
Modeling Data Access Contention in Multicore Architectures

Xian-He Sun
Department of Computer Science
Illinois Institute of Technology

Chicago, IL, USA
e-mail: sun@iit.edu

Surendra Byna
NEC Laboratories America Inc.

Princeton, NJ, USA
e-mail: sbyna@nec-labs.com

Don Holmgren
Computing Division

Fermi National Accelerator Lab
Batavia, IL, USA

e-mail: djholm@fnal.gov

Abstract— Multicore processors are now part of mainstream
computing. However, data access contention among multiple
cores is a significant performance bottleneck in utilizing these
processors. Typically, memory hierarchies in multicore
architectures use shared last level cache or shared memory. As
multiple cores concurrently send requests to access data from
these shared memory hierarchy levels, their capacity to serve
all the requests is overwhelming and causes performance
bottlenecks. In this paper, we introduce simple analytical
models for predicting the occurrence of data access contention
and provide a guideline for choosing optimal number of cores
in running an application without causing data access
contention. We verify our models by comparing the predicted
optimal number of cores without causing data contention with
the measured value in running MIMD Lattice Computation
(MILC) application. The proposed analytical models are
accurate and promising in guiding data access optimizations to
improve multicore utilization.

Keywords-multicore processors; data access contention;
performance prediction; modeling

I. INTRODUCTION

The historical trend in processor technology had been
increasing processor speeds as the number of transistors
increased. Processor speeds were increasing rapidly as
feature sizes shrunk and the number of transistors increased
in accordance with Moore’s law. However, higher power
consumption and heat generation by faster processors have
driven chipmakers instead towards packaging multiple
simple processor cores into a single chip and reducing
speeds. The trend of scaling the number of cores per chip is
expected to continue from the 2 to 6 core processors
currently available on the market to many more in the future.

While multicore processors offer computing power to
improve the performance of applications significantly by
providing hardware support for running multiple threads
concurrently, it is mainly in the hands of developers to utilize
them efficiently. The biggest challenge with multicore
processors has been utilizing their computing power. Thread
or task level parallelism (TLP) and data-level parallelism
(DLP) are the two popular models to utilize their computing
power. There are many obstacles in programming for
multicore processors using these models.

A critical hurdle in achieving full utilization of multicore
processors is data access latency. It has been shown by
studies that concurrent multicore processing often achieves
much lower performance than expected; sometimes it is even
worse than single-core processors due to data access delay
[13]. Data access latency has even been a problem with
single-core processors as processors are much faster than
memory. With the emergence of multicore processors, a
more severe problem arises with data access due to
bandwidth limitation of shared resources in the memory
hierarchy. In a multicore system, multiple cores compete for
shared resources (e.g. memory bandwidth, cache memories,
and TLB’s), which leads to performance degradation if the
data requirements are more than what the shared resources
can provide.

Identifying data access delay bottlenecks is a valuable
step in helping developers to understand their application
performance on multicore processors. Modeling data access
latency on multicore processors is a way to identify these
bottlenecks. In this study, we introduce basic performance
models for predicting data access latency, the number of
cores to use in running an application without contention,
and the impact of data access optimizations. Using the
number of data access requests that come to a shared
memory, and based on its available bandwidth, we develop a
simple analytical model to predict the amount of data
transferred between a shared level in memory hierarchy and
the level above it. We use this model as a foundation, and
two additional models that are designed for user and system
level performance optimizations. We then model the impact
of optimizations on an application using data prefetching
optimization. Using these models, we predict and verify the
number of cores for running an application without causing
data access contention. These models are designed for
different data access and computation patterns in multicores.
While the models introduced in this study are simple, they
can be used effectively to provide developers an idea of
scaling behavior of their application. There exist many
models to predict the number of data access requests to
memory accurately [7, 5, 2, 11, 1]. The number of data
access requests by these models can be directly used in our
models to identify contention. The objective of our study is
to focus the spotlight on contention caused by shared
resources and identifying it using analytical models.

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.121

213

The paper is organized as follows. In section 2, we
provide a brief introduction to memory hierarchy in
multicore architectures and to data access contention. In
section 3, we introduce our analytical models to predict data
access contention and its corollaries. Section 4 presents
experimental results that verify our model with measured
performance results in running MILC application, and
section 5 discusses related work in multicore data access
delay modeling. We conclude and provide future directions
of our work in section 6.

