
Timing Local Streams: Improving Timeliness in Data
Prefetching

Huaiyu Zhu, Yong Chen and Xian-He Sun
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616

{hzhu12,chenyon1,sun}@iit.edu

ABSTRACT
Data prefetching technique is widely used to bridge the grow-
ing performance gap between processor and memory. Nu-
merous prefetching techniques have been proposed to exploit
data patterns and correlations in the miss address stream.
In general, the miss addresses are grouped by some common
characteristics, such as program counter or memory region
they belong to, into localized streams to improve prefetch
accuracy and coverage. However, the existing stream lo-
calization technique lacks the timing information of misses.
This drawback can lead to a large fraction of untimely pre-
fetches, which in turn limits the effectiveness of prefetching,
wastes precious bandwidth and leads to high cache pollu-
tion potentially. This paper proposes a novel mechanism
named stream timing technique that can largely reduce un-
timely prefetches and in turn increase the overall perfor-
mance. Based on the proposed stream timing technique, we
extend the conventional stride prefetcher and propose a new
stride prefetcher called Time-Aware Stride (TAS) prefetch-
er. We have carried out extensive simulation experiments to
verify the design of the stream timing technique and the TAS
prefetcher. The simulation results show that the proposed
stream timing technique is promising in reducing untimely
prefetches and the IPC improvement of TAS prefetcher out-
performs the existing stride prefetcher by 11%.

Categories and Subject Descriptors
B.3 [Memory Structures]: Design Styles

General Terms
Design

Keywords
Data Prefetching, Cache Memory, Prefetching Simulation,
Prefetching Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’10, June 2–4, 2010, Tsukuba, Ibaraki, Japan.
Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

1. INTRODUCTION
The rapid advance in semiconductor technology allows

the processor speed or the aggregate processor speed on
chip with multicore/manycore architectures grows fast and
steadily. The memory speed or the data load/store perfor-
mance, on the other hand, has been increasing at a snail’s
pace for over decades. This trend is predicted to continue
in the next decade. This unbalanced performance improve-
ment leads to one of the significant performance bottlenecks
in computer architectures known as “memory-wall” problem
[25]. Multiple memory hierarchies have been the primary so-
lution to bridging the processor-memory performance gap.
However, due to the limited cache capacity and highly as-
sociative structure, large amount of off-chip accesses and
long data-access latency still spike the performance severely.
Hardware-based data prefetching has been widely recognized
as a companion technique of memory hierarchy solution to
overcome the memory-wall issue [25].

The principle of data prefetching technique is that the pre-
fetcher is able to fetch the data from a lower level memory
hierarchy to a higher level closer to the processor in advance
and in a timely manner. This principle decides two critical
aspects of a data prefetching strategy, what to prefetch and
when to prefetch. Although extensive existing studies have
been focused on the problem of what to prefetch, the other
critical issue, when to prefetch, has long been neglected.
The ignorance of the timing issue of prefetches can signifi-
cantly affect the prefetching effectiveness. Large amount of
untimely prefetches that do not arrive within a proper time
window can result in cache pollution, bandwidth waste, and
even a negative impact on overall performance. In general,
untimely prefetches can be categorized into two types: early
prefetches and late prefetches. A prefetch is defined to be
late if the prefetched data are still on the way back to cache
when an instruction requests the data. In this case, the late
prefetch might not contribute much to the performance even
though it is an accurate prefetch. A prefetch is defined to be
early if the prefetched data are kicked out by other blocks
due to the limited cache capacity before such prefetched data
are accessed by the processor. Apparently, the early pre-
fetch is not merely useless, but also imposes negative effects
by causing cache pollution and waste of bandwidth. It is
critical to control the number of untimely prefetches within
an acceptable range to lessen the adverse impact and exploit
the benefits of data prefetching.

In this paper, we present a stream timing technique, a
novel mechanism aiming to improve the timeliness of pre-
fetches. The proposed technique is based on stream local-

Figure 1: Classification of prefetches.

ization technique, a widely-used technique to classify miss
addresses into various streams according to a specific cri-
teria such as from the same instruction (program counter),
within the same memory region, etc., to improve the pre-
diction accuracy and prefetch coverage. The basic idea of
stream timing technique is to keep the timing information for
each stream and chain them according to the time. The time
distances among accesses within a stream or across different
streams are taken into account to direct prefetching. This
approach can improve the timeliness of prefetches and gen-
erate prefetch candidates with high confidence. Those prob-
lems such as cache pollution and bandwidth waste caused
by untimely prefetches can be effectively mitigated. We also
incorporate this technique with a well-known conventional
stride prefetcher and propose a new Time-Aware Stride (TAS)
data prefetcher.
The rest of this paper is organized as follows. Section 2 de-

scribes the background and motivation of this study. Section
3 introduces the concept of stream timing technique and the
design of a stream timing prefetcher instance, Time-Aware
Stride prefetcher. Section 4 discusses evaluation method-
ology and simulation results. Section 5 reviews important
related works and compares with our work. Finally, Section
6 concludes this study.

