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Abstract Modern High-Performance Computing (HPC) systems are adding extra layers to the memory and storage

hierarchy, named deep memory and storage hierarchy (DMSH), to increase I/O performance. New hardware technologies,

such as NVMe and SSD, have been introduced in burst buffer installations to reduce the pressure for external storage and

boost the burstiness of modern I/O systems. The DMSH has demonstrated its strength and potential in practice. However,

each layer of DMSH is an independent heterogeneous system and data movement among more layers is significantly more

complex even without considering heterogeneity. How to efficiently utilize the DMSH is a subject of research facing the HPC

community. Further, accessing data with a high-throughput and low-latency is more imperative than ever. Data prefetching

is a well-known technique for hiding read latency by requesting data before it is needed to move it from a high-latency medium

(e.g., disk) to a low-latency one (e.g., main memory). However, existing solutions do not consider the new deep memory and

storage hierarchy and also suffer from under-utilization of prefetching resources and unnecessary evictions. Additionally,

existing approaches implement a client-pull model where understanding the application’s I/O behavior drives prefetching

decisions. Moving towards exascale, where machines run multiple applications concurrently by accessing files in a workflow, a

more data-centric approach resolves challenges such as cache pollution and redundancy. In this paper, we present the design

and implementation of Hermes: a new, heterogeneous-aware, multi-tiered, dynamic, and distributed I/O buffering system.

Hermes enables, manages, supervises, and, in some sense, extends I/O buffering to fully integrate into the DMSH. We

introduce three novel data placement policies to efficiently utilize all layers and we present three novel techniques to perform

memory, metadata, and communication management in hierarchical buffering systems. Additionally, we demonstrate the

benefits of a truly hierarchical data prefetcher that adopts a server-push approach to data prefetching. Our evaluation

shows that, in addition to automatic data movement through the hierarchy, Hermes can significantly accelerate I/O and

outperforms by more than 2x state-of-the-art buffering platforms. Lastly, results show 10%–35% performance gains over

existing prefetchers and over 50% when compared to systems with no prefetching.

Keywords I/O buffering, heterogeneous buffering, layered buffering, deep memory hierarchy, burst buffers, hierarchical

data prefetching, data-centric architecture

1 Introduction

Data-driven science is a reality and in fact, is now

driving scientific discovery [1]. An International Data

Corp. (IDC) report [2] predicts that by 2025, the global

data volume will grow to 163 zettabytes (ZB), 10 times

the 16.1 ZB of data generated in 2016. The evolu-

tion of modern storage technologies is driven by the

increasing ability of powerful High-Performance Com-

puting (HPC) systems to run data-intensive problems

at larger scale and resolution. In addition, larger scien-

tific instruments and sensor networks collect extreme

amounts of data and push for more capable storage

systems [3]. Modern I/O systems have been developed

and highly optimized through the years. Popular in-

terfaces and standards such as POSIX I/O, MPI-IO [4],

and HDF5 [5] expose data to the applications and al-

low users to interact with the underlying file system

through extensive APIs. In a large-scale environment,

the underlying file system is usually a parallel file sys-

tem (PFS) with Lustre [6], GPFS [7], PVFS2 [8] being

some popular examples. However, as we move towards

the exascale era, most of these storage systems face sig-

nificant challenges in performance, scalability, comple-
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xity, and limited metadata services [9, 10], creating the so

called I/O bottleneck which will lead to less scientific

productivity [11, 12].

To reduce the I/O performance gap, modern sto-

rage subsystems are going through extensive changes,

by adding additional levels of memory and storage in

a hierarchy [13]. Newly emerging hardware technologies

such as High-Bandwidth Memory (HBM), Non-Volatile

RAM (NVRAM), Solid-State Drives (SSD), and dedi-

cated buffering nodes (e.g., burst buffers) have been

introduced to alleviate the performance gap between

main memory and the remote disk-based PFS. Modern

supercomputer designs employ such hardware technolo-

gies in a heterogeneous layered memory and storage

hierarchy, we call Deep Memory and Storage Hierar-

chy (DMSH) [14, 15]. For example, Cori system at the

National Energy Research Scientific Computing Center

(NERSC) 1○, uses CRAY’s Datawarp technology 2○. Los

Alamos National Laboratory Trinity supercomputer 3○

uses burst buffers with a 3.7 PB capacity and 3.3 TB/s

bandwidth. Summit in Oak Ridge National Laboratory

is also projected to employ fast local NVMe storage for

buffering 4○.

As multiple layers of storage are added into HPC

systems, the complexity of data movement among the

layers increases significantly, making it harder to take

advantage of the high-speed and low-latency storage

systems [16]. Additionally, each layer of DMSH is an

independent system that requires expertise to man-

age, and the lack of automated data movement be-

tween tiers is a significant burden currently left to the

users [17]. Popular I/O middleware, such as HDF5,

PnetCDF [18], and ADIOS [19], are configured to ope-

rating with the traditional memory-to-disk I/O end-

points. This middleware provides great value by iso-

lating users from the complex effort to extract peak

performance from the underlying storage system, but

it will need to be updated to handle the transition to

a multi-tiered I/O configuration [17]. Furthermore, op-

timizing read data access patterns is crucial to achiev-

ing computational efficiency. One popular practice em-

ployed is data prefetching. The effectiveness of data

prefetching depends upon the ability to recognize data

access patterns and to timely identify the data which

should be prefetched. Therefore, both timeliness and

accuracy are critical in the perceived performance of a

data prefetcher. All prefetching solutions have to an-

swer two main questions [20]: 1) when to prefetch data,

and 2) what data to prefetch. Prefetching the wrong

data or the right data at a wrong time not only does

not help but actually hurts the overall performance [21].

Additionally, the presence of multiple tiers of the sto-

rage hierarchy raises a third question: where to prefetch

data? There is a need to seamlessly and transparently

support access to DMSH.

In this paper, we present the design and implemen-

tation of Hermes 5○: a new, heterogeneous-aware, multi-

tiered, dynamic, and distributed I/O buffering system.

Hermes enables, manages, and supervises I/O buffering

into DMSH and offers: 1) vertical and horizontal dis-

tributed buffering in DMSH (i.e., access data to/from

different levels locally and across remote nodes), 2) se-

lective layered data placement (i.e., buffer data partially

or entirely in various levels of the hierarchy), and 3)

dynamic buffering via system profiling (i.e., change the

buffering schema dynamically by monitoring the sys-

tem status such as capacity of buffers, messaging traf-

fic, etc.). Hermes accelerates applications’ I/O access

by transparently buffering data in DMSH. Data can be

moved through the hierarchy effortlessly and therefore,

applications have a capable, scalable, and reliable mid-

dleware software to navigate the I/O challenges towards

the exascale era. Lastly, by supporting both POSIX

and HDF5 interfaces, Hermes offers ease-of-use to a

wide-range of scientific applications. Hermes has been

carefully designed to enable data-centric prefetching

decision engine that utilizes system-generated events,

while leveraging the presence of multiple tiers of sto-

rage, to perform hierarchical data placement at the

required time. We build upon the observation that

scientific workloads demonstrate a WORM data ac-

cess model (i.e., write-once-read-many) [22], which is

also true for BigData applications [23–25]. We also tar-

get modern scientific workflows that span across mul-

tiple applications in a pipeline of data processing. In

such environments, data might be read multiple times

across applications which might create severe issues for

prefetching cache management. Cache pollution, cache

redundancy, and unnecessary data evictions leading to

increased miss ratios are the norm, and not the ex-

1○https://www.nersc.gov/users/computational-systems/cori/burst-bufer/, Nov. 2019.
2○http://www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf, Nov. 2019.
3○http://www.lanl.gov/projects/trinity/specifications.php, Nov. 2019.
4○https://tinyurl.com/y2676no5, Nov. 2019.
5○Ancient Greek God of “messaging and the transgression of boundaries”.
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ception, especially in extremely large scale workloads.

Hermes addresses these issues by maintaining global file

heatmaps that represent how a file is accessed across

processes or applications. It uses those heatmaps to

express the placement of data in a hierarchical system.

The contributions of this work include:

• presenting the design and implementation of Her-

mes: a new, heterogeneous-aware, multi-tiered, dy-

namic, and distributed I/O buffering system (Subsec-

tion 3.1).

• introducing three novel data placement policies

to efficiently utilize all layers of the new memory and

storage hierarchy (Subsubsection 3.2.2).

• presenting the design and implementation of three

novel techniques to perform memory, metadata, and

communication management in hierarchical buffering

systems (Subsubsection 3.4.2).

• showcasing that a data-centric prefetching ap-

proach solves several issues caused by a growing set

of application-specific optimizations (Subsection 3.3).

• evaluating Hermes’ design and technical innova-

tions showing that our solution can grant better per-

formance compared with the state-of-the-art buffering

platforms (Section 4).

2 Background

2.1 Modern Application I/O Characteristics

Modern HPC applications are required to process

large volume, velocity and variety of data, leading to

an explosion of data requirements and complexity 6○.

Many applications spend significant time of the over-

all execution in performing I/O making storage a

vital component in performance [26]. Furthermore,

scientific applications often demonstrate bursty I/O

behavior [27, 28]. Typically, in HPC workloads, short, in-

tensive, phases of I/O activities, such as checkpointing

and restart, periodically occur between longer compu-

tation phases [29, 30]. The intense and periodic nature of

I/O operations stresses the underlying parallel file sys-

tem and thus, stalls the application. To appreciate how

important and challenging the I/O performance of a

system is, one needs to deeply understand the I/O beha-

vior of modern scientific applications. More and more

scientific applications generate very large datasets, and

the development of several disciplines greatly relies on

the analysis of massive data. We highlight some sci-

entific domains that are increasingly relying on High-

Performance Data Analytics (HPDA), the new gene-

ration of data-intensive applications, which involve suf-

ficient data volumes and algorithmic complexity to re-

quire HPC resources.

• Computational Biology. The National Center

for Biotechnology Innovation maintains the GenBank

database of nucleotide sequences, which doubles in size

every 10 months. The database contains over 250 bil-

lion nucleotide bases from more than 150 000 distinct

organisms.

• Astronomy. Square Kilometre Array project run

by an international consortium operates the largest ra-

dio telescope in the world which produces staggering

data as presented in the keynote speech during the 2017

SC (Supercomputing) conference. As highlighted, the

incoming images are of 10 PBs and the produced 3D

image is 1 PB each.

• High-Energy Physics. The Atlas experiment for

the Large Hadron Collider at the Center for European

Nuclear Research generates raw data at a rate of 2 PBs

per second and stores approximately 100 PBs per year

of processed data.