II. DATA ACCESS CONTENTION

Memory hierarchy in processors is an important design
feature. To bridge the performance gap between processor
and memory, multiple levels of cache memories have been
introduced. In the ideal scenario, the data being accessed by
a processor should be available in processor registers or in a
cache memory that is closer to the processor to avoid stall-
time. If data is not available near a processor core, the core
has to stall waiting for the data, and computation capabilities
of the core are wasted. While multicore processors are
designed with the goal of amortizing this stall time by
switching the core to run another application, this goal
cannot often be realized when running scientific applications
where processors (compute nodes) are dedicated to run only
one application.

From existing multicore architectures, we can observe
two types of memory hierarchies. One has a private cache
hierarchy, and the other has a shared outer-most cache. In the
private cache architecture, each core has its own cache
memories (L1 and L2). In the shared outer-most cache
architecture, multiple cores share the lowest level of cache.
Figure 1 illustrates two types of two level cache hierarchies
in processors, with four cores. In processors, such as IBM
POWER multicore processors [9], the last level on-chip
cache is split into multiple banks and shared by two or more
processor cores. In some processors, there are two levels of
private cache with a shared off-chip L3 cache, and in others
more than one level of cache memory is shared. It can be
concluded that in all types of multicore memory hierarchy, a
level is shared among multiple cores, either closer to or
farther from the cores.

Sharing a level of memory hierarchy is required as there
are benefits of sharing same data by multiple cores. For
instance, when the same data is being accessed by multiple
cores, having a shared cache requires data transfer only once
from DRAM. Multiple private caches require twice the
number of data transfers. When multiple cores are processing
different sets of data, however, the shared resource becomes
a performance bottleneck, if the bandwidth of the shared
level is not high enough to support the multiple cores. For
instance, if main memory is shared and its bandwidth is not
enough to satisfy requests from all the cores of a processor
concurrently, then the memory becomes overwhelmed with
requests for data and becomes a performance bottleneck.
This has been already experienced in some of current
processors [13].

Data access contention in multicore processors is
application dependent. When an application has its data
access workload distributed over time and does not cause
bursts of simultaneous accesses, there is no contention. If the
number of concurrent data accesses to a shared level of
memory hierarchy is higher than the shared level can handle,
then that level becomes a source of contention. But, how can
one know that there exists data access contention in running
an application? To answer that question, in this study we
develop analytical models, first to calculate the number of
accesses to a level of memory hierarchy, and then to find out
whether a shared resource would become a source of
contention. Throughout this paper, the term contention refers
to data access contention.

III. PREDICTING CONTENTION IN MULTICORE
PROCESSORS

To derive the contention model, we assume the following
memory hierarchy in a multicore architecture. We assume
two levels of private cache (private L1 and L2), and we
assume that the data bus between L2 cache and main
memory is shared. The shared memory becomes a bottleneck
if there is contention among multiple cores. We use this
bottleneck as the target example throughout this paper to
illustrate how the contention can be modeled and analyzed.
In the presence of a shared L3 cache, as in POWER
processors [9], the data bus between the L2 and L3 caches
can also be the subject of contention analysis.

We assume that the application under consideration uses
one-stage divide-and-conquer problem partitioning, which is
common in scientific computing [3, 6]. In this pattern, there
are two separate phases in the application: a computing
phase and a data access phase. During the computing phase,
multiple threads perform computing, and during the data
access phase, multiple threads try to access data
concurrently. We assume that there is no data dependency
among multiple threads. We also assume that each thread is
running on its own core (or hardware threads), a typical OS
scheduling method on multicore processors.

Assume that n cores are used for computing, and that the
achievable speed of each core is Psustained MIPS (million
instructions per second). The total number of instructions in
each iteration is I, and the ratio between total memory

Figure 1. Memory Hierarchy in Multicore.