2. BACKGROUND AND MOTIVATIONS

2.1 Prefetching Accuracy, Coverage, Timeli-
ness and Stream Localization

There are three commonly used metrics: accuracy, cover-
age and timeliness to evaluate a prefetching algorithm. pre-
fetching accuracy is defined as the percentage of prefetch-
es accessed before they are evicted from the cache out of
the overall prefetches. A high accuracy helps the prefetcher
avoid potential cache pollution caused by useless prefetches.
The prefetching coverage measures the ratio of raw misses
(misses without prefetch) reduced by prefetches. It describes
the ability of detecting and correctly predicting the future
misses by a prefetcher. prefetching timeliness represents
the capability of issuing timely prefetches by a prefetcher.
In this paper, we consider both late prefetches and early
prefetches as untimely prefetches, and try to improve the
timeliness by reducing them or converting them into good
prefetches. Figure 1 shows our classification of prefetches.
prefetches are classified as useless if they are not accessed
during the whole lifetime of the application. These prefetch-
es do not help reduce misses, but instead, lower the accuracy
and lead to problems such as cache pollution and bandwidth
consumption. As opposed to useless prefetches, usable pre-

Figure 2: Stream localizing and timing.

fetches are those accessed by the processor, which include
good, late and early prefetches. The good prefetches are
those issued by a prefetcher and then accessed by the pro-
cessor later. For late and early prefetches, although they are
correct predictions of future misses, they fail to hide the full
memory-access latency efficiently since they are not issued
at a proper time. If we can find a way to convert untimely
prefetches into timely ones, the prefetching performance can
be improved significantly.

The interplay of accuracy, coverage and timeliness are usu-
ally complicated. In most cases, a method improving one of
them is not able to juggle the other two. To provide high
prefetching accuracy, stream localization technique was pro-
posed and is widely used. The rationale of stream localiza-
tion is that the prefetcher separates the global access stream
(full history of memory-access addresses) according to a spe-
cific characteristic, and then makes the prediction based on
local streams instead of the global one. The criteria for lo-
calizing streams can be the instruction address (i.e. program
counter, or PC) that issues the access, memory region (mem-
ory location the access belongs to) and time period (during
which period the access happens). Figure 2(a) shows the
localized streams based on PC. Due to the high predictabil-
ity of data patterns and correlations in local streams, the
prefetcher is likely to achieve much better accuracy. How-
ever, this strategy limits the prefetching timeliness since the
chronological order of the occurrence of accesses is missing
in local streams. Thus, it is a challenging task for data pre-
fetcher to generate timely prefetches.

2.2 Motivations
The poor timeliness support found in existing stream lo-

calization based prefetchers, as discussed previously, moti-
vates us to propose a new stream timing mechanism to ad-
dress this knotty problem. The traditional stream localiza-
tion prefetcher predicts the future address according to the
past access history kept in a table. The proposed stream
timing mechanism allows the prefetcher to maintain timing
information together with addresses so that the time when a

particular miss happens is also predictable. This method is
based on an important observation that the timing informa-
tion of data accesses in a local stream exhibits perceivable
patterns, i.e. the time intervals between accesses can be also
discovered with patterns. For example, in a PC-localized
constant-stride prefetcher, the time intervals between adja-
cent accesses in a certain local stream are most likely to have
the same value. This observation has been verified in our
simulation experiments and the result shows that the time
prediction in our TAS prefetcher can reach an average accu-
racy around 90% (please see Section 4.2 for details). Figure
2(b) illustrates a sample scenario of stream timing, where tn
represents the time period between missn and missn+1. T
shows the time intervals among different streams, which is
also used to chain local streams. The ability of reconstruc-
tion of the chronological order of accesses is critical in guid-
ing timely prefetches. In the following section, we introduce
the detailed design of stream timing technique; a stream-
timing enabled stride prefetcher and presents its prefetching
methodology.

3. DESIGN AND METHODOLOGY
In this section, we first introduce the detailed stream tim-

ing technique. Note that the proposed stream timing tech-
nique is a general idea aiming to address the timeliness prob-
lem in existing prefetchers. After explaining the stream tim-
ing idea, we incorporate it with the widely-used stride pre-
fetcher and propose a new Time-Aware Stride (TAS) data
prefetcher.

3.1 Stream Timing Technique
As discussed previously, when local streams are chained

according to the timing information, an alternative way of
selecting prefetch candidates is possible, which is to select
prefetch candidates across streams following the chains, in-
stead of selecting candidates only from a single stream. We
term the selection of prefetch candidates within a local stream
as depth-first selection, and the selection of candidates across
chained streams as width-first selection. Figure 3 demon-
strates how these two different prefetch strategies function.
Our proposed method records the time when an access is
requested, which is used to calculate the time interval be-
tween the last access from the same stream and the current
one. Meanwhile, the time is regarded as the stream time
that indicates the latest access from this stream, and is used
to establish the stream chain.
Similar to address prediction, the time is highly predictable

with the help of the historical time information. Thus, dis-
tinct from an uncertain speculation on when to prefetch,
the proposed stream timing technique is able to provide
both future access addresses and times. In essence, the pro-
posed stream timing technique converts the traditional one-
dimensional data prefetching (only considering the history
of addresses) to a two-dimensional prefetching considering
the history of both addresses and times. The basic method-
ology of taking advantage of timing information operates as
follows. If the predicted access will happen too soon, a pre-
set prefetch distance will be performed to avoid late prefetch
and we follow the depth to select prefetch candidates. If the
time interval between the current access and the predicted
access is longer than a preset threshold, which indicates a
case of an early prefetch, the prefetcher goes width in order
to find timely prefetch candidates within other streams. The

Figure 3: Directions of prefetching.

general process of a prefetching scheme with stream timing
technique can be divided into four steps. Firstly, the pre-
fetcher finds a suitable algorithm to identify data patterns.
Secondly, the global stream is localized according to a cer-
tain criteria. Thirdly, the local streams are chained to regain
the chronicle order. Finally, stream timing can be obtained
and prefetches are selected and issued in a timely manner.