2.2 A New Memory and Storage Hierarchy

Accessing, storing, and processing data is of the

utmost importance for the above applications which

expect a certain set of features from the underlying

storage systems: 1) high I/O bandwidth, 2) low la-

tency, 3) reliability, 4) consistency, 5) portability, and

6) ease of use. New system designs that incorporate

non-volatile buffers between the main memory and the

disks are of particular relevance in mitigating the pe-

riodic burstiness of I/O. The new DMSH promises to

offer a solution that can efficiently support scientific

discovery in many ways: improved application reli-

ability through faster checkpoint-restart, accelerated

I/O performance for small transfers and analysis, fast

temporary space for out-of-core computations and in-

transit visualization and analysis. Building hierarchi-

cal storage systems is a cost-effective strategy to re-

duce the I/O latency of HPC applications. However,

while DMSH systems offer higher I/O performance,

data movement between the layers of the hierarchy is

complex and significantly challenging to manage. More-

over, there is no software yet that addresses the chal-

lenges of DMSH.

Middleware layers, like MPI-IO and parallel HDF5,

try to hide the complexity by performing coordinated

6○http://www.hpcuserforum.com/presentations/tuscon2013/IDCHPDABigDataHPC.pdf, Nov. 2019.
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I/O to shared files while encapsulating general purpose

optimizations. However, the actual optimization strat-

egy of these middleware layers is dependent on the un-

derlying file system software and hardware implementa-

tion. More importantly, these middleware libraries are

designed with memory-to-disk endpoints and are not

ready to handle I/O access through a DMSH system,

which is ultimately left to the user. Ideally, the presence

of multiple layers of storage should be transparent to

applications without having to sacrifice performance or

increase programming difficulty. System software and a

new middleware solution to manage these intermediate

layers can help obtain superior I/O performance. Ul-

timately, the goal is to ensure that developers have a

high-performance I/O solution that minimizes changes

to their existing software stack, regardless of the under-

lying storage.

Deep memory and storage hierarchies require a scal-

able, reliable, and high-performance software to ef-

ficiently and transparently manage data movement.

New data placement and flushing policies, memory and

metadata management, and an efficient I/O communi-

cation fabric are required to address DMSH complexity

and realize its potential. We believe that a radical de-

parture from the existing software stack for the scien-

tific communities is not realistic. Therefore, we propose

to raise the level of abstraction by introducing a new

middleware solution, Hermes, and make it easier for

the user to perform I/O on top of a DMSH system.

In fact, Hermes supports existing widely popular I/O

libraries such as MPI-IO and HDF5 which makes our

solution highly flexible and production-ready. We envi-

sion a buffering platform that can be application- and

system-aware, and thus, hide lower level details allow-

ing the user to focus on his/her algorithms. We strive

for maximizing productivity, increasing resource uti-

lization, abstracting data movement, maximizing per-

formance, and supporting a wide range of scientific ap-

plications and domains.

2.3 Accelerating Read Access Time

Data prefetching is a well-understood data access

optimization that has been explored in the litera-

ture throughout the years. Starting with hardware

prefetchers [31–36], data moves through the main mem-

ory into the CPU caches to increase the hit ratio

thereby increasing data locality. The granularity of a

hardware prefetcher is a memory page, and the trigger

is executed per-core. The hardware performs locality-

aware prefetching (i.e., read-ahead approach) where

once a memory page is accessed, the prefetcher brings

the next page into the caches (temporal and spatial lo-

cality). The ability to detect strided patterns is also

present in most modern CPU architectures 7○. How-

ever, if the application demonstrates irregular patterns,

then the miss ratio is high, and applications experi-

ence performance degradation due to the contention in

memory bus between the normal memory access and

the prefetcher. Lastly, a memory page is a well de-

fined prefetching unit while the same cannot be said

for I/O where file operations will be variable-sized.

Software-based solutions [20, 21, 37–41] leverage informa-

tion collected from the application to perform data

prefetching and can be broadly categorized into the fol-

lowing.

2.3.1 Offline Data Prefetchers

This category of prefetchers involve a pre-processing

step where an analysis of the application determines

the data access patterns and devise a prefetching plan.

There are several different ways to perform this pre-

execution analysis and several ways to devise a prefetch-

ing plan. In trace-driven [20] prefetching, the appli-

cation runs once to collect execution and I/O traces.

These are then analyzed to generate prefetching in-

structions. This method offers high accuracy in both

when and what to prefetch but requires significant user-

involvement and poses large offline costs. More im-

portantly, a trace-driven approach suffers from the fact

that an application’s I/O behavior is subject to change

at runtime. For example, the applications may in-

clude third party libraries (which could result in a mis-

match between application’s I/O calls and what the

servers experience) or when the application runs with

different inputs than originally traced (which could re-

sult in a different access pattern). Similar to trace-

driven approach, a history-based [38, 42] prefetcher stores

the seen accesses in a previous run of an application

into a database, and, thus, access patterns are known

when the same application executes again in the fu-

ture. While this method decreases the level of user

involvement and the cost of trace analysis, it assumes

that the application’s behavior remains stable between

executions (which is unrealistic). Another approach

to identifying application access patterns is compiler-

based prefetching. In this method, the source code is

7○https://tinyurl.com/lxxw7sn, Nov. 2019.



96 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

analyzed and modified to add prefetching instructions

either by I/O re-ordering [43] (where calls are moved

earlier in the code) or by hint-generation [20] (where

new code is injected) to provide the information to

the prefetcher about when and what to prefetch. The

code is then re-compiled and executed with the extra

prefetching instructions. This approach avoids the in-

creased offline costs, since it does not require any exe-

cution of the application, but only requires the modi-

fication of the source code (which raises security con-

cerns). Moreover, it suffers from miscalculations as to

how far up in the code it should move the I/O calls

or inject the hints to perform the prefetching on-time.

Lastly, data staging [44] is a form of prefetching by pre-

loading the working set of an application (i.e., all data

that will be read) in dedicated staging resources before

the application even starts. This method leads to high

hit ratios, but it assumes that the working set can fit in

the staging resources capacity. In other words, it leads

to sub-optimal resource utilization since data is kept

in memory for the entirety of the application’s runtime

and may be subject to undesired evictions before the

data is read.

2.3.2 Online Data Prefetchers

This category of prefetchers trade accuracy for a

“learn as you go” model. The application’s access pat-

terns are learned as the execution proceeds, avoiding

any pre-processing steps. The on-the-fly identification

of data access patterns can be done using several mod-

els. 1) Statistical methods such as hidden Markov mod-

els (HMM) [45, 46] and ARIMA models [47] require a large

number of observations to accomplish model conver-

gence. Once the model has converged, it can predict

the next access and trigger prefetching. However, they

often focus exclusively on either spatial or temporal I/O

behaviors and need long execution time or several runs

to achieve accurate predictions. 2) A grammar-based

model [22, 48, 49] relies on the fact that I/O behaviors are

relatively deterministic (inherent from the code struc-

ture) and predicts when and what future I/O operations

will occur. However, this method demands repetitive

workloads and does not work well for irregular access

patterns since the grammar cannot be built out of ran-

domness. 3) Machine learning approaches [50, 51] have

been recently proposed where a model learns the data

access pattern and uses it to drive the prefetching plan.

Rather than relying on a statistical distribution of ac-

cesses or a sequence of symbols, this method relies on a

type of probabilistic language model called n-gram [52].

This model predicts the next item in a sequence which

takes the form of a collection of subsequences of N con-

secutive tokens in a stream. All online approaches share

the fact that they do not rely on a priori knowledge of

the application’s data access patterns or user inputs

and hints. The problem is that they require a warm-up

period at the beginning of the execution as they build

their models, which can result in added overheads and

low performance. Additionally, online prefetchers’ per-

formance is directly related to the predictive capabili-

ties of the models used, causing accuracy and timeliness

to be suboptimal when compared with the offline ap-

proaches.

The common theme for all existing approaches is

that they implement a client-pull model. Prefetching

is driven by the applications and their data access pat-

terns. As we move closer to exascale, supercomputers,

while sharing prefetching resources, are expected to run

multiple concurrent applications possibly connected in

a workflow. This means that application-specific opti-

mizations will not perform due to a lack of global co-

ordination. Prefetching cache space will be limited and

shared, leading to cache pollution, cache redundancy,

and unwanted evictions. Application-bound prefetch-

ing resources will be competing with one another, lead-

ing to loss of performance due to interference. The

complexity of modern workflows renders application-

centric solutions unrealistic. We need to address the

challenges of read-optimizations from a data-centric

view. Systems must evolve and make smart decisions

based on how data is accessed and what common pat-

terns can be found across components of a workflow.

A server-push model can obtain a global view and ap-

ply optimizations on the most valuable pieces of data.

None of the existing data prefetching solutions fully uti-

lize the hierarchical environment. The amount of RAM

available to each core is shrinking, and the presence of

additional layers of fast storage mediums seems like a

natural solution to mitigate this issue. The hardware

is there, but we need to design software to drive per-

formance by masking access latency behind each tier of

the DMSH.

3 Design and Implementation

3.1 Hermes Architecture

3.1.1 Design Overview

Hermes is designed as a middleware layer — sit-

ting between applications and DMSH as shown in
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Fig.1. As a middleware library, Hermes captures

I/O calls, both POSIX and HDF5 (i.e., fopen, fread,

fwrite, and H5Fcreate, H5Dread, etc.) and redirects

them to different layers of DMSH. Legacy applications

can easily connect to Hermes by simple linking (i.e.,

LD PRELOAD) or recompiling the code with our li-

brary. There are no changes to user code and there is

no need to upgrade to a different workflow. Similarly,

there is no requirement to change anything on the un-

derlying storage (i.e., Lustre, PVFS, etc.) since Her-

mes services reside within the application. Hermes is

a middleware software that does not require any mod-

ifications to existing runtime services. The lifetime of

Hermes is tightly couple with that of the application

that has linked to it. We design Hermes to easily work

with existing software. Our goal is to maximize user

productivity by making I/O buffering transparent.

Applications

MPI-IO 

RAM

NVMe

SSD (i.e., Burst Buffers)

High Level I/O Libraries (pNetCDF, HDF5, etc.)

HDD (i.e., Parallel File System)

POSIX 

DMSH Hardware

API 

Data Placement Engine 

Cache Manager

Prefetcher

I/O Clients RAM NVMe Burst
Buffers

File
System

Metadata Manager

Data Organizer

Messaging Service

Hermes Library

Fig.1. Software stack and Hermes internal design.

As a separate usage mode, Hermes also provides a

new buffering API for users who want to explicitly take

control of the data movement between layers of DMSH.

This mode also allows Hermes to perform active buffer-

ing where data is shipped to the buffer nodes along with

specific instructions or operations to be performed on

them. For example, a user can pass a set of integers to

Hermes instructing it to first store them to the buffer

nodes, then sort them, compress the sorted list and

lastly persist the final result to the remote PFS. This

flow can be easily executed by a series of hinting mech-

anisms (i.e., flags) that Hermes provides to the user.