214

access instructions and total instructions is R. Then, the
computation time of the application running on n cores is:

nP
RIT

sustained
comp

)1((1)

Now, let us calculate memory access time in running
one iteration with I instructions and the ratio of memory
accesses are R. The total number of memory accesses from
all cores for one iteration is RI , despite the number of
cores. While the total number of memory accesses is the
same for single core or multicore processor per iteration, in
a multicore processor, there will be simultaneous accesses
from multiple cores, which could result in cause contention.
Let us assume that the L1 cache hit ratio of the iteration be
HL1, the L2 cache hit ratio be HL2, the L2 cache line be
Lcache, and assume that each memory instruction accesses
one word of Lword bytes of data. We define spatial reuse
factor (F), to represent the spatial locality characteristic of
an application. It is well known that according to the
principle of locality, instead of fetching just the requested
element, a full cache line is fetched into cache memory. If
data elements in the fetched cache line are also used by the
processor core, then the spatial reuse factor is higher,
otherwise, it is lower. The value of F ranges from 0 (in the
case where strides between successive accesses is larger
than Lcache) to 1 (in the case of all contiguous access, where
all of the fetched cache line is used). If each instruction
requires one word, the actual amount of data accessed for
one memory instruction on average then is:

cacheword LFLF)1((2)
Therefore, the actual data transferred on the bus between

L2 cache and the memory is: L =
])1([)1()1(21 cachewordLL LFLFHHRI (3)

If the sustained bandwidth of the bus between L2 and
main memory is Bsustained, (in bytes/sec) then, the data access
latency between L2 and main memory is:

Tcomm=
1 2(1) (1) [(1)]L L word cacheI R H H F L F L /

Bsustained (4)
Without cache optimizations, such as data prefetching,

loop transformations, etc., the total execution time of one
iteration is the summation of the computing time and data
access time at each iteration.

T = Tcomp + Tcomm. (5)

A. Finding the Number of Cores without Contention
When an application is run on a multicore processor, it is

important to choose an appropriate number of cores without
causing contention. Otherwise, many cores will be idle
waiting for overwhelmed memory, which becomes a
performance bottleneck due to contention. We now show
how a user can choose an appropriate number of cores for
computing.

The performance of multicore parallel processing can be
given in terms of utilization or in terms of execution time.
If we assume that the cache hit ratios are unchanged with
the number of cores, then the data access time from equation
(3) is independent of the number of cores and the computing
time decreases with the number of cores. When the number

of cores used for computing increases, the data access time
quickly becomes the dominant factor of the execution time.
If it is required to maintain a certain computing/data access
ratio and to maintain the utilization at a certain level, we
have to limit the number of cores used for computing. For
instance, if we want the computing time to be more than
90% of the execution time, then Tcomp > 9Tcomm. From
equations (1) and (2), we can derive that:

commsustained TP
RIn

9
)1((6)

This equation gives a guideline to compute the number
of cores in a multicore processor to be used for computing
in order to keep computing time as a dominant factor.

If the performance requirement is given in terms of
execution time, we get different inequalities. For instance, if
we require that the execution time of each iteration must be
less than C, i.e. T < C, then from equations (1)-(5), we have:
 Tcomp + Tcomm < C Tcomp < C- Tcomm

nP

RI

sustained

)1(< C- Tcomm

n >
)(

)1(
commsustained TcP

RI (7)

This equation is helpful in calculating the appropriate
number of cores for achieving the goal of execution time of
running an iteration of an application. Note that Tcomp is a
non-negative real number. Hence, an implied assumption of
in the inequality equation (7) is that C- Tcomm.> 0.

B. Impact of Data Prefetching Optimization
System level modeling provides performance analysis so

that performance optimization can be evaluated. For
instance, the impact of optimizations can be identified when
optimizations, such as data prefetching and loop
transformations, are implemented to mitigate data access
delay. Following the same example used above, here we
illustrate the model of prefetching. This model is useful for
both system level and user level optimizations.

Data prefetching is considered to be effective in
improving memory performance. A prefetching engine
predicts future memory references, and fetches the required
data early enough to avoid cache misses. Prefetching can
reduce execution time considerably if it is performed
correctly.