The choice of time measures is critical to stream timing
technique. CPU cycle sounds an appropriate choice since the
global cycle counter has been provided on most recent mi-
croprocessors. However, using CPU cycles to represent the
time costs too much storage since the time interval between
accesses can be extremely large. Other solutions like us-
ing an instruction counter, or load/store instruction counter
will also waste lots of hardware storage. In this study, we
choose a miss counter that ticks upon cache misses to mea-
sure the time, i.e. the miss number. It has several mer-
its compared with other choices. First, the miss number is
more accurate to represent the time. This is because that
a large number of misses can indicate an early prefetch due
to frequent cache replacement, whereas a long absolute time
cannot if few misses appear in the future. For instance, in a
local stream, miss block A triggers prefetch for block B and
the history shows the time interval between A and B is 200
misses. In this scenario, the time interval (200) is too long,
thus prefetch B will be identified as an early prefetch. It
does make sense since the frequent replacement caused by
200 misses is likely to evict B from cache, which suggests
that B is prefetched early. The second benefit of using miss
counter is that the miss number between accesses is more
stable than the actual time due to the program logic. Ad-
ditionally, the miss counter does not need frequent updates
and considerable hardware expense.

We would like to point out that, with the stream timing
technique, a new way of carrying out prefetches is possible.
The traditional prefetchers are triggered by the occurrence
of misses, and we term them as passive prefetching since the
prefetcher is not able to carry out prefetches unless a miss
occurs. The stream timing technique offers a completely
different way of issuing prefetches that we term as active
prefetching. The active prefetching is capable of not only
issuing prefetches upon miss events, but also carrying out
prefetches proactively upon time events. Apparently, the
hardware cost and operation complexity are high for active
prefetching. Hence, we only consider passive prefetching in
this study in order to maintain low hardware cost.

Figure 4: Enhanced RPT for TAS prefetcher.

3.2 Time-Aware Stride Prefetching
We propose a new Time-Aware Stride (TAS) prefetcher by

incorporating stream timing technique with the widely-used
stride prefetcher. The reason why we choose to incorporate
with a stride prefetcher is that the stride access pattern is the
mostly common one in practice. In addition, the stride pre-
fetcher has been recognized as the most feasible and effective
one in existing processor architectures [8][23].

3.2.1 TAS Design
The Reference Prediction Table (RPT) is widely used in

stride prefetchers to keep track of previous reference ad-
dresses and associated strides [2]. In the proposed TAS
prefetcher, we enhance the RPT table so that the time in-
formation of local streams can be stored. The traditional
RPT entry includes four fields: PC, prev addr, stride and
state. The PC field represents the address of load/store
instructions and is also the index of a local stream. The
prev addr field stores the last address referenced by the in-
struction specified in PC field. The stride field records the
difference between the last two addresses in the local stream
and is responsible for predicting the future address together
with prev addr. In addition, a two-bit saturating counter,
increasing upon a stride match and decreasing upon a mis-
match, can be used in each entry for making a prefetching
decision. In the TAS prefetcher, we extend the RPT table
with three new fields for each entry as shown in Figure 4:

• prev time field: the global time when the address in
the stream is last referenced

• next PC field: a pointer linking to a local stream which
is closest in time after current one

• interval state field: a two-bit state indicator denot-
ing time interval length between addresses in the local
stream with four possible states: short, medium, long
and very long

These new fields in each entry are used to make local streams
chained and time-stamped. The stride prefetching works
based on the identification of constant strides. We observe
that once the stride pattern is found, which means the pre-
fetcher is trained, the time intervals between addresses with
stride patterns tend to be in the same range, i.e. either
short, or medium, or long or very long. Thus, the time
interval between the last two addresses in a local stream can
be used to represent the one between any two consecutive
addresses. Figure 4 shows that the time interval is derived
by subtracting prev time from current global time, and it

Figure 5: Prefetching algorithm for TAS, degree=8.

is used to determine the interval state. Compared to the
conventional stride prefetcher, the new entries in the table
build relations between different local streams by connecting
and timing them. Thus, this new TAS stride prefetcher
has higher confidence in finding timely and optimal prefetch
candidates than existing stride prefetchers.

3.2.2 TAS Prefetching Methodology
As mentioned previously, we classify the time intervals be-

tween misses into four categories: “short time”ranges from 1
to 2 misses; “medium time” ranges from 3 to 9 misses; “long
time” ranges from 10 to 19 misses and “very long time” is
over 19 misses. These thresholds are chosen based on exper-
iments and empirical experience, and our observations show
that they are proper in classifying the temporal relations.
With the classification of the time intervals, TAS operates as
follows. First, the prefetcher finds the corresponding stream
matching the PC of current miss, which is exactly the same
with the conventional stride prefetcher. Second, the pre-
fetcher checks the current interval state and takes a corre-
sponding action. If the time interval is short for current
stream and it is the first time accessing the stream dur-
ing this prefetching round, the prefetcher skips two blocks
(prefetch distance) following the current miss to avoid late
prefetches and issues all prefetches according to the prefetch
degree. If the time interval is medium, it is not necessary
to apply prefetch distance by skipping blocks because the
longer interval between misses can tolerate the fetch latency
well. Instead, we only issue half prefetches in order to pre-
vent potential early prefetches. Different from medium time
interval case, for the long or very long time interval cases, we
issue one quarter of prefetches or one prefetch, respectively,
for the current stream. Third, when there are still prefetch-
es left after prefetching on the first stream, the prefetcher
attempts going width following the next PC pointer to find
local streams that are within 20 time period and ready to
prefetch, and then prefetches on these streams. The pre-
fetching rules for these streams are same with the first one.
If the prefetcher has traversed all the streams during the
time period along the stream chain while prefetches are not
completely issued, the prefetcher will go back to the first
stream and repeat the operation until all of them are done.
Figure 5 shows the algorithm of TAS operations.