Our hinting mechanism is a simple bit encryption which

indicates predetermined operations like sorting, com-

pression/decompression, deduplication and others. For

user-defined operations, Hermes provides a bootstrap-

ping mechanism in which the user can submit his/her

functions. The library will then compile and place the

executables to a registry of operations to be handled

by the buffering nodes. Reserved bits are used for user-

defined operations.

The high-level architecture of Hermes can be seen

in Fig.2. In DMSH systems, besides the main memory,

every compute node might be equipped with an NVMe

device or even an SSD. Additionally, shared buffering

nodes, such as burst buffers, will most likely be present

and positioned close to the compute nodes. Finally,

a remote PFS supports all compute nodes with persis-

tence and fault tolerance as important features. Hermes

is a platform that aims to enable efficient access to the

layers of DMSH and as such we distinguish two data

paths: a vertical and a horizontal hierarchy. Vertical

hierarchy refers to data movement within a compute

node and all the way down to the burst buffers and

PFS. Horizontal hierarchy refers to sending data to an-

other compute node’s RAM or NVMe device. The hor-

izontal data movement is greatly optimized if there is

an RDMA-capable network but Hermes can also sup-

port systems with no RDMA. Therefore, a DMSH sys-

tem could consist of several layers, performance-wise,

such as local RAM, remote RAM, local NVMe, remote

NVMe, burst buffers, and PFS (numbered in Fig.2).

3.1.2 Internal Components

Fig.1 demonstrates the design of Hermes library

and all the internal components that work together to

achieve an efficient, transparent, and easy-to-use data

access in all layers of a DMSH (i.e., both vertically

and horizontally). The main Hermes library is comple-

mented by a set of tools and services that help achieve

broader goals such as multi-tenancy, adaptability, etc.

Brief description of each component’s responsibilities is

listed as below.

API. The API is responsible for intercepting all I/O

calls from the applications. It also calculates the ope-

rations to be carried out by the buffering nodes in case

of an active buffering scenario.

Data Placement Engine. This engine is responsible

for mapping data onto DMSH. In other words, the data

placement engine calculates the data destination, where

in the hierarchy should the data be redirected. It maps

data according to various data placement policies.
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Data Movement:

1. Vertical Local

2. Vertical Remote  

3. Horizontal 

Compute Nodes

NVMe

Hermes

RAM

NVMe

Hermes

RAM

Parallel File System (PFS)

Deep Memory and  

Storage Hierarchy

1. Local RAM

2. Remote RAM

3. Local NVMe

4. Remote NVMe

5. Burst Buffers

6. Parallel File System

Node 1 Node n External Services

1. Application Orchestrator

2. System Profiler

3. User-Defined Schema Parser

Application Application

Burst

Buffer 

Nodes

...

DMSH

HDF5 HDF5

Fig.2. Hermes internal design.

Data Organizer. The main responsibility of this

component is to move data between the layers of

DMSH. It is triggered by other components according

to certain criteria which makes it an event-based com-

ponent. For instance, if there is no space left in NVMe,

the data organizer is triggered to move data down to

the burst buffers and thus freeing space in NVMe. This

component is responsible for carrying out all data move-

ment either for prefetching reasons, evictions, lack of

space, or hotness of data, etc.

Metadata Manager. The MDM maintains two types

of metadata information: user’s and Hermes library’s

internal metadata. Since Hermes can transparently

buffer data by intercepting I/O calls, MDM keeps track

of the user’s metadata operations (i.e., files, directories,

permissions, etc.) while consulting the underlying PFS.

Additionally, since data can be buffered anywhere in

the hierarchy, MDM tracks the locations of all buffered

data and internal temporary files that contain user files.

Cache Manager. This component is responsible for

handling all buffers inside Hermes. It is equipped with

several cache replacement policies such as least recently

used (LRU) and least frequently used (LFU). It works

in conjunction with the prefetcher. It can be configured

to hold “hot” data for better I/O latency. It is also re-

sponsible for implementing application-aware caching

schemas.

Prefetcher. This component is performance-driven.

It implements a server-push model that can achieve bet-

ter data-prefetching performance by leveraging a global

view of how data are accessed across multiple applica-

tions. The details of this component are presented in

details in Subsection 3.3.

Messaging Service. This component is used to pass

small messages across the cluster of compute nodes.

This component does not involve any data movement

which is actually done by either the application cores

or other Hermes components such as the data orga-

nizer and prefetcher. Instead, this component provides

an infrastructure to pass instructions to other nodes to

perform operations on data or facilitate its movement.

For example, a typical type of message in Hermes is to

flush buffered data of a certain file to the next layer or

to PFS.

I/O Clients. These clients refer to simple calls using

the appropriate API based on the layer of the hierar-

chy. For instance, if Hermes data placement engine

maps some data to the burst buffers, then the respec-

tive I/O client will be called and perform the fwrite()

call. Internally, Hermes can use POSIX, MPI-IO, or
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HDF5 to perform the I/O. An important feature of

Hermes is that the user’s data structures are mapped

to Hermes’ internal structures at each layer of DMSH.

For example, an original dataset of an HDF5 file could

be mapped into a temporary POSIX file in NVMe.

The I/O clients give Hermes the flexibility to “talk” to

several data destinations and manage the independent

systems (e.g., memcpy for RAM, fwrite() for NVMe,

MPI File write() for burst buffers).

System Profiler. This component is a service out-

side the main library. It is designed to run once during

the initialization. It performs a profiling of the under-

lying system in terms of hardware resources. It tries

to detect the availability of DMSH and measure each

layer’s respective performance. It is crucial to iden-

tify the parameters that Hermes needs to be configured

with. Using this information, the data placement en-

gine can do a better job when mapping data to diffe-

rent layers. Each system will have a different hierarchy.

Additionally, each hierarchy will demonstrate different

performance characteristics. In our prototype imple-

mentation this component is external and results are

manually injected to the configuration of the library.

We plan to automate this process.

Schema Parser. This component accepts a user-

defined buffering schema and embeds it into the library.

This schema is passed in an XML format and Hermes is

configured accordingly. For instance, if a user chooses

to aggressively buffer a certain dataset or file, then Her-

mes will prioritize this data higher up in the hierarchy

and also the cache manager will get informed not to

evict this specific buffered dataset. All this is possible

because Hermes will use the user’s instructions to offer

the best buffering performance. In our prototype im-

plementation schema parser is external and is planned

to be automated in future versions of Hermes.

Applications Coordinator. This component is de-

signed to offer support in a multiple-application envi-

ronment. It manages the access to the shared layers

of the hierarchy such as the burst buffers. Its goal

is to minimize interference between different applica-

tions sharing this layer. Additionally, it coordinates the

flushing of the buffers to achieve maximum I/O perfor-

mance. More information on this component can be

found in [25].

All the above components allow Hermes to offer

a high performance I/O buffering platform which is

highly configurable, easily pluggable to several appli-

cations, adaptable to certain system architectures, and

feature-rich yet lightweight.

3.2 Hermes Buffering Modes and Policies

3.2.1 Buffering Modes

Similar to other buffering systems, Hermes offers

several buffering modes (i.e., configurable by the user)

to cover a wide range of different application needs such

as I/O latency, fault tolerance, and data sharing.

1) Persistent. In this mode, data buffered in Her-

mes is also written to the PFS for permanent storage.

We have designed two configurations for this mode. A)

Synchronous: directs write I/O onto DMSH and also

to the underlying permanent storage before confirm-

ing I/O completion to the client. This configuration

is designed for uses cases such as write-though cache

or stage-in for read operations. Since all data also ex-

ist in the PFS, synchronous-persistent mode is highly

fault-tolerant, offers strong data consistency, is ideal

for data sharing between processes, and supports read-

after-write workloads. However, it demonstrates the

highest latency and the lowest bandwidth for write ope-

rations since data directed to the buffers also need to be

written in the PFS. B) Asynchronous: directs write I/O

onto DMSH and completion is immediately confirmed

to the client. The contents of buffers are eventually

written down to the permanent storage system. The

trigger to flush buffered data is configurable and can

be: i) per-operation, flushing is triggered at the end of

current fwrite(), it also flushes all outstanding previous

operations, ii) per-file, flushing is triggered upon calling

fclose() of a given file (this is similar to the Data Ele-

vator approach), iii) on-exit, flushing is triggered upon

application exit (this is similar to the Datawarp ap-

proach), and iv) periodic, flushing is periodically trig-

gered in the background (this is the default Hermes

setting). This configuration is designed for use cases

such as write-back cache and stage-out for read ope-

rations. It provides low-latency and high bandwidth to

the application since processes return immediately after

writing to the buffers. It also offers eventual consistency

since data are flushed down eventually. It is ideal for

write-heavy workloads and out-of-core computations.

2) Non-Persistent. In this mode, I/O is directed

to DMSH and is never written down to the perma-

nent storage. It is designed to offer a scratch space

for fast temporary I/O. Upon application exit, Hermes

deletes all buffered data. This mode can be used for

scenarios such as quickly storing intermediate results,

communication between processes, in-situ analysis and

visualization. In case of buffering node failures, ap-

plication must restart. This mode offers high band-
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width and low latency. Lastly, applications can reserve

a specific allocation (i.e., capacity on buffers) for which

data preservation is guaranteed by Hermes (similar to

Datawarp reservations). These allocations expire with

the application lifetime. In case of buffer overflow, Her-

mes will transparently swap buffer contents to the PFS

much like memory pages are swapped to the disk by

the OS. The mechanism was designed to offer some ex-

tra degree of flexibility to Hermes. For example, let us

assume that an application writes simulation results ev-

ery 5 minutes. These results are directly read from the

buffers by an analysis kernel which writes the final re-

sult to the PFS for permanent storage. Simulation data

can be deleted or overwritten after the analysis is done.

Hermes can utilize this periodic and bursty I/O beha-

vior and write the next iteration on top of the previous

one instead of wasting extra buffer space. To achieve

this conditional overwriting of data, Hermes utilizes a

flagging system to define the lifetime of buffered data.

3) Bypass. In this mode, as the name suggests,

I/O is performed directly against the PFS effectively

bypassing Hermes. This mode resembles write-around

cache designs.

3.2.2 Data Placement Policies

In DMSH systems, I/O can be buffered to one or

more layers of the hierarchy. There are two main chal-

lenges: 1) how and where in the hierarchy data are

placed, 2) how and when do buffers get flushed either

in the next layer or all the way down to PFS. In Hermes,

the first challenge is addressed by the data placement

engine (DPE) component and the second by the data

organizer. We designed four different data placement

policies to cover a wide variety of applications’ I/O ac-

cess patterns. Each policy is described by a dynamic

programming optimization 8○ and follows the flow of Al-

gorithm 1.

The general idea of the algorithm is as follows.