Let us first assume that we have no-cost perfect
prefetching, i.e. the prefetching mechanism incurs no cost
for predicting future references, and the computing cost is
overlapped perfectly with data access cost by accurately
predicting and prefetching data in time. With this
assumption the data access time is negligible and the total
execution time is: T = Tcomp , if Tcomp Tcomm. (8)

In other words, when Tcomp is greater than or equal to
Tcomm, there is no CPU stall. We can find the number of
cores to satisfy this Tcomp Tcomm condition. From equations
(1) and (6), we find that the condition is

n
commsustained TP

RI)1(. (9)

215

Now, let us relax the perfect prefetching assumption. In
practice, no-cost perfect prefetching is impossible to
achieve. Prefetching may take some computing power away
for data access prediction, thus, in general, we have

 T’comp =
nP

RI

sustained'
)1((10)

where P’sustained < Psustained and T’comp > Tcomp . In
equation (8) we assumed that the accuracy is 100%, which
is also not practical. When the accuracy of prefetching is
considered, it becomes even more complex. There are two
types of inaccuracies: miss fetch and fetch miss. Miss fetch
fetches some data blocks which are not needed; and fetch
miss fails to fetch some data which is needed. Miss fetch
leads to unnecessary data accesses and increases data
transfer (it also may lead to cache pollution; for the sake of
simplicity we do not consider the pollution factor here).
Fetch miss leads to processor stall for accessing data.

Let the miss fetch ratio be S, the ratio between the total
data access instructions and the miss fetch prefetching
instructions. The value of S ranges from 0, in the case there
is no miss fetch, to 1, in the case of all prefetches are miss
fetched. Therefore, the data access time is: T’comm
=

])1([])1()1[(21 cachewordLL LFLFSHHRI
/ Bsustained (11)

T’comm can be overlapped with computing if T’comp
T’comm . Assume that the fetch miss ratio is , which is the
ratio between the total data access instruction and fetch miss
instructions. The execution time with optimization is:

T’ = T’comp + Tcomm (12)
where Tcomm is given by equation (4).
Now, the number of cores in a multicore processor to be

used for computing in order to keep computing time as a
dominant factor with prefetching is:

 n
commsustained TP

RI
'9

)1((13)

The equation for calculating the appropriate number of
cores in achieving the goal of execution time for running an
iteration of an application with prefetching becomes:

n >
)('

)1(
commsustained TcP

RI (14)

Comparing the performance between no-cost perfect
prefetching and practical prefetching with cost, it can be
observed that their performance could be quite different
from equations (9) and (13).

IV. EXPERIMENTAL RESULTS

We analyzed the performance of the MIMD Lattice
Computation (MILC) application [8] to show selecting
optimal number of cores without causing data access
contention. MILC is a community code of the lattice
quantum chromo-dynamics (LQCD) community and is a
grand challenge application identified by US Department of
Energy. It represents the QCD applications from high
energy physics. Due to its importance to the scientific
community, many performance optimizations have been

applied to make MILC to run faster, but the success on
multicore processors has been limited. LQCD has very poor
temporal locality. Its computing/communication ratio is
low. The current optimizations of MILC include no write
allocation (write directly to lower level cache, which is the
L2 cache) and prefetching. The no write allocation approach
is helpful in single-core processors, but is not beneficial in a
multicore system due to the L2 and L3 data access
bottleneck. Prefetching in MILC has been achieved
manually through exhaustive testing.

Figure 2 shows an example of poor scalability in running
the MILC code, on an Intel quad-core processor. As the
lattice size increases, sustained performance by using 2-
cores or 4-cores scales poorly. It can also be observed that
the sustained performance of each case degrades with larger
lattice sizes. The main reason for this poor scaling and
degrading performance is insufficient memory bandwidth.
The severity of this problem is critical as the number of
cores in multicore architectures announced is much higher
than the two or four in existing processors.

Let us now delve into the details of MILC to understand
its data access. The main computation kernel of MILC is a
conjugate gradient iteration. The primary data structures of
MILC are su3 vectors, which are 3x1 complex arrays, and
su3 matrices, which are 3x3 complex matrices. MILC uses
4-D lattices. On each lattice site, there are 8 su3 matrices
connecting to the + and - neighbors in x, y, z, and t. Each
lattice site also has a su3 vector. When performing a
conjugate gradient solution, all the sites are accessed in each
iteration, and each neighboring su3 vector is multiplied by
the corresponding su3 matrix.