In the next section, we present the simulation and perfor-
mance analysis of the proposed timely prefetching technique.
We also use a variant of stride prefetcher called multi-level

stride (MLS) prefetcher to assess the performance of our
stream timing mechanism. Similar to TAS, the MLS pre-
fetcher chains local streams according to their times being
accessed. However, MLS only issues one prefetch for each
stream and always attempts to traverse the stream chain
to find new streams. In other words, we can consider the
conventional stride prefetcher is a special case of the TAS
prefetcher that never goes width in finding prefetch candi-
dates, while the MLS prefetcher is another special case of
TAS prefetcher that never goes depth in finding prefetch
candidates.

4. EVALUATION AND ANALYSIS
In this section, we present the simulation verification of

the proposed prefetching technique and performance results
in detail. We first verify the effects of stream timing mech-
anism including time interval distribution, future time pre-
diction accuracy and the reduction of untimely prefetches.
We, then, evaluate the overall performance of the prefetcher
under various environments. Finally, the coverage, accuracy
and more behaviors of the prefetching scheme are analyzed.

4.1 Experimental Setup

4.1.1 Simulation Environment
In this study, we conduct experiments with a trace-driven

simulator called CMP$im that characterize the memory sys-
tem performance of single-threaded and multi-threaded work-
loads. The first Data prefetching Competition (DPC-1)
committee [1] released a prefetcher kit that provides par-
tial interface to make it feasible to integrate with an add-on
prefetching module. The prefetcher kit contains Pin tool [14]
and CMP$im simulator [10] to generate traces and conduct
simulation. We utilize these features to evaluate the pro-
posed timely prefetching technique and the TAS prefetchers’
performance. As shown in Table 1, the simulator was con-
figured as an out-of-order processor with a 15-stage, 4-wide
pipeline (maximum of two loads and maximum of one store
can be issued every cycle) and perfect branch prediction (i.e.
no front-end or fetch hazard). L1 cache is set as 32KB and
8-way set associative. L2 cache is 16-way set associative,
and the capacity is varied from 512KB to 2MB in the ex-
periment. The cache follows LRU replacement policy. The
access latency is configured as 20 cycles for L2 cache and
200 cycles for memory.
The simulation was conducted with 20 benchmarks from

SPEC-CPU2006 suite [20]. Several benchmarks in the set
were omitted because of compatibility issue with our system.
The benchmarks were compiled using GCC 4.1.2 with -O3
optimization. We collected traces for all benchmarks by fast
forwarding 40 billion instructions then running 500 million
instructions. We used the ref input size for all benchmarks.

4.1.2 Hardware Cost and Operation Complexity
The TAS prefetcher requires additional storage budget

compared to the existing stride prefetcher. The hardware
cost mainly comes from the enhanced parts of the refer-
ence prediction table. In our experiments, we set the table
size as 512 entries and use 32-bit addresses. The next PC
field consists 9 bits (for referencing one of 512 entries) and
the prev time requires 16 bits. The total hardware stor-
age cost for the RPT of the existing stride prefetcher is:

Table 1: Parameters of simulated CPU
Parameter Value

Window Size 128-entry
Issue Width 4
L1 Cache 32KB, 8-way
L2 Cache 512KB/1MB/2MB,16-way
Block Size 64B
L2 Cache Latency 20 cycles
Memory Latency 200 cycles
L2 Cache Bandwidth 1 cycle/access
Memory Bandwidth 10 cycles/access

(32+32+32+2)*512=50176 bits (6.1 KB). After enhanced
with three additional fields, the hardware storage required
for the TAS prefetcher is: (32+32+32+2+9+2+16)*512=64000
bits (7.8 KB). The additional hardware cost for our prefetch-
er is 1.7KB, which is only 27% of the storage needed by the
original stride prefetcher.

Aside from the additional storage demand, the TAS pre-
fetcher involves extra operation time. They stem from up-
dating new fields during table updating stage and traversal
along the stream chain during prefetching stage. The ma-
jor operation time overhead in comparison with the stride
prefetching comes from additional “hops” it takes to move
between different local streams upon a prefetching event.
More details about the behavior analysis of the TAS pre-
fetcher are given in section 4.4. The results show that, in
general, the overall operation time of our prefetcher is within
an acceptable range.

4.2 Effects of Stream Timing Mechanism

4.2.1 Time Interval Distribution and Prediction
The behavior of the TAS prefetcher is guided by the past

history time intervals between consecutive misses in the local
stream. Figure 6 shows the time intervals distribution of all
selected benchmarks. As can be clearly observed from the
figure, the time distance between two adjacent misses from
the same instruction is likely to be small. In particular, 31%
of the intervals are only one miss, which means that the cor-
responding misses are required by certain instruction contin-
uously. Recall the thresholds we use to classify the time in-
terval, the figure shows approximately 60% of the time inter-
vals might be labeled as short. However, when the prefetch
degree is high, the predicted future misses might occur long
time apart from the present time, which potentially leads
to early prefetches. The assumption behind stream timing
mechanism is that when the data access addresses exhibit
patterns, the time of the occurrence of these accesses are
highly predictable. For TAS prefetcher, the data patterns
are constant strides between addresses. Recall that we clas-
sify the time interval between addresses into four categories.
Therefore, on the basis of stream timing principle, the time
intervals between consecutive addresses in a local stream are
supposed to be in the same category and can be used to pre-
dict the time of future accesses. Figure 7 shows the accuracy
of the time prediction (prediction of the occurrence of the
accesses) following this assumption can achieve an average
of 90%. The high accuracy of time prediction verifies that
the assumption holds well and ensures the feasibility of the
proposed mechanism.

Figure 6: Distribution of time interval between
misses in the same local stream.