First, if the incoming data can fit in the current

layer’s remaining capacity, it places the data there (i.e.,

PlaceData(data, tier)). In case it does not fit, based on

the constraint of each policy, it tries one of the fol-

lowing: 1) solve again for next layer (i.e., DPE(data,

tier.next)), 2) place as much data as possible in the

current layer and the rest in next (i.e., DPE(data[0],

tier)+DPE(data[1], tier.next)), and 3) flush current

layer and then place new incoming I/O (i.e., Flush(data,

tier)+DPE(data, tier)). We implemented the DP algo-

rithm using memorization techniques to minimize the

overhead of the solution. We further provide a config-

uration knob to tune the granularity of triggering the

optimization code for data placement.

Algorithm 1. Hermes DPE Algorithm to Calculate Data 
Placement in DMSH (Pseudo Code)

Procedure DPE(data֒ tier)
    if data can fit in tier then
         /* buffer data in this layer                      */
         PlaceData↼data֒ tier↽
    else
         /* buffer in next tier                               */
         p   DPE↼data֒ tier⊲next↽
         /* split data based on the
        remaining capacity of the

        current tier                                          */
         data♭♯ / Split↼data֒ tier↽
         p   DPE↼data♭♯֒ tier↽ ⇁
           DPE↼data♭♯֒ tier⊲next↽
         /* flush current tier to create
        space and then place data                      */
         p  
           Flush↼data֒ tier↽ ⇁ DPE↼data֒ tier↽
         max↼p֒ p֒ p↽
    end

®

®

®

1) Maximum Application Bandwidth (MaxBW).

This policy aims to maximize the bandwidth appli-

cations experience when accessing Hermes. The DPE

places data in the highest possible layer of DMSH in a

top-down approach, starting from RAM, while balanc-

ing bandwidth, latency, and the capacity of each layer.

For instance, this policy will place incoming I/O into

RAM, if the data size fits in RAM’s remaining capac-

ity. Otherwise, the policy will try to minimize the I/O

time between the following actions: skip RAM and di-

rectly place data in NVMe, place as much data as RAM

can hold and the rest in NVMe, or first create space in

RAM by flushing data in LRU fashion and then place

all new data in RAM. The approach applies to all lay-

ers making the solution recursively optimal in nature.

The above data placement policy is expressed as an

optimization problem where DPE minimizes the time

taken to write the I/O in the current layer and the ac-

cess latency to serve the request, effectively maximizing

the bandwidth. The data organizer moves data down

periodically (or when triggered) to increase the availa-

ble space in upper layers for future incoming I/O. Data

movement between layers is performed asynchronously.

This policy is the default Hermes configuration.

2) Maximum Data Locality. This policy aims to

maximize buffer utilization by simultaneously directing

I/O to the entire DMSH. The DPE divides and places

data to all layers of the hierarchy based on a data dis-

persion unit (e.g., chunks in HDF5, files in POSIX and

8○Full mathematical formulation of each policy can be found in Appendix.
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independent MPI-IO, and portions of a file in collective

MPI-IO). Furthermore, Hermes maintains a threshold

based on the capacity ratio between the layers of the hi-

erarchy. This ratio reflects on the relationship between

each layer (e.g., system equipped with 32 GB RAM,

512 GB NVMe, and 2 TB burst buffers creates a capac-

ity ratio of 1-16-64). The data placement in this policy

accounts for both layer’s capacity and data’s spatial lo-

cality. For instance, this policy will place incoming I/O

in RAM if its data size fits within the capacity thresh-

old while respecting the locality of the file. If it does

not fit in RAM’s remaining capacity, the DPE will try

to maximize the buffer utilization between the following

actions: skip RAM and place data in NVMe, place as

much data as possible in RAM and the rest in NVMe, or

perform a re-organization of the files and thus, creating

space for the new data in RAM. The above process is

recursive and can be expressed as an optimization prob-

lem. DPE minimizes the time taken to write the I/O

in the current layer and the degree of data dispersion

(i.e., how many layers data are placed to) effectively

maximizing the buffer utilization. Data movement be-

tween layers is performed asynchronously. This policy

is ideal for workflows that encapsulate partitioned I/O.

For instance, one could prioritize a certain group of

MPI ranks over another (e.g., aggregator ranks) or one

type of file over another (e.g., metadata files over data

files).

3) Hot-Data. This policy aims to offer applications

a fast cache for frequently accessed data (i.e., hot-data).

The DPE places data in the hierarchy based on a hot-

ness score that Hermes maintains for each file. This

score encapsulates the access frequency of a file. High-

est scored files will be placed higher up in DMSH since

they are expected to be accessed more often. This en-

sures that layers with lower latency and higher band-

width will serve critical data such as metadata, index

files, and so on. The DPE also considers the over-

all file size to efficiently map data to each layer (i.e.,

smaller files buffered in RAM whereas larger files in

burst buffers). The data placement policy can be ex-

pressed as an optimization problem where DPE mini-

mizes the time taken to write the I/O in the current

layer considering both hotness and capacity of layers.

The data organizer demotes or promotes data based on

the hotness score and the data movement is performed

asynchronously. This policy is ideal for workflows that

demonstrate a spectrum of hot-cold data.

4) User-Defined. This policy aims to support user-

defined buffering schemas. Users are expected to sub-

mit an XML file with their preferred buffering require-

ments. This file is parsed during initialization by the

schema parser component and used by the DPE to

make data placement decisions. For instance, users can

define certain files to always be in RAM (i.e., never

get evicted), or which HDF5 chunks to get buffered in

NVMe, etc.

3.3 Data-Centric Multi-Tiered Prefetching

Hermes implements a system-wide, data-centric,

server-push prefetching solution that aims to identify

how files are accessed, regardless of which process or

application does the data access, and utilize this in-

formation to pre-load the data needed into the deep

memory and storage hierarchy. Hermes’ Prefetcher op-

timizes read operations by leveraging two main observa-

tions: 1) the presence of multi-tiered storage suggests a

feasible solution to the shrinking DRAM size per-core;

a prefetching solution that utilizes the storage hierar-

chy to fetch data in a pipeline fashion is needed, and,

2) identifying an application’s data access pattern will

not suffice in the age of data-intensive computing; a

global view of how files are accessed across a workflow

is needed to place prefetched data at the right tier of

the hierarchy (i.e., hotter data are fetched to the higher,

more capable, levels of the hierarchy such as memory).

Fig.3 shows the design of Hermes Prefetcher.

The main idea is to fetch portions of a file to a

tier of the hierarchy based on access frequency, recency,

and relationship between segments (i.e., file segment

sequencing). In other words, instead of guessing what

an application will access next, Hermes collects access

statistics of file regions (which we call file segments)

from the file systems themselves and pro-actively loads

them in the hierarchy, based on a segment score, that

reflects the urgency to access the chosen segment. This

score basically incorporates the frequency with which

the segment is accessed across processes or applica-

tions thereby creating a file access heatmap. The file

heatmap is then used to naturally match it to a hierar-

chical environment. Segment movement between tiers

of the hierarchy is also based on how recently a segment

was accessed. In effect, Hermes’ Prefetcher answers

the three prefetching questions (what to prefetch, when

to prefetch, and where to place prefetched data) indi-

rectly by naturally mapping the spectrum of segment

frequency and recency to the appropriate tier lever-

aging the hardware capabilities of each tier. Hermes’

prefetcher aims to optimize complex scientific work-
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flows where a collection of data producers (i.e., sim-

ulations, static data sources, etc.) send data down a

pipeline and a collection of consumers (i.e., analytics,

visualization) process the data multiple times. Our de-

sign fits naturally in such environment with hierarchi-

cal data prefetching boosting read operations across all

data consumers.

Hermes’ Prefetcher follows an event-based

paradigm. Each compute node is equipped with an

Hermes node manager running on one of the cores.

Each application dynamically links to the Hermes li-

brary and a background prefetching thread, we call

Agent, is spawned alongside each application process.

Upon application initialization (e.g., MPI Init()), a

small fraction of the main memory is allocated for

prefetcher internal structures. Hermes’ Prefetcher is

a multi-threaded program consisting of the following

components.

• Hardware Monitor. Its main role is to monitor all

available hardware tiers. The events are generated by

the system and are pushed to an in-memory event queue

which is served by a pool of daemon threads. In this

context, events are either file accesses or tier remaining

capacity. All collected events are then passed on to the

file segment auditor. In the face of updates events, the

prefetcher invalidates the previously prefetched data

enforcing data consistency.

• File Segment Auditor. Its main role is to calcu-

late file segment statistics. Specifically, for each file

segment, which is practically a region of a file, the au-

ditor calculates its access frequency, when was it last

accessed, and which segment access preceded it. Using

this information, the auditor can construct a score for

each file segment that reflects how hot the segment is

in the prefetching context. A hot segment is one that

is accessed many times in a recent time window. The

sequencing of segments also provides a logical map of

which segments are connected to one another. Lastly,

segment statistics and mappings are both maintained

in the metadata manager.

• Agent Manager. Its main role is to collect the

beginning and the end of a prefetching epoch enclosed
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between a file open and file close calls and pass it to

the auditor who marks the appropriate file segments

that are targeted for prefetching. The Agent is able to

intercept POSIX, MPI-IO, and HDF5 open-close calls.

3.3.1 File Segment Scoring

A file segment is defined as a file region enclosed by

start and end offsets. The segment size can be stati-

cally defined (e.g., every 1 MB) or it can be dynamic

based on how the file is being read. A file segment is the

prefetching unit within the prefetcher, which means all

prefetching operations are expressed by loading one or

more segments. Its dynamic nature provides Hermes a

better opportunity to decompose read accesses in finer

granularity and better utilize the available prefetching

cache, especially in a hierarchical environment where

the prefetching cache can span multiple tiers. Each in-

coming read request may correspond to one or more

segments. For example, assume the segment size is

1MB and there is an fread() operation starting at off-

set 0 with 3 MB size, then Hermes will prefetch seg-

ments 1, 2, and 3 to optimize this data access. For

every segment, Hermes’ Prefetcher maintains its access

frequency within a prefetching epoch, when it was last

accessed, as well as which segment preceded it (i.e.,

segment sequencing). It scores each file segment based

on these collected access statistics by the following for-

mula:

Scores =

k∑

i=1

(
1

p
)

1

n
×(t−ti),

where s is the segment being scored, k is the number of

accesses, t is the current time, ti is the time of the i-th

access, and n > 1 is the count of references to segment

s. An intuitive meaning of 1
n
is that a segment’s score is

reduced to 1
p
of the original value after every time step.

Finally p > 2 is a monotonically non-increasing class

of functions. Consistently with the principle of tem-

poral locality, t − ti gives more weight to more recent

references with smaller backward distances. This score

aims to encapsulate three simple observations about the

probability of a segment being accessed in the future.

A segment is likely to be accessed in the future again

if: 1) it is accessed frequently, 2) it has been accessed

recently, and 3) it has multiple references to it. All cal-

culated segment scores are also kept as an index in an

ordered map to avoid excessive sorting of score values.