To verify our analytical models in predicting the optimal
number of cores on a processor without contention, we
retrieved performance results from MILC running on a
system with quad-socket quad-core 2.4 GHz Xeon
(Harpertown) processors. These Xeon processors support
Hyper-threading technology. The CPU has 64 KB L1 data
cache, 64 KB L1 instruction cache, and 8 MB L2 cache,
with a 1066MHz system bus. The server chipset, Intel
975X ExpressI, was released to support this processor in
servers; its dual DDR channels operate to provide up to
10.7GB/s of bandwidth and 8GB memory addressability for
faster system response.

On the test system, the sustained performance from the
experiments is 130 MFlops/s when accessing

Figure 2. Performance of MILC on Multicore.

216

strided/mapped data, where the spatial reuse factor (F) is
nearly (but larger than) 0. The sustained performance is 710
MFlops/s when accessing sequential data, where the value
of F is 1.

In MILC code, one matrix-vector multiplication
operation with single-precision performs 96 bytes of
reading, 24 bytes of writing (i.e. total 120 bytes), and 66
floating point operations. Since each memory instruction of
floating-point computing accesses 8 bytes of data, the MILC
application needs 15 (i.e. 120/8) floating-point memory
access instructions for one matrix-vector multiplication. The
66 Flops can be translated into 66 instructions assuming that
one instruction is needed to finish one floating-point
operation. The ratio between the total number of memory
access instructions and the total number of instructions, (i.e.
R in our multicore performance models) is:

19.0
6615

15R .

For one stage divide-and-conquer model, computing
time decreases with the number of cores while data access
time is independent of the number of cores used. It is
intuitive to expect that the best utilization of multiple cores
should be achieved at the smallest n such that T’comp
T’comm. From equation (9), T’comp T’comm is true if

 n
commsustained TP

RI
''
)1(. (15)

In MILC, prefetching is implemented at the software
level manually, which requires no prediction and thus the
prediction overhead involved is zero. The loop code, where
prefetching is implemented, has high prefetching distance
ahead of actual DRAM requests due to cache misses. Hence,
the number of requests to DRAM due to cache misses for
data that has already been prefetched is negligible, i.e.
P’sustained Psustained and T’comm Tcomm.

That is, equation (15) becomes nopt
commsustained TP

RI)1(,

where nopt is the optimal number of cores without causing
data access contention.

From equation (11), we can derive Tcomm.

LP
BRI

n
sustained

sustained
opt

)1(

])1([)]1()1[(
)1(

21 cachewordLLsustained

sustained

LFLFHHRIP
BRI

The measured cache hit rates of L1 and L2 in running
MILC is 90% and 80%, respectively. Using these numbers,
the optimum number of cores without causing data
contention is:

8
]64)11(81[)]8.01()9.01[(19.097.1799

8.604)19.01(
optn

By using our model, the estimated number of cores
without contention (nopt) is 8.

We analyzed the performance results of running MILC
on 1, 2, 4, 8, and 16 cores to verify our estimation. Table 1
shows the performance of MILC, where communication is
performed via MPI using the internal memory bus. It shows

the performance per core and the total performance in
MFlops. From the Table, it can be seen that the performance
of MILC reaches its peak when the number of cores is 8,
which matches the model prediction. This verifies that our
prediction model is accurate in predicting the optimal
number of cores without causing contention. The optimal
number of cores without contention can be used in
estimating the impact of data access optimizations on
performance improvement and scalability studies. For
instance, improving cache performance, i.e. reducing cache
miss rate, and increasing memory bandwidth are helpful in
increasing nopt.

A. Usage of the Analytical Model
The models introduced in this study are functional and

can be effectively utilized in tuning applications. It has been
intentionally kept simple to be effective. The values of the
parameters used in predicting the occurrence of contention
may be obtained by simple analysis and by the use of
profiling applications. The number of memory instructions,
total instructions, and cache miss rates can be directly
obtained using hardware counters [12]. Sustained memory
bandwidth can be measured using the Stream benchmark
[4]. The achievable speed of each core is Psustained in MIPS
(million instructions per second) can be calculated from the
ratio of the number of instructions finished and the
execution time of the application or iteration of a loop.
These two values are available by simple analysis of
hardware counters and profiling. The performance
parameters, such hit ratio and spatial reuse factor, are
important to the accuracy of the modeling. For most users,
who need a guideline to determine the number of cores to
use, these parameters can be found for an estimated
performance guideline. The model can be extended to obtain
accuracy critical results by considering various factors of
cache memory, such as cache utilization, cache
configuration including associativity, replacement policies,
cache conflicts, memory bank parallelism, etc. In case of
overlapping computing and data access phases, an
overlapping factor can be introduced in equation (5) and in
equations derived from it. A model with all these extensions
is being considered in our future work.