4.2.2 Timeliness Analysis
In this subsection, we evaluate the effect of stream timing

in controlling untimely prefetches and converting them into
good ones. We only consider the usable prefetches including
early, late and good ones and ignore the useless prefetches
since we are not able to change them into good prefetches.
Three prefetchers, stride, MLS and TAS, in which 100K pre-
fetches are collected and categorized, are compared. Figure
8 (a-c) demonstrates the distribution of good, late and early
prefetches of the three prefetchers respectively. From the fig-
ure we can see that the timeliness varies for different appli-
cations and for some of them, both late and early prefetches
can occur. Particularly, late prefetches are more likely to
appear in stride and MLS prefetchers. That is because we
choose 8 as the prefetching degree which is a moderate one
and is helpful to avoid early prefetches. When the degree
is high, such as 32 or 64, more early prefetches will arise in
both stride and MLS prefetchers. Note that MLS prefetcher
performs worse than others in most of applications. In MLS
prefetcher, only one prefetch is issued on each local stream,
which is easy to be late when the instruction requests it
soon. Another feature of MLS is that it always attempts to
travel along the stream chain, which increases the chances
of early prefetches if the stream is far away from the current
one in time.
Comparing the three prefetchers in the Figure 8, it is clear

that our TAS prefetcher, benefiting from stream timing, has
less untimely prefetches than the other two schemes. Al-
though TAS cannot guarantee reduction of both late and
early prefetches simultaneously, it is able to enlarge the frac-
tion of good prefetches for most of applications as shown in
Figure 8(d). The only exception is zeusmp, in which stride
prefetching achieves more timely prefetches. Our detailed
analysis shows that in zeusmp the time interval between
misses in local stream is very short while the time distance
between different streams is long. That is the major reason
that TAS has more early prefetches. Fortunately, this small
portion of additional untimely prefetches does not hurt the
overall performance.

4.3 Overall Performance Analysis
In this subsection, we present the overall performance re-

sults of all three prefetchers. We also vary the cache size
from 512KB to 2MB to evaluate cache sensitivity and pol-
lution.

Figure 7: Time prediction accuracy.

4.3.1 Cache Miss Reduction
Figure 9 reports the percentage of L2 misses reduced by

stride, MLS and TAS prefetcher respectively. On average,
TAS reduces L2 cache misses by 56% approximately, which
is the best of all three prefetchers compared to 43% of the
stride prefetcher and 34% of the MLS prefetcher. More-
over, TAS outperforms others in 18 out of 20 applications
and only underperforms the stride prefetcher in the other
two. Two benchmarks, gobmk and tonto, are the only ones
on which TAS loses effectiveness in reducing misses. Our
detailed analysis reveals that, in gobmk and tonto, data ac-
cesses tend to hit a certain local stream instead of jumping
across different streams, which leads to wrong predictions in
TAS even though it is able to reduce some late prefetches.
The considerable miss reduction in TAS mainly comes from
the timeliness improved by reducing untimely misses.

4.3.2 IPC Improvement
Figure 10 shows the IPC (Instructions per Cycle) improve-

ments with respect to the base case (without prefetching) of
stride, MLS and TAS prefetchers. The simulation result
shows that the TAS prefetcher significantly reduces the av-
erage data access latency and improves IPC considerably.
The IPC improvement of the TAS prefetcher reaches the
peak as much as 133% in libquantum, and achieves an av-
erage speedup of 33% among all benchmarks. Compared to
the other two schemes, TAS outperforms them in 16 out of
20 benchmarks and underperforms little (less than 3%) in
merely 4 of them. One case of negative performance is shown
for gobmk. Since all three prefetchers use the same constant
stride algorithm, neither stride nor MLS is able to achieve
positive performance on this benchmark. Fortunately, TAS
does not hurt the performance much, and the performance
slowdown is only 3%. We also observe that most of the
benchmarks on which TAS gains little performance or is
outperformed by other prefetchers have a low miss rate (un-
der 17%), which means that the efficiency of stream timing
technique is throttled by limited quantity of misses. Two
exceptions are xalancbmk and milc benchmarks. Although
they have high miss rates, TAS performs slightly worse than
the stride prefetcher with no more than 2% performance dif-
ference, and we consider them acceptable. Another obser-
vation is that the MLS prefetcher has lower average perfor-
mance improvement than others. As mentioned in previous
sections, the MLS prefetcher suffers the limitations of late
prefetches, which causes the overall performance drop.

Figure 8: Breakdown of usable prefetches with prefetch degree 8 for (a) stride prefetching; (b) MLS pre-
fetching; (c) TAS prefetching; (d) good prefetches comparison of three prefetchers.

4.3.3 Cache Sensitivity and Pollution
Cache pollution is considered as a critical side effect of

data prefetching. In this subsection, we present analysis of
cache size sensitivity and cache pollution of TAS prefetcher
under various cache sizes. Figure 11 shows the cache size
sensitivity of each benchmark. Figure 12 demonstrates the
comparison of the performance improvement of the TAS pre-
fetcher for different cache sizes. We observe that the increase
of cache size lower the effectiveness of TAS prefetcher in 7
out of 20 benchmarks. These benchmarks roughly match
the ones in Figure 11 whose performance are sensitive to
cache sizes. This is because that, a larger cache helps to
improve the performance significantly and leaves TAS pre-
fetcher little space for further improvement.
From Figure 12, we observe that the TAS prefetcher gains

substantial and stable performance improvement regardless
of cache size in some insensitive benchmarks such as bwaves,
mcf, libquantum and lbm. This result shows that the TAS
prefetcher is successful in controlling the cache pollution,
and therefore, TAS is able to maintain high efficiency even
the cache is small. Recall that the stream timing in TAS
improves the prefetching timeliness by making most of pre-
fetches issued at the right time, which potentially avoids
cache pollution resulting from early cache line replacements.