The file heatmaps are generated by the score of each

segment. To minimize overheads, the auditor maintains

segment statistics and file heatmaps in the MDM for

the duration of an epoch (i.e., while the file remains

opened for read). Upon closing the file Hermes has the

ability to store the file heatmaps on disk resembling a

file access history. When a file gets re-opened, if there

is a stored heatmap, Hermes will load it in memory

and compare observed accesses with the pre-existing

heatmap. New accesses will evolve the heatmap fur-

ther. Heatmaps get deleted once the workflow ends

(i.e., a collection of simulation — analysis programs

executed in a pipeline).

3.3.2 Prefetched Data Placement

Hermes’ Prefetcher is a truly hierarchical data

prefetcher, and thus, the prefetching cache spans across

multiple tiers of the deep memory and storage hierar-

chy. In contrast to existing prefetching solution where

prefetched data have a single destination, the main

memory, Hermes fetches data into multiple tiers us-

ing its data placement engine and the collected seg-

ment statistics. This approach can lead to better re-

source utilization, masking access latency behind each

tier (i.e., while prefetching segments in RAM, other seg-

ments are also prefetched to higher tiers), and can offer

concurrent access with less interference (i.e., while one

application accesses segments from RAM another one

can access from NVMe).

DPE periodically monitors the segment score

changes from the auditor to decide if and what segments

should be moved up or down the tiers. All updated

scores are pushed by the auditor into a vector which the

engine processes. To avoid excessive data movements

among the tiers, Hermes uses two user-configurable con-

ditions to trigger the prefetching triggers: 1) a time in-

terval (e.g., every 1 second), and, 2) a number of score

changes (e.g., every 100 updated scores). The engine

maintains a minimum and maximum segment score for

each available tier. If an updated segment score vio-

lates its current tier placement, then it gets promoted

or demoted accordingly. This approach also handles

automatic evictions since each segment has its natural

position in the hierarchy based on its score. Note, if

segments have exactly the same score, the default pol-

icy in Hermes is to randomly place them in the tiers.

Algorithm 2 has a time complexity of O(m× n) where

m is the number of segments updated on that node and

n is the number of layers. Note, n ≪ m and m is the

number of segments updated on a node between an in-

terval t. This t should be ideally configured close to the
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average computation time of all the applications in the

workflow, to avoid excessive computations.

Algorithm 2. Hermes Prefetching Algorithm Data Placement
in DMSH (Pseudo Code)

Procedure Place(segment֒ tier↽
    if segment⊲score > tier⊲min_score then
        if segment cannot fit in this tier then
             tier⊲min_score    segment⊲score
             DemoteSegments(segment⊲score֒ tier)
        end
        if segment⊲score > tier⊲max_score
         then
            tier⊲max_score    segment⊲score
        end
        Place segment in this tier
    else
        Place(segment֒ tier⊲next↽
    end
Procedure DemoteSegments(score֒ tier)
    segments  
      GetSegmentsLowerThan↼score֒ tier↽
      foreach s segments do
        Place(s֒ tier⊲next)
    end

®

®

®

3.4 Implementation Details

3.4.1 Node design

The new DMSH system architecture suggests that

compute nodes may be equipped with one or more non-

volatile storage devices and share access to a burst

buffer deployment. Hermes is designed to support all

the new trends in system design. Each application core

uses an I/O API (i.e., POSIX, MPI-IO, HDF5, etc.)

which in turn is captured by Hermes. A dedicated core

per node, called node manager, is exclusively used by

Hermes services. Specifically, this multi-threaded core

is responsible for metadata management, data organi-

zation and movement between layers, messaging ser-

vices between compute nodes (horizontal hierarchy), lo-

cal memory management such as placement of data in

buckets, eviction policies, and finally prefetching. The

ratio between application cores and the Hermes node

manager is configurable and is suggested to be around

64-to-1 (i.e., similar to I/O forwarding layer present

in several supercomputing sites). If an I/O forward-

ing layer exists, Hermes can utilize the I/O cores there.

However, our design is not limited only to such systems

and can be widely deployed. Fig.4 demonstrates Her-

mes node design. This design allows Hermes to main-

tain minimal overheads resulting to negligible impact

to the application CPU and memory resources. In fact,

Hermes’ usage pattern on each node is not different

from any other distributed storage service currently in
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production. For example, existing buffering solutions,

such as Datawarp and DataElevator, run daemons on

every node that are responsible to buffer incoming re-

quests. Similarly, Hermes node manager is spawned on

each node without affecting the application resources.

3.4.2 Critical Components

During I/O buffering into DMSH, there are three

critical operations: memory, metadata, and communi-

cation management. To achieve high-performance in

each of these critical operations, Hermes incorporates

several novel technical innovations. As it can be seen

in Fig.4, RAM is split into application memory and

Hermes memory, which is further divided into bucket

pool, MDM, and message queue. Each of these memory

sections are further depicted in Fig.5.

1) RAM Management. We have designed a new

memory management system to offer fast and efficient

use of main memory, a very crucial resource in any

buffering platform. Hermes stores data in buckets,

an abstract notion of a data holder. Buckets have a

configurable fixed size and consist of a collection of

memory pages. All buckets are allocated during the

bootstrapping of the system, creating a bucket pool.

This allows Hermes to avoid the cost of per-request

memory allocation (i.e., only pay the cost in the be-

ginning before the application starts), to better control

memory usage by avoiding expensive garbage collec-

tion, and to define the lifetime of memory allocations

per application (i.e., re-use the same buckets after data

have been flushed down). Bucket pools are organized

in four regions: available buckets, RAM cache, NVMe

cache, burst buffers cache. The bucket pool is managed

by the bucket manager who is responsible to keep track

of the status of each bucket (e.g., full-available). In

the beginning, all buckets are available. When a pro-

cess wants to buffer data, it asks the bucket manager for

one or more buckets. The bucket, as a unit of buffering,

is extremely critical to achieve high performance, low

latency, and increases design flexibility (better eviction

policies, hot data cache, etc.).

We implemented Hermes’ memory management us-

ing MPI one-sided operations. Specifically, buckets are

placed in a shared dynamic Remote Memory Access

(RMA) window. This allows easier access to the buck-

ets from any compute node and a better global mem-
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Fig.5. Hermes memory management.
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ory management. MPI-RMA implementations support

RDMA-capable networks which further diminishes the

CPU overhead. All bucket operations are performed by

the manager who maintains an index of the entire RMA

window and is responsible to assign buckets by return-

ing a pointer to the application (i.e., to buffer data)

or the data organizer (i.e., to flush data). Access to

buckets occurs using MPI Put() and MPI Get(). Up-

date operations are atomic with exclusive locking only

on the bucket being updated. To support fast query-

ing (e.g., location of a bucket, list of available buck-

ets, etc.) the bucket manager indexes the RMA win-

dow and bucket relationships much like how inode ta-

bles work. The structure of a bucket includes an iden-

tifier (uint32), a data pointer (void*), and a pointer

(uint32) to the next bucket. Hermes’ buckets are per-

fectly aligned with RAM’s memory pages which opti-

mizes performance especially for applications with un-

aligned accesses. Finally, to ensure data consistency

and fault tolerance, Hermes maps (via mmap()) the en-

tire MPI-RMA window and the index structure to a

file stored in a non-volatile layer of the hierarchy (con-

figured by a user). We suggest for a good balance of

performance and safety against failures to place this

special file to the burst buffers since if a compute node

fails, the local NVMe device will become unavailable

till the node is fixed.

Fig.6 motivates our design for Hermes’ memory

management. In this test, we issued a million fwrites

of various sizes (from 64 KB to 2 MB) and measured

the achieved memory operations per second. The test

was conducted on our development machine that runs

CentOS 7.1. In the test’s baseline, we intercept each

fwrite(), allocate a memory buffer (i.e., malloc()), copy

data from a user’s buffer to the newly allocated space

(i.e., memcpy()), and finally flush the buffer (i.e., free())

once the data are written to the disk. As a slightly op-

timized baseline case we used Google’s TC Malloc. In

contrast, Hermes intercepts each fwrite(), calculates

how many buckets are required to store the data and

asks the bucket manager for them, and copies data from

the user’s buffer to the acquired buckets. Once data are

written to the disk, buckets are marked by the data or-

ganizer as available and no freeing is performed. As

it can be seen in Fig.6, Hermes outperforms Linux’s

Malloc by 3x and TCMalloc by 2x. Hermes managed

to sustain more than 3 million memory operations per

second (ops/sec), whereas the baselines, 1 and 2 million

ops/sec respectively. Interestingly, as the allocation size

grows, Linux’s Malloc struggles in performance com-

pared to TCMalloc. The pre-allocation and efficient

management of the buckets and the lack of freeing of

buffers helped Hermes to maintain stable high perfor-

mance.
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Fig.6. RAM operations throughput.

2) Metadata Management. Any metadata service

in distributed systems is subject to scalability and per-

formance issues. Metadata in a buffering platform like

Hermes consist of data distribution information (e.g.,

which node, which layer in DMSH, which bucket, etc.)

and maintenance of both the user’s and internal file

namespaces. Hermes’ metadata manager is distributed

and aims to offer highly concurrent and asynchronous

operations. To achieve this, Hermes employs a novel

distributed hashmap design, implemented using RMA

windows and MPI one-sided operations. A hashmap

consists of keys that correspond to specific values. Our

design uses two RMA windows: i) key window, which

is indexed to support efficient querying and ii) value

window, for data values. This practically allows any

process to simply MPI Get() a specific key and then

fetch its respective value. We use a 2-way hashing:

first, the key is hashed to a specific node and then

into a value that resides on that node. The MPI one-

sided operations allow Hermes to perform metadata

operations without interrupting the destination node.

RDMA-capable machines will be able to perform even

faster by using the RDMA controller for any data move-

ment. Additionally, the RMA windows are dynamic

effectively allowing the metadata to grow in size as re-

quired, similar to rehashing in traditional hashmap con-

tainers. Lastly, our hashmap design liberates us to use

complex structures, such as objects and nested custom

datatypes, to describe a certain file and its metadata

information. In contrast, popular in-memory key-value

such as Redis or MemCached uses simple datatypes for

keys and values (e.g., strings or integers) which can be

a limiting factor to metadata services. Additionally,



Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering and Prefetching 107

these key-value stores offer features that are not use-

ful in our use case such as replication, timestamps, and

other features that only add overhead if one does not

need or intend to use them.

Hermes’ MDM uses several maps: i) file handler

to file: maintains file handlers of opened files, {fh,

filename}, ii) file to metadata properties: maintains

all typical file properties (e.g., permissions, ownership,

timestamps, etc.), {filename, {filestat}}, iii) files to lo-

cation in DMSH: maintains data distribution informa-

tion, {filename, {(offset, size), (node, layer, type, iden-

tifier, freq)}}, and iv) node to current status: main-

tains information for each node’s current status such as

remaining capacity, hot data access frequencies, etc.,

{node, (layer, size, ...)}. These maps allow fast queries

and O(1) read/write MDM operations without the need

to execute separate services (e.g., a Memcached server).

