, and R. Katz, “To compress or not to compress
- compute vs. io tradeoffs for mapreduce energy efficiency,” in Proc. of
the first ACM SIGCOMM workshop on Green networking, 2010.

[16] https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC,
2015.

[17] “Hive,” https://hive.apache.org/, 2010.
[18] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in OSDI, 2010.

[19] G. McVean, “An integrated map of genetic variation from 1,092 human
genomes,” Nature Publishing Group, 2012.

[20] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in
big data systems: A cross-industry study of mapreduce workloads,” in
Proc. of VLDB, 2012.

[21] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,” in
OSDI, 2008.

[22] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: Mitigating
skew in mapreduce applications,” in SIGMOD’12, 2012.

[23] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S. Sarma,
R. Murthy, and H. Liu, “Data warehousing and analytics infrastructure
at facebook,” in SIGMOD’10, 2010.

[24] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rcfile:
A fast and space-efficient data placement structure in mapreduce-based
warehouse systems,” in ICDE, 2011.

[25] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. Vijaykumar, “Tarazu:
Optimizing MapReduce on Heterogeneous Clusters,” in Proc. of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

365