4.4 TAS Prefetching Characterization
To get a better understanding of the prefetchers’ perfor-

mance, we extend our experiment to evaluate advanced pre-
fetching characteristics from three aspects: prefetching cov-
erage, prefetching accuracy and prefetching behaviors. In
this set of experiments, we use prefetching degree 8 and 512
KB L2 cache for each prefetcher.

Figure 9: Miss Reduction of stride, MLS and TAS
prefetchers with degree of 8 and 512KB LLC.

Figure 10: IPC improvement of stride, MLS and
TAS prefetchers with degree of 8 and 512KB LLC.

Figure 11: Normalized IPC for 512KB, 1MB and
2MB L2 cache without prefetching.

Figure 12: Prefetching coverage for Stride, MLS and
TAS prefetchers.

4.4.1 Prefetching Coverage and Accuracy
Figure 13 shows the prefetching coverage for the stride,

MLS and TAS prefetchers. Benefiting from the stream tim-
ing, the number of timely prefetches of the TAS prefetcher
largely increases; hence, the coverage of TAS is higher than
others in every benchmark. Moreover, the geometric mean
of all 20 benchmarks’ coverage reaches as much as 41% which
can be regarded as remarkably high for a prefetcher.
The prefetching accuracy of stride, MLS and TAS pre-

fetchers are shown in Figure 14. The MLS prefetcher wins
because the “one prefetch per stream” policy helps it effec-
tively prevent data pattern change in the local streams, and
therefore, issues much less useless prefetches than the other
two strategies. The geometric mean of accuracy of TAS pre-
fetcher is 40%, which is 8% lower than MLS prefetcher but
8% higher than stride prefetcher. This result shows that
the stream timing technique plays a crucial role in helping
the prefetcher to maintain a relatively high accuracy and
coverage while improving the timeliness.

4.4.2 Prefetching Behaviors
We provide further analysis of how the stream timing

mechanism works in TAS prefetcher. As previously men-
tioned, the local streams are chained according to their time
stamps so that the next stream can be successfully found.
The prediction accuracy of the next stream is useful for find-
ing proper prefetching candidates. We consider the next
stream prediction is accurate when the corresponding PC
appears within the next five PCs. Table 2 shows the next
PC prediction accuracy when the prefetching degree is 8.
The geometric mean of the accuracy of all 20 benchmarks is

Figure 13: IPC improvement of TAS prefetcher for
512KB, 1MB and 2MB L2 cache.

Figure 14: Prefetching accuracy for Stride, MLS and
TAS prefetchers.

73%, which is very high and therefore is helpful to achieve
a high prefetching accuracy.

Stream timing mechanism always tries to find a better so-
lution of prefetching by either going depth or going width.
For a certain prefetching event, the prefetcher probably is-
sues prefetches only on one local stream. In this case, we
term this prefetching event as a single event. Otherwise the
prefetcher works on multiple streams and falls in other two
cases. The first case is that the stream chain is so short
that after issuing prefetches on each stream, the number of
prefetches does not satisfy the prefetching degree yet. Since
the prefetcher should go back to the first stream and start
prefetching again, we term this prefetching event as a cyclic
event. The last case is that the stream chain is long enough
for prefetching and we term it as a normal event. As pre-
viously discussed, we adopt preset thresholds to classify the
time interval between different misses into short, medium,
long and very long categories. To understand how these
thresholds affect the behavior of the prefetcher, we bring
two more configurations as shown in Table 2. From the ta-
ble we can see that the percentage of three prefetching events
varies considerably among different benchmarks. For exam-
ple, more than 99% of prefetching events are single ones in
gcc (prefetcher acts similar to the conventional stride pre-
fetching), which indicates that the time intervals between
two adjacent misses in a stream are very short. This re-
sult also explains why little performance difference is shown
between the stride and TAS prefetchers. However, in some
benchmarks such as milc, mcf and lbm, the cyclic events
become the dominant part. Another observation is that the
config 1 tends to make the prefetcher go width (more cyclic

Table 2: Statistics of behavior of the TAS prefetcher
Events (%) (d=8) Total Hops per Event NextPC

Benchmarks config 1 config 2 config 3 config 1 config 2 config 3 Accuracy Configurations
single cyclic single cyclic single cyclic d=8 d=16 d=8 d=16 d=8 d=16 (d=8)

bzip2 64.0 29.5 79.0 18.5 84.0 13.0 1.82 2.15 1.36 1.21 1.19 1.13 73% config 1
gcc 99.5 0.5 99.5 0.5 100.0 0.0 1.00 1.00 1.00 1.00 1.00 1.00 97%

bwaves 33.0 27.0 57.5 11.0 71.5 7.0 2.21 2.00 1.55 1.47 1.34 1.27 67% short [1,1]
gamess 12.0 62.0 33.5 38.5 35.5 27.0 4.83 8.16 3.73 5.65 3.03 4.12 56% medium [2,4]
mcf 1.5 97.5 20.5 75.0 39.0 56.0 3.79 5.17 1.91 1.90 1.60 1.49 89% long [5,9]
milc 5.0 90.0 14.5 78.0 14.5 50.0 5.89 8.26 3.22 3.38 2.21 2.48 35% very long >9