Creation and update of metadata information is per-

formed by using MPI EXCLUSIVE locks which ensures

FIFO consistency. Read operations use a shared lock

which offers higher performance and concurrency. Fi-

nally, Hermes’ MDM exposes a simple and clean API

to access its structures (e.g., mdm update on open(),

mdm get file stat(), mdm sync meta(), etc.).

In Fig.7 we compare Hermes’ MDM performance

with a custom MPI-based solution, Memcached, and

Redis. In this test, we issue a million metadata ope-

rations and we measure the MDM throughput in ope-

rations per second. First, we implemented a custom

MPI-based solution where one process per node is the

MDM and answers queries from other processes. Upon

receiving one, it queues the operation, it spawns a

thread to serve the operation, and it goes back to listen-

ing. The spawned thread removes the operation from

the queue and performs the operation. While this ap-

proach is feasible, it uses a dedicated core per node.

Another approach is to use an in-memory key-value

store. We implemented the MDM using Memcached

and Redis, two of the most popular solutions. In this

approach, one Memcached or Redis server per node is

always running and awaits for any metadata operations.

There is no explicit queuing but its implementation uses

multi-threaded servers with locks and internal queues

to support concurrent operations. Again, a dedicated

core is required to run the server. Lastly, Hermes is us-

ing our own hashmap to perform metadata operations.

Each processes accesses the shared RMA window to get

or put metadata. There is no dedicated core used. As it

can be seen in Fig.7, our solution outperforms by more

than 7x the MPI-based custom solution and by more

than 2x the Memcached and Redis versions. Update

operations are more expensive since clients first need

to retrieve the metadata, update them, and then push

them back to the MDM.
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Fig.7. Metadata manager throughput.

3) Messaging Service. Many operations in Her-

mes involve communication between different compute

nodes, buffering nodes, and several other components.

The messaging service does not involve in data move-

ment but instead provides the infrastructure to pass

instructions between nodes. For instance, horizontal

access to the deep memory hierarchy involves sending

data across the network to a remote RAM or NVMe.

Another example is when the prefetcher gets triggered

by one process it will fetch data to a layer of the hi-

erarchy for subsequent read operations. Finally, when

the buffers are flushed to the remote parallel file system

for persistence, a system-wide coordination is required.

All the above cases require a high-performance and low

latency messaging service to be in place. Hermes im-

plements such messaging service by utilizing our own

distributed queue via MPI one-sided operations. We

designed a scalable messaging service by leveraging the

asynchronicity of MPI RMA operations. When a pro-

cess needs to communicate with another process across

the compute nodes, it simply puts a message into the

distributed queue that is hosted by all compute nodes.

A shared dynamic RMA window is used to hold the

queue messages. Each message has a type (i.e., an in-

struction to be carried out), its associated attributes,

and a priority. As with the distributed hashmap above,

if there is an RDMA controller it will be used to avoid

interrupting the destination core. There is no need

to employ listeners or other always-on services such as

Apache ActiveMQ [53] or Kafka [54] leading to better re-

source utilization. Additionally, we define our own bit

encoding to keep the messages small and avoid costly se-
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rializations/transformations and therefore lead to lower

latencies and higher throughput. Hermes messaging

service aims to offer higher overall performance avoid-

ing network bottlenecks and communication storms.

In Fig.8 we compare Hermes’ performance with a

custom MPI-based solution, Memcached, and NATS.

In this test, we issue a million queue operations (e.g.,

publish-subscribe) and we measure the messaging rate

in messages per second. As described above, we imple-

mented a customMPI-based solution where one process

per node accepts messages from other processes. We

also implemented a distributed queue using Memcached

where each message becomes a key-value pair (i.e., ID-

message). Furthermore, we explored NATS, a popular,

in-memory, high-performance, and open source messag-

ing system. In both latter options, a dedicated core

needs to run server code. Lastly, Hermes is using our

own distributed priority queue to execute the messaging

service. Each process puts or gets messages from the

shared RMA window while no dedicated core is used.

As it can be seen in Fig.8, Hermes outperforms the

custom MPI-based messaging implementation by more

than 12x. This is expected since the server process

gets saturated from the overwhelming rate of incom-

ing messages. As a result, client processes need to wait

blocked for the server to accept their messages. The

handler thread cannot match the rate of new messages.

A similar picture is evident in the Memcached solution

where Hermes performs more than 8x faster. However,

in Memcached, up to 4 handler threads are spawned

which possibly leads to better performance compared

with the custom MPI-based one. Finally, NATS perfor-

mance is really good with more than 300 000 published

messages per second. However, Hermes outperforms

NATS by more than 2x for publishing and more than

3x for subscribe operations.
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Fig.8. Messaging service throughput.

3.5 Design Considerations

In this subsection, we briefly discuss concerns re-

garding the design and features of any buffering plat-

form, especially one that supports a DMSH system such

as Hermes. The goal is to present some of our ideas and

to generate discussion for future directions.

1) High-Performance

Concern 1: How to support and manage hete-

rogeneous hardware? Hermes is aware of the hetero-

geneity of the underlying resources via the system pro-

filer component which identifies and benchmarks all

layers present in the system. Hermes aims to utilize

each hardware resource to its best of its capabilities

by avoiding hurtful workloads. Instead, Hermes’ I/O

clients generate access patterns favorable to the each

medium.

Concern 2: How to avoid excessive network traf-

fic? Hermes’ messaging service is carefully designed to

operate with small-sized messages with bit encoding.

Furthermore, by using asynchronicity and RDMA ca-

pable hardware our solution ensures the low network

overhead.

Concern 3: How to support low-latency applica-

tions? The several data placement policies of Hermes’

DPE provide tunable performance guarantees for a vari-

ety of workloads. For low latency applications, Hermes

can leverage the performance characteristics of each

layer by placing data to the fastest possible layer. Ad-

ditionally, our novel memory management ensures that

data can be efficiently cached in RAM before ending up

to their buffer.

Concern 4: How to avoid possible buffer overflow?

Hermes’ Data Organizer component manages the ca-

pacities of the layers and moves data up and down the

hierarchy (i.e., between the layers). In corner cases of

overflow, Hermes provides explicit triggers to the data

organizer to re-balance the layers and move data based

on the buffer capacity on each layer.

Concern 5: How to scale the buffer capacity? Her-

mes’ DPE can place data in remote RAM and NVMe

devices, and thus, scaling is horizontal by adding more

compute nodes. Additionally, Hermes can support

RAM Area Network (RAN) deployments [55] to further

extend the buffer capacity.

2) Fault Tolerance

Fault tolerance guarantees are based on the buffer-

ing mode selected (i.e., sync, async). In case of asyn-

chronous buffering mode, buffered data are written to

a fault tolerant layer such as a PFS eventually which

means for a small window of time buffer contents are
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susceptible to failures. In our prototype implementa-

tion, buffers are flushed based on an event-driven archi-

tecture and also periodically to decrease the possibili-

ties of losing critical data. As a future step, we want

to investigate the following options: i) checkpointing

with configurable frequency, ii) random replication per

write operation, iii) DPE skips the failing component

for incoming I/O.

3) Data Consistency

Concern 1: Data consistency model? Hermes sup-

ports strong consistency for the application since our

design avoids having the same buffered data in mul-

tiple locations and copies. Once a write is complete,

any other process can read the data via either a local

or a remote call. Excessive locking is avoided by us-

ing MPI RMA operations and memory windows. The

model supported is single-writer, multiple-readers.

Concern 2: Support of highly concurrent metadata

operations? Upon opening a file, metadata are loaded

from the PFS to the local RAM of the process that

opened it. Then, Hermes randomly selects two other

nodes and replicates metadata there. We do this to in-

crease the availability of the metadata information and

avoid saturation of one node’s RAM. When another

process wants to access the metadata, it randomly se-

lects one of the replica copies and performs the get. If it

needs to update the metadata, Hermes propagates the

update to all replicas. This is synchronous to ensure

consistency.

4) Hermes Limitations

Hermes’ DPE component implements our data

placement policies based on the assumption that the

user knows exactly what his/her workload involves, and

thus, selecting the appropriate policy is not trivial. As

a suggestion, the user can first profile his/her applica-

tion using typical monitoring and profiling tools, such

as Darshan [56], extract knowledge regarding the I/O

behavior, and make the right policy choice.

4 Evaluation

4.1 Methodology

Overview. To evaluate Hermes, we have conducted

two sets of experiments. We first explored how Her-

mes’ data placement policies handle different workloads

and application characteristics using synthetic bench-

marks. We then compared Hermes with state-of-the-art

buffering platforms, namely Data Elevator and Cray’s

DataWarp, using real applications. As for performance

metric, we used the overall execution time in seconds

which we further divide to: i) time to write/read

to/from buffers, and ii) time to flush buffers to PFS.

Computation time was excluded since it is the same

among all systems. As reference, we included a baseline

of no buffering in which data are written/read directly

to/from the PFS. We run all tests ten times and we

report the average time.

Hardware. All experiments were conducted on

Chameleon 9○. More specifically, we used the bare metal

configuration with 32 client nodes (i.e., up to 1 024 MPI

ranks), 8 burst buffer nodes, and 16 PFS storage nodes.

Each node has a dual Intelr Xeonr CPU E5-2670 v3

running at 2.30 GHz with a total of 48 cores, and 128

GB RAM. Each burst buffer node is equipped with an

SSD drive and each PFS node with an HDD. We em-

ulated one NVMe device per client node by deploying

a DRAM-based file system (i.e., RAMDISK) and im-

posing latency and bandwidth penalties to match the

actual NVMe performance [52, 57, 58]. In order to cor-

rectly calculate the added latency and lowered band-

width, we captured the performance characteristics of

real NVMe devices present in the hierarchy appliances

of Chameleon.

Table 1 lists all the hardware specifications and per-

formance measurements and Fig.9 demonstrates the

cluster topology resembling that of an typical HPC ma-

chine.

Lastly, to better capture the architecture of a mod-

ern supercomputer, we set up our cluster topology as

follows: all 32 client nodes and 8 burst buffers are inter-

connected with 56 Gbps Infiniband network and the 16

storage nodes are connected to the rest via a 10 Gbps

Ethernet network.

Software. The operating system of the cluster is

CentOS 7.1, the MPI version is Mpich 3.2, the PFS we

used is OrangeFS 2.9.6, the in-memory key-value stores

are Memcached 1.4.36 and Redis 4.0.6, and lastly the

distributed queue we used is NATS Server 1.0.4.