The analytical model presented in this study is useful in
guiding memory hierarchy optimizations and in analyzing
the impact of these optimizations. Memory performance
optimizations for multicore processors can be broadly

TABLE I. PERFORMANCE OF MILC (SUSTAINED BANDWIDTH =
604.842MB/S)

Number of
cores

1 2 4 8 16

Performance
per core

(MFlops)
1799.97 1074.52 1010.04 894.29 429.79

Total
Performance

(MFlops)
1799.97 2149.04 4040.16 7154.32 6876.64

217

categorized as architectural optimizations, such as
improving memory bandwidth, and application-level
optimizations, such as reducing cache misses by loop
transformations and data prefetching. Our model represents
all these optimizations. For instance, improving memory
bandwidth, i.e. increasing the value of Bsustained, (MB/s) in
equation (4), affects the occurrence of data access
contention of a memory hierarchy for running an
application. Reducing memory access traffic either by
improving data access reordering or by other cache
optimizations, reduces the number of cache misses and in
turn reduces the number of memory access instructions. All
of these parameters are included in the model to be able to
guide the impact of optimizations on memory performance.
The model is comprehensive in covering diverse parameters
of memory performance for multicore processors and yet
requires less time in calculating the impact of architectural
and application level enhancements. This is an attractive
feature for utilizing the model in automatic optimization
tools that require faster models for tuning applications for
certain hardware architectures.

V. RELATED WORK

Performance prediction models have been developed to
predict the number of cache misses to help programmers in
estimating the cost of memory access. Much of this research
effort has been spent in developing accurate cache
performance models. Jacob [7] extracts address traces from
the code, which requires execution of the program, and
consumes a lot of time if an optimization has to be applied.
Chatterjee et al. [2] and Ghosh et al. [5] study exact analysis
of cache misses, which are very complex. Mao and
Saavedra [11] present an analytical model for predicting the
effectiveness of data prefetching. This model provides
equations for predicting execution time with prefetching.
However, it is limited to software-controlled prefetching
and needs a major overhaul to model the behavior of new
optimizations such as pre-execution based prefetching,
accuracy of prediction based prefetching, source and
destination of prefetching, and contention of shared
resources in multicore processors.

All the above data access latency prediction modes are
complex and lack generality. They are bounded to a small
set of algorithms. With the goal of simpler and faster models
in order to predict performance while searching for various
optimizations, we developed an analytical model [1].
However, this model is limited to single core processors.
Our model introduced in this study predicts the appropriate
number of cores to be used for running an application. It
considers the traffic generated by cache misses as its model
parameter in identifying the contention. We used a simple
method in our study to show that even without accurate
information of cache misses the model can serve the
purpose of choosing the appropriate number of cores. There
are several memory access cost prediction tools available,
which can be used for improving the confidence in
prediction further.

Suleman et al. [14] introduced a system that measures
the amount of utilized bandwidth and schedules threads

until the bus bandwidth is saturated. Maury et al. [10] focus
on prediction accuracy data access performance by using
data collected form 18 counters of 8 events at system level.
Both these methods are based on measurement using
runtime system support. We use an analytical model to
predict what number cores should be used, where cache
miss information is used as a model parameter. Also, our
study is based on simple analysis and used at the application
level, which is helpful for programming as well as
scheduling workload on multicore processors.