zeusmp 14.5 47.0 31.0 37.5 89.0 4.0 2.13 2.15 1.72 1.71 1.11 1.09 97%
gromacs 3.5 94.0 4.5 93.5 11.0 88.0 6.39 8.72 5.12 7.54 3.79 6.23 64% config 2
leslie3d 54.5 25.5 62.0 11.5 71.0 5.5 2.92 3.85 1.88 1.70 1.28 1.27 81%
gobmk 44.5 52.0 49.0 44.5 54.5 37.5 3.57 5.85 3.18 5.31 2.81 4.32 66% short [1,2]
dealII 41.0 49.5 56.5 34.5 68.5 27.5 2.78 4.80 2.41 4.26 2.11 3.23 64% medium [3,9]
soplex 5.5 90.5 9.0 84.5 17.5 70.0 5.26 8.07 3.63 4.14 2.30 2.49 54% long [10,19]
hmmer 22.5 42.5 63.0 7.5 78.0 4.5 2.67 3.60 1.69 2.14 1.35 1.79 59% very long >19

libquantum 100.0 0.0 100.0 0.0 100.0 0.0 1.00 1.00 1.00 1.00 1.00 1.00 100%
h264ref 62.5 28.5 73.5 15.0 85.5 5.5 1.77 2.06 1.53 1.87 1.23 1.23 86% config 3
tonto 71.5 24.5 76.0 20.5 80.5 18.5 2.16 1.88 1.49 1.22 1.19 1.09 98%
lbm 0.0 99.5 0.0 94.5 0.0 84.0 6.70 10.10 4.65 5.70 2.61 2.47 91% short [1,4]
wrf 90.0 3.0 92.5 1.0 95.5 0.5 1.18 1.25 1.07 1.08 1.04 1.04 83% medium [5,19]

sphinx3 35.0 47.5 61.0 27.0 65.0 22.0 2.97 5.17 2.57 4.71 1.99 3.41 72% long [20,49]
xalancbmk 8.5 71.5 18.5 60.0 90.5 6.0 2.11 2.29 1.94 1.97 1.18 1.33 75% very long >50
Geomean 2.71 3.43 2.07 2.39 1.62 1.83 73%

events) while the config 3 tends to make the prefetcher go
depth (more single events). That is because the time interval
classification is the criteria of prefetching directions.
As previously discussed, the stream timing mechanism

does not only consume extra storage but also requires addi-
tional operation time, which mainly comes from the traversal
time of the stream chain. We calculate the average hops re-
quired per prefetching event for various configurations and
degrees. From Table 2 we can see that the number of Hops
per Event (HpE) is related with configuration and prefetch-
ing degree. A high prefetching degree usually requires more
HpE than lower ones since many issued prefetches cause fre-
quent movement between streams. There is also notable
difference of HpE between three configurations. Although
the config 1 appears to be better than others since its range
of short, medium and long time classification seems more
reasonable, the HpE is much higher than other configura-
tions which in turn adds more operation time. However,
config 3 is also not good because its wide range affects the
performance even though the operation time is low. Thus,
in this study, we use config 2 and the geometric mean of HpE
of all 20 benchmarks is 2.07 when the prefetching degree is
8. In this case, the extra operation time required by using
stream timing mechanism that is caused by one more hop
per prefetching event is very low.

5. RELATED WORK
In this section, we classify the representative works in sev-

eral categories and discuss their basic ideas. We also discuss
the latest work in improving timely prefetches and compare
them with our proposed approach.

5.1 Data Prefetching Mechanisms
Data prefetching has been extensively studied in decades

[2][3][4][11][6][21][22] and widely used in commercial pro-
cessors [8][23]. Sequential prefetching [6] mechanism takes
advantage of spatial locality and assumes the applications
usually request consecutive memory blocks. Stride prefetch-
ing [2] detects the stride patterns in data access streams.

A Reference Prediction Table (RPT) is used to keep track
of strides of recent data accesses. Once the prefetcher is
trained, blocks can be prefetched according to the stride
recorded in RPT. Due to its simplicity and effectiveness,
stride prefetching is widely used [8]. Markov prefetching was
proposed in [11] to capture the correlation between cache
misses and prefetch data based on a state transition dia-
gram. Delta correlation prefetching is originally proposed
for TLB [12] and can be used as PC/DC prefetching in data
cache [16].

5.2 Stream Localization Mechanisms
To identify more accurate data patterns, the global miss

stream is usually localized. Stream localization by PC is
widely used in [2][16]. Concentration zone (czone) was pro-
posed in [17] to localize the stream according to the memory
region. AC/DC prefetching [15] uses GHB [16] and spatial
localization to implement delta correlation prefetching. To
predict memory access on a shared-memory multi-processor,
spatial memory streaming was proposed [18], which identify
data correlations for commercial workload. Different from
PC localization and spatial localization, temporal localiza-
tion proposed in [24] groups the addresses occurring in the
same time period. However, after stream localization, the
miss sequence order in global stream is lost, which might
be useful for timely prefetching or controlling cache pollu-
tion. To regain this missing global order, a recent work
called spatial-temporal streaming [19] that combines spa-
tial and temporal streaming. With the similar goal, the
stream chaining technique [7] attempts to reconstruct the
chronological order of localized streams by chaining the lo-
cal streams into one using control flow and prefetches along
the chain. However, the overall sequence order is so difficult
to obtain due to storage limitation that only relative order
is available in most cases.