Applications. We evaluated Hermes using our own

synthetic benchmark that emulates common scien-

tific application workloads such as alternation between

computation-I/O phases, read-after-write, read-once,

read-many, etc. It uses POSIX-IO to issue requests

to the file system and operates in a typical file-per-

process pattern. We also used two real science appli-

cations: Vector Particle-In-Cell (VPIC) and Hardware

Accelerated Cosmology Code (HACC). Both of these

9○https://www.chameleoncloud.org/about/chameleon/, Nov. 2019.
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Table 1. Testbed Machine Specifications

RAM NVMe SSD HDD

Model M386A4G40DM0 Intel DC P3700 Intel DC S3610 ST9250610NS

Connection DDR4 2133 Mhz PCIe Gen3 x8 SATA 6 Gb/s SATA 7200 rpm

Capacity 128 GB(8GB×16) 1.2 TB 1.6 TB 2.4 TB

Latency 13.5 ns 20 µs 55–66 µs 4.16 ms

Max Read BW (MB/s) 13 000 2 800 550 115

Max Write BW (MB/s) 10 000 1 900 500 95

Test Configuration 32x client nodes RamFS emulated 8x burst buffers 16x PFS servers

ReadBW tested (MB/s) 92 647 38 674 3 326 883

WriteBW tested (MB/s) 86 496 33 103 2 762 735

simulations perform computations and produce output

files periodically that need to be persisted in PFS. Also,

both demonstrate a periodic behavior with time steps

(i.e., iterations) that include the checkpoint and restart

as well as the analysis outputs produced by the sim-

ulations. We used 16 time steps for both simulations

resulting to total I/O of 1 TB.

Burst

Buffers

Infiniband Network (56 Gbit)

Parallel File System

Ethernet Network (10 Gbit)

Τ8

Τ16

Client Nodes

Τ32

Fig.9. Cluster setup and topology.

4.2 Experimental Results

4.2.1 Synthetic Benchmarks

Our synthetic benchmark is highly tunable to gene-

rate workloads that can stress the buffering system un-

der various use-cases. We designed two test-cases to

evaluate Hermes’ data placement policies.

Alternating Compute-I/O Phases. In this test, each

process first performs some computations (emulated

by sleep() calls) and then writes 64 MB in a file-per-

process fashion. We repeated this pattern 16 times with

1 024 processes resulting in 1 TB total I/O size. We

varied the ratio of computation over I/O time to emu-

late three distinct types of applications: data-intensive,

compute-intensive, and balanced. We assume that all

data written to the buffers need to be also written to

the disk-based remote PFS. Therefore, Hermes is con-

figured in persistent asynchronous mode. We measure

the overall time spent in I/O, in seconds, which consists

of write-time and flush-time.

Fig.10 shows the results. As it can be seen, the

baseline writes directly to PFS (i.e., no flush-time) and

maintains stable write performance regardless of the

computation-I/O ratio. In Data Elevator (DataElev)

and DataWarp, data are written to the burst buffers

resulting to similar write-time between them. The diffe-

rence in performance comes from data flushing. Data

Elevator overlaps flushing with computation phases,

and thus, as the computation-I/O ratio increases, flush-

time decreases (i.e., flushing is hidden behind compu-

tation). On the other hand, DataWarp flushes data

only once the application finishes and demonstrates sta-

ble flush-time regardless of the computation-I/O ra-

tio. In Hermes, data are written in all layers of the

DMSH (i.e., RAM, NVMe, and burst buffers in our

system). We evaluate both MaxBW and MaxLocal-

ity data placement policies since they buffer data dif-

ferently. MaxBW places data in a top-down fashion.

It starts with RAM for the first iterations of the test,

and once this layer is full, it first moves data down

to NVMe to create space in RAM and then places

the incoming iteration in RAM. On the other hand,

MaxLocality uses layers concurrently. It writes the

first iterations in RAM and once this layer is full it

goes on to the next without any data movement be-

tween layers. It is clear that for data-intensive applica-

tions where the rate of incoming I/O is high, MaxBW’s

data movement between layers imposes some perfor-

mance losses, and thus, MaxLocality’s write perfor-

mance is slightly higher. As the computation-I/O ra-

tio increases however, MaxBW can overlap data move-

ment between layers with computations. Therefore,

for compute-intensive workloads, MaxBW outperforms

MaxLocality by 4x in write-time since it ensures that

incoming I/O can be written in RAM. For flushing,
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Fig.10. Benchmark: alternating compute-I/O phases.

both policies leverage any computation time available

to asynchronously flush buffer contents to PFS, sim-

ilarly with Data Elevator. However, Hermes flushes

all layers of the DMSH concurrently which decreases

flush-time significantly. In summary, in this test Her-

mes offers 8x and 2x higher write performance when

compared with No Buffering baseline and state-of-the-

art buffering platforms respectively.

Repetitive Read Operations. In this test, the bench-

mark is configured to create a write-once, read-many

workload. Each process first writes 32 MB in a file-per-

process approach and then reads back 32 MB of data

(not necessarily the same data). We have 16 phases of

this pattern with 1 024 processes aggregating the I/O

to 1 TB. We vary the repetition of read operations as

follows: i) read-once, where 32 MB of data is read only

once, ii) read-many x4, where 8 MB of data is read 4

times (i.e., still 32 MB in total), and iii) read-many

x16, where 2 MB of data is read 16 times. This pat-

tern resembles workloads where portions of data such

as metadata information, indices of files, and so on,

are frequently accessed creating a data hotness spec-

trum. In this test, we assume that buffers are used as

scratch space (i.e., temporary I/O), and thus, Hermes

is configured in non-persistent mode. The total time,

in seconds, is divided into write-time and read-time.

As it can be seen in Fig.11, the baseline writes

and reads directly from the PFS and maintains a sta-

ble performance irrespective of the workload type. In

Data Elevator and DataWarp, data are written/read

to/from the burst buffers respectively. This results in a

considerable performance improvement over the base-

line. Since repetitive read operations are treated as

new, it shows stable performance across different work-

loads. In contrast, Hermes implements a HotData data

placement policy to offer higher performance for this

type of workloads. Since HotData will promote fre-

quently accessed data in upper layers, repetitive read

operations access data always from RAM resulting in

significant performance boost for Read-many x4 and

x16. On the other hand, MaxBW, while offering a com-

petitive performance across the tested workloads, does

not cache frequent accessed data in RAM and demon-

strates a stable performance across the tested work-

loads. In summary, in this test Hermes offers 38x and

11x higher read performance when compared with No

Buffering baseline and state-of-the-art buffering plat-

forms respectively.

4.2.2 Data-Centric Prefetching

A system-wide prefetching approach has the advan-

tage of observing how files are accessed across multi-

ple processes or even applications. Hermes’ Prefetcher

implements a data-centric logic where access statis-

tics are collected and prefetching decisions are made

based on how important a file block or region (i.e.,

segment in Hermes) is. In contrast, an application-

centric prefetcher’s main objective is to identify how

each application accesses its data and make prefetching

decisions accordingly. This approach might create sce-

narios where the cache can get polluted, or data are

fetched twice, or unnecessary evictions of prefetched

data occur. To better understand the differences be-

tween an application-centric and data-centric prefetch-
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Fig.11. Benchmark: repetitive read operations.

ing approach and identify which workloads work best

in each, we tested Hermes under the following sce-

nario. We have 1 024 processes in total organized in

four different communicator groups representing diffe-

rent applications resembling a data analysis and visua-

lization pipeline. Each process issues read requests on

the same dataset. We tested four commonly-used pat-

terns: sequential, strided, repetitive, and irregular ac-

cess patterns. The prefetching cache size is configured

to fit the total data size of two out of the four appli-

cations which means applications compete for access to

this cache. For Hermes the prefetching cache is config-

ured to fit one application’s load in RAM and one in

NVMe. Fig.12 demonstrates the evaluation results. As

can be seen, for sequential, strided, and repetitive pat-

terns, Hermes achieves 26% higher performance when

compared with an application-centric approach. Her-

mes is able to capture how data are accessed across ap-

plications or files and understand which segments are

important to fetch from a global perspective. This re-

sults in zero cache evictions and no cache pollution.

However, Hermes suffers from irregular patterns since

created file heatmaps, that represent segment scoring,

are uniformly flat (i.e., same heat throughout). Hence,
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the placement of segments in prefetching is effectively

random which increases the miss ratio.

4.2.3 Real Applications

To test our system under real applications work-

load, we configured Hermes in persistent asynchronous

mode since data need to be stored in the PFS for future

access and selected the default data placement policy,

MaxBW.

VPIC. Vector Particle-In-Cell (VPIC) is a general

purpose simulation code for modeling kinetic plasmas

in spatial multi-dimensions. This application demon-

strates a write-only I/O access pattern where at the

end of each time step, each process writes data to an

HDF5 file. At the end of each step, VPIC writes a

single HDF5 file containing properties of 8 million par-

ticles. VPIC tends to be extremely I/O intensive (i.e.,

write-only, write-heavy), since the portion of computa-

tion is small. During this evaluation we executed the

application for 16 time steps. We strong scaled the

application from 256 to 1 024 total ranks and we mea-

sured the total time. In Fig.13 we report only the I/O

time which consists of write-time (i.e., what the appli-

cation experiences) and flush-time (i.e., persisting the

data asynchronously). As it can be seen, all tested so-

lutions scale linearly with the number of MPI ranks.

In the largest tested scale of 1 024 ranks, the baseline

completed the test in 1 192 seconds. Both Data Ele-

vator and DataWarp wrote the entire dataset in 438

seconds. This is approximately a 2.5x improvement

over the baseline. However, due to the higher band-

width of the DMSH, Hermes’ write performance is 5x

and 2x higher than the baseline and the two buffering

platforms we tested, respectively. When considering

data flushing, Data Elevator overlaps small computa-

tions between each time step and flushes the contents

of burst buffers in 1 115 seconds whereas DataWarp

flushes everything at the end in 1 274 seconds. In con-

trast, Hermes leverages the computations but also the

concurrency of the DMSH to flush all buffered data to

PFS in 637 seconds. In summary, in this test, Hermes

outperformed the baseline and state-of-the-art buffer-

ing platforms by 40% and 85% respectively.

HACC. Hardware Accelerated Cosmology Code

(HACC) is a cosmological simulation that studies the

formation of structure in collisionless fluids under the

influence of gravity in an expanding universe. HACC

has read-after-write workload where, at every step, sim-

ulation writes out a single shared file (i.e., MPI Collec-

tive I/O) that various analysis modules read back. This

application demonstrates a read-after-write I/O access

pattern where during each time step, each process reads

back data previously written using MPI-Collective IO.

During this evaluation we executed the application for

16 time steps. We strong scaled the application from

256 to 1 024 total ranks and we measured the total time.