5.3 Timeliness Improvement Techniques
The localization mechanisms discussed in the previous

subsection usually leads to untimely prefetching, which is
probably the most critical issue that limits the performance

of the prefetcher. Feedback directed prefetching [21] collects
feedback during runtime and applies a proper prefetching
distance to avoid late prefetches. Another mechanism tar-
gets to reduce late prefetches called epoch-based prefetching
[5]. The misses are localized according to epoch (a fixed-
length of time), and prefetching based on next epoch is help-
ful in preventing late prefetches. However, neither of them
can deal with early prefetches, and actually they might cause
additional early prefetches. Close to our work, the dead-
block predictor (DBP) [9][13] attempts to predict when a
cache block is dead by tracking the time duration between
when it comes into the cache and when it is evicted. The
timing information provided by DBP is used for triggering
prefetches and making replacement decision. The main dif-
ference between timing characteristic in this paper to the one
discussed in the dead-block predictor is that DBP is guided
by the time duration a block should stay in the cache, while
our method tries to acquire the time when a miss is sup-
posed to occur in the future. The dead-block predictor is
successful in reducing the cache pollution since it finds use-
less dead-block to replace. However, it does not take into
account the case that a prefetch is brought into cache too
early and evicted by others before used, which results in
untimely prefetches. Our work can solve these issues well.

6. CONCLUSION
In this study, we advance the state-of-the-art of data pre-

fetching technique via introducing a novel stream timing
mechanism aiming to reduce untimely prefetches. The pro-
posed stream timing technique can maintain the chronolog-
ical order of localized streams and the accesses within each
stream. These timing information are valuable to reduce un-
timely prefetches, potential cache pollution and bandwidth
consumption and to improve the effectiveness of data pre-
fetching. We have extended the conventional stride data
prefetcher with stream timing technique and proposed a new
Time-Aware Stride (TAS) prefetcher. With extensive simu-
lation testing, we found that the prefetching timeliness can
be improved with stream timing scheme, and this benefit can
be transferred to significant performance improvement. We
have also analyzed the detailed prefetching coverage, pre-
fetching accuracy and the TAS prefetcher’s characteristics.
The results show that the TAS prefetcher can achieve high
coverage and accuracy and outperforms existing stride pre-
fetchers considerably. The detailed study of the TAS pre-
fetcher’s characteristics verifies that the hardware require-
ment for the proposed stream timing technique is trivial.

7. ACKNOWLEDGMENTS
This research was supported in part by National Science

Foundation under NSF grant CCF-0621435 and CCF-0937877.

8. REFERENCES
[1] DPC-1 Homepage. http://www.jilp.org/dpc, 2008.

[2] T.-F. Chen and J.-L. Baer. Effective hardware based
data prefetching for high-performance processors. IEEE
Trans. Computers, 44(5):609–623, 1995.

[3] Y. Chen, S. Byna, and X.-H. Sun. Data access history
cache and associated data prefetching mechanisms. In
SC, 2007.

[4] Y. Chen, H. Zhu, and X.-H. Sun. An adaptive data
prefetcher for high-performance processors. In CCGrid,
2010.

[5] Y. Chou. Low-cost epoch-based correlation prefetching
for commercial applications. In MICRO, 2007.

[6] F. Dahlgren, M. Dubois, and P. Stenström. Fixed and
adaptive sequential prefetching in shared memory mul-
tiprocessors. In ICPP, pages 56–63, 1993.

[7] P. Diaz and M. Cintra. Stream chaining: Exploiting
multiple levels of correlation in data prefetching. In
ISCA, pages 81–92, 2009.

[8] J. Doweck. Inside Intel Core microarchitecture and
smart memory access. Intel White Paper, 2006.

[9] Z. Hu, M. Martonosi, and S. Kaxiras. Timekeeping in
the memory system: Predicting and optimizing mem-
ory behavior. In ISCA, pages 209–220, 2002.

[10] A. Jaleel, R. S. Cohn, C. keung Luk, and B. Jacob.
CMP$im: a pin-based on-the-fly multi-core cache sim-
ulator. In 4th Annual Workshop on Modeling, Bench-
marking and Simulation, pages 28–36, 2008.

[11] D. Joseph and D. Grunwald. Prefetching using markov
predictors. In ISCA, pages 252–263, 1997.

[12] G. B. Kandiraju and A. Sivasubramaniam. Going the
distance for TLB prefetching: An application-driven
study. In ISCA, pages 195–206, 2002.

[13] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block pre-
diction & dead-block correlating prefetchers. In ISCA,
pages 144–154, 2001.

[14] C.-K. Luk, R. S. Cohn, R. Muth, and et. al. Pin: build-
ing customized program analysis tools with dynamic
instrumentation. In PLDI, 2005.

[15] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith.
AC/DC: an adaptive data cache prefetcher. In IEEE
PACT, 2004.

[16] K. J. Nesbit and J. E. Smith. Data cache prefetching
using a global history buffer. In HPCA, 2004.

[17] S. Palacharla and R. E. Kessler. Evaluating stream
buffers as a secondary cache replacement. In ISCA,
pages 24–33, 1994.

[18] S. Somogyi, T. F. Wenisch, and et. al. Spatial memory
streaming. In ISCA, 2006.

[19] S. Somogyi, T. F. Wenisch, and et. al. Spatio-temporal
memory streaming. In ISCA, 2009.

[20] C. D. Spradling. SPEC CPU2006 benchmark tools.
ACM SIGARCH Computer Architecture News, 2007.

[21] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feed-
back directed prefetching: Improving the performance
and bandwidth-efficiency of hardware prefetchers. In
HPCA, pages 63–74, 2007.

[22] X.-H. Sun, S. Byna, and Y. Chen. Server-based data
push architecture for multi-processor environments.
JCST, 22(5), 2007.

[23] J. M. Tendler, J. S. Dodson, J. S. F. Jr., and et. al.
POWER4 system microarchitecture. IBM Journal of
Research and Development, 46(1):5–26, 2002.

[24] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim,
A. Ailamaki, and B. Falsafi. Temporal streaming of
shared memory. In ISCA, pages 222–233, 2005.

[25] W. A. Wulf and S. A. McKee. Hitting the memory wall:
implications of the obvious. ACM SIGARCH Computer
Architecture News, 23(1):20–24, 1995.