In Fig.14 we report only the I/O time which consists

of write-time, read-time, and flush-time. As it can be

seen, all tested solutions scale linearly with the number

of MPI ranks. In the largest tested scale of 1 024 ranks,
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Fig.14. I/O buffering performance with HACC-IO.

the baseline completed the test in 1 313 seconds. Both

Data Elevator and DataWarp performed I/O in 348 sec-

onds. This is approximately a 3.7x improvement over

the baseline. However, when considering data flushing,

Data Elevator completed the test in 773 seconds and

DataWarp in 985 seconds effectively reducing the total

improvement to 1.6x and 1.3x respectively. In contrast,

Hermes completed the entire test in 494 seconds show-

casing the potential of a DMSH system. The perfor-

mance improvement is substantial when compared with

No Buffering baseline with 7.5x faster I/O operations.

Hermes outperformed Data Elevator and DataWarp by

2x due to higher bandwidth of the DMSH.

To evaluate the effectiveness of Hermes’ data-centric

prefetching approach, we performed scaling tests us-

ing two complex multi-phased scientific workflows

namely Montage [59] and WRF 10○. We compare Hermes

prefetching ability with Stacker [41] and KnowAc [21],

one online and one offline prefetcher. Both of those so-

lutions are configured to fetch data from burst buffers

to the application’s memory.

Montage. This workflow is a collection of programs

comprising an astronomical image mosaic engine based

onMPI. It is a classical real world use-case of a workflow

where multiple kernels share data for different purposes

and access this common data concurrently. Each phase

of building the mosaic takes an input from the previ-

ous phase and outputs intermediate data to the next

one. Montage’s workflow is highly read-intensive and

iterative. Fig.15 shows the results for Montage. During

this test, each process does 10 MB of I/O operations in

16 time steps for a total of 400 GB for the largest scale.

We weak scaled the execution of Montage by increasing

the number of processes from 320 to 2560. Required

data are initially staged in the burst buffer nodes. The

system is overall configured with prefetching cache or-

ganized in 1.5 GB RAM space, 2 GB in local NVMe

drives and 400 GB burst buffer allocation. As can be

seen, the best read performance is achieved by KnowAc,
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Fig.15. End-to-end performance of Montage scientific workflow.

10○https://www.mmm.ucar.edu/weather-research-and-forecasting-model, Nov. 2019.
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a history-based prefetcher, since the prefetcher knows

exactly what to load next. However, such approach

suffers from prolonged profiling costs. Stacker avoids

pre-processing steps and builds its models as it goes,

but demonstrates a lower hit ratio due to some cache

conflicts and unwanted data evictions. Hermes is able

to utilize all available tiers and performed the best,

offering from 5%–25% better end-to-end performance

when compared with Stacker and 10%–30% better than

KnowAc (i.e., profile-cost plus run time). Note that all

solutions scale nicely.

WRF. This workflow is a multi-phased mesoscale

numerical weather prediction system designed for both

atmospheric research and operational forecasting needs.

WRF is a multi-step iterative workflow where compo-

nents of the simulation analyze observed and simulated

data many times until the model converges. There

are three distinct phases: pre-processing, main model,

post-processing and visualization. Fig.16 shows the re-

sults for WRF. During this test, each process reads

8 MB of data in 4 time steps for a total of 80 GB across

all scales (i.e., strong scale). Input data are assumed

to be initially present in the burst buffer nodes. The

system is configured with prefetching cache organized

in 1.25 GB RAM space, 2 GB in local NVMe drives and

80 GB burst buffer allocation. Results confirm our pre-

vious observations with KnowAc having the best read

time but additional profiling costs and Stacker demon-

strating better end-to-end time over KnowAc. Hermes

is able to utilize all tiers and scaled better than all so-

lutions.
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Fig.16. End-to-end performance of WRF scientific workflow.

5 Related Work

New hardware technologies have been developed

and can be used to build new memory and storage hi-

erarchies using non-volatile memory (NVRAM) such as

phase-change memory (PCM) [58], memristors [60], and

Flash memory [14]. Flash-based SSD technology has

been widely studied [61], characterized [62], and evalu-

ated for different application types [63, 64]. Researchers

also advocate the use of shared buffer technologies, such

as burst buffers [65], to accelerate I/O. Existing work has

considered NVMe devices as a viable solution for I/O

staging [15, 66]. Caulfield et al. proposed Moneta [67],

an architecture with NVRAM as an I/O device for

HPC applications. Ekel et al. extended Moneta with

a real PCM device to understand the performance im-

plications of using NVRAM [68]. Dong et al. studied

NVRAM for HPC application checkpointing [69]. Kan-

nan et al. studied NVRAM for I/O intensive bench-

marks in Cloud environments [15]. Wang et al. pro-

posed BurstMem [70], a technology for optimizing I/O

using burst buffers. Sato et al. showed how the burst

buffers can boost performance of checkpointing tasks

by 20x [71].

Active buffers [72, 73] exploits one-sided communica-

tion for I/O processors to fetch data from compute

processors’ buffers and performs actual writing in the

background while computation continues. IOLite [74],

proposes a single shared memory per-node for leverag-

ing inter-process communication and buffering of I/O.

Such an approach led to 40% boost in performance.

Nitzberg and Lo [75] proposed collective buffering algo-

rithms for improving I/O performance by 100x on IBM

SP2 at NASA Ames Research Center. PLFS [76] remaps

an application’s preferred data layout into one which is

optimized for the underlying file system.

While all the above work emphasizes the bene-

fits of using each technology individually, none intro-

duced a complete I/O buffering platform that lever-

ages the DMSH. The closest work to Hermes is Data

Elevator [77] and its successor UniviStor [78], a new sys-

tem that transparently moves data in a hierarchical sys-

tem. The authors focused on systems equipped with

burst buffers and demonstrated a 4x improvement over

other state-of-the-art burst buffer management systems

such as Cray’s Datawarp 11○. However, they did not ad-

dress local memory and local non-volatile devices such

as NVMe. Hermes considers both local resources and

11○http://www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf, Nov. 2019.
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shared resources like burst buffers. Furthermore, Her-

mes extends buffering into remote resources and tack-

les data movement to a more complicated landscape of

I/O-capable devices.

In addition to that relevant research, we identify

the following work for data prefetching. Diskseen [38],

tracks the locations and access times of disk blocks.

Based on analysis of their temporal and spatial rela-

tionships, it seeks to improve the sequentiality of disk

accesses and overall prefetching performance. However,

disk blocks do not carry file semantics and relationships

between segments. During Hermes design and develop-

ment, we drew partial motivation from a cache replace-

ment algorithm presented in [88] where frequency and

recency of a memory page can both influence the evic-

tion of the page. Hermes’ segment scoring resembles

in a sense a similar approach where we target segment

with score based on access frequency and recency.

6 Conclusions

To increase I/O performance, modern storage sys-

tems are presented in a new memory and storage hi-

erarchy, called Deep Memory and Storage Hierarchy.

However, data movement among the layers is signifi-

cantly complex, making it harder to take advantage of

the high-speed and low-latency storage systems. Ad-

ditionally, each layer of the DMSH is an independent

system that requires expertise to manage, and the lack

of automated data movement between tiers is a signifi-

cant burden currently left to the users.

In this paper, we presented the design and im-

plementation of Hermes: a new, heterogeneous-aware,

multi-tiered, dynamic, and distributed I/O buffering

system. Hermes enables, manages, and supervises I/O

buffering into the DMSH and offers a buffering plat-

form that can be application- and system-aware, and

thus, hide lower level details allowing the user to fo-

cus on his/her algorithms. Hermes aims at maximizing

productivity, increasing resource utilization, abstract-

ing data movement, maximizing performance, and sup-

porting a wide range of scientific applications and do-

mains. We have presented three novel data placement

policies to efficiently utilize all layers of the new mem-

ory and storage hierarchy as well as three novel tech-

niques to perform memory, metadata, and communi-

cation management in hierarchical buffering systems.

Our evaluation results prove Hermes’ sound design and

show a 8x improvement compared with systems without

I/O buffering support. Additionally, Hermes outper-

forms by more than 2x state-of-the-art buffering plat-

forms such as Data Elevator and Cray’s Datawarp.
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Appendix

A1. Maximum Application Bandwidth

A1. (MaxBW)

DPEMaxBW (s, Ci)

=



























































(s/BWi)× Ai,

if s 6 Ci,

min











DPE(s, Ci+1)

DPE(Ci, Ci) +DPE(s−Ci, Ci+1)

Move(s− Ci, i+ 1) +DPE(s, Ci))











,

if s > Ci,



























































,

where s is the request size, C is a layer’s remaining

capacity in MBs, i is the current layer, BW is the

bandwidth in MB/s, A is the access latency in ms, and

Move(min size, dest) triggers data organizer to recur-

sively move at least min size data to dest layer.

A2. Maximum Data Locality

DPEMaxLocality(s, d, Li, Ri)

=



















































































(s/BWi)× d, if Li & s 6 Ri,

min





(s/BWi)× (d+ 1)

DPE(s, d, Li+1, Ri+1)



 , if !Li & s 6 Ri,

min























DPE(s, d, Li+1, Ri+1)

DPE(Ri, d, Li, Ri)+

DPE(s−Ri, d, Li+1, Ri+1)

ReOrganize(s−Ri)+

DPE(s, d, Li, Ri))























, if s > Ri,



















































































,

where s is the request size, d is the degree of data dis-

persion into DMSH, L is the locality of a dispersion

unit in layer (i.e., if it exists in this layer or not), R is

a layer’s capacity threshold, i is the current layer, BW

is the bandwidth in MB/s, and ReOrganize(min size)

is a function that triggers data organizer to recursively

move at least min size data to maintain the locality of

a dispersion unit.

A3. Hot-Data

DPEHotData(s, h,Hi, Ci)

=











































































































































































(s/Ci)/BW,

if h > Hi & s 6 Ci,

min























DPE(s, h− 1, Hi+1, Ci+1)

DPE(Ci, h,Hi, Ci)+

DPE(s− Ci, h− 1,Hi+1, Ci+1)

Evict(s− Ci, h, i+ 1)+

DPE(s, h,Hi, Ci)























,

if h > Hi & s > Ci,

min





DPE(s, h+ 1, Hi, Ci)

DPE(s, h,Hi+1, Ci+1)



 ,

if h < Hi & s 6 Ci,

min











DPE(Ci, h+ 1,Hi, Ci)+

DPE(s− Ci, h,Hi+1, Ci+1)

DPE(s, h,Hi+1, Ci+1)











,

if h < Hi & s > Ci,











































































































































































,

where s is the request size, h is the file’s hotness score,

H is the minimum hotness score present in a layer,

C is a layer’s remaining capacity in MBs, i is the

current layer, BW is the bandwidth in MB/s, and

Evict(min size, score, dest) is a function that triggers

data organizer to recursively move at least min size

data to the dest layer with score hotness.
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Tim Süß, Markus Tacke, Tommaso Tocci, Ramon Nou, Alberto Miranda, Toni Cortes, and André Brinkmann ( 72 )
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