Shalf et al. [13] have estimated execution time of
applications in a dual-core processor by equally splitting
memory bandwidth between two cores. In this way, the
memory access time for a specific amount of data transfer in
an application doubles and that is added to the computation
time. This model is straightforward and does not consider
any cache parameters or the impact of optimizations. The
Roofline model [15] defines arithmetic intensity (AI) of a
kernel as the ratio of floating point operations to bytes of
DRAM communication and estimates performance by
multiplying AI with peak DRAM bandwidth. The Roofline
model gives an estimation of achievable performance. The
purpose of our model is more specific to identify memory
contention and to provide means to predict the optimal
number of cores to be used so that memory contention can
be avoided. Our analytical models can be helpful in
estimating the effect of data access optimizations. Accuracy
of our model is verified with experimental results.

VI. CONCLUSION

Multicore architectures are becoming the norm of high-
performance computing by providing many cores and
hardware resources for running multiple threads. However,
utilization of their computing power has been very low for
many scientific applications. Data access contention is a
critical hurdle in utilizing multicore processors. Identifying
the existence of contention in an application is the primary
step in applying optimizations. In this study, we introduced
an analytical model to provide guidelines for identifying
data access contention, for finding the limit of the number of
cores without causing contention, and for showing the effect
of prefetching optimization on contention.

Our experimental analysis proves that our models are
accurate in predicting data access contention and in finding
the number of cores that should be used for achieving
performance without contention. These models are helpful
for multicore application developers in assessing their
applications and for identifying contention on a target
system. We intend to extend this study further to predict
memory contention at runtime and to re-schedule threads on
multicore based compute nodes on-the-fly.

ACKNOWLEDGMENT

This work is supported in part by United States
Department of Energy (DoE) SciDAC program under the
contract No. DOE DE-FC02-06 ER41442 and by National
Science Foundation (NSF) ITR program under NSF-CCF-
0621435.

218

REFERENCES

[1] S. Byna, X.-H. Sun, W. Gropp and R. Thakur, “Predicting the
Memory-Access Cost Based on Data Access Patterns”, in the
proceedings of IEEE International Conference on Cluster Computing,
September 2004.

[2] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck, “Exact
Analysis of the Cache Behavior of Nested Loops”, Proceedings of the
ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation, Snowbird, UT, June 2001.

[3] D. E. Culler, J. P. Singh, and A. Gupta, “Parallel Computer
Architecture: A Hardware/Software Approach,” Morgan Kaufmann
Publishers, 1999.

[4] Dongarra, J., Moore, S., Mucci, P., Seymour, K., You, H. "Accurate
Cache and TLB Characterization Using hardware Counters,"
Proceedings of ICCS 2004 (to appear), Krakow Poland, June 6-9,
2004.

[5] S. Ghosh, M. Martonosi, S. Malik, “Cache miss equations: a compiler
framework for analyzing and tuning memory behavior”, ACM
Transactions on Programming Languages and Systems (TOPLAS),
v.21 n.4, pp.703-746, July 1999.

[6] K. Hwang and Z. Xu, “Scalable Parallel Computing: Technology,
Architecture, Programming,” McGraw-Hill, 1998.

[7] B.L. Jacob, “An analytical model for designing memory hierarchies”,
IEEE Transaction on Computers, Volume 45, pp. 83-105, 1996.

[8] US Lattice Chromo-dynamics, http://www.usqcd.org/
[9] H.Q. Le, W.J. Starke, J.S. Fields, et al., “IBM POWER6

Microarchitecture”, IBM Journal of Research and Development, vol.
51, no. 6, November 2007.

[10] M. Cutis-Maury, F. Blagojevic, C. Antonopoulos, and D.
Nikolopoulos, “Prediction Based Power-Performance Adaptation of
Multithreaded Scientific Code,” IEEE Transactions on Parallel and
Distributed Systems, October 2008.

[11] W. Mao and R. H. Saavedra, “The Limits and Effectiveness of Data
Prefetching on Scalable Multiprocessors”, in Performance Evaluation,
vol. 27-28, pp. 209 – 229, Oct 1996.

[12] The STREAM Benchmark: Computer Memory Bandwidth,
http://www.streambench.org/

[13] J. Shalf, “Memory Subsystem Performance and QuadCore
Predictions”, Presentation at NERSC User Group Meeting,
September 17, 2007
<http://www.nersc.gov/about/NUG/meeting_info/Sep07/charts/Shalf-
NUG2006_QuadCore.pdf>.

[14] A. Suleman, M. K.Qureshi, Y. N. Patt, “Feedback Driven Threading:
Power-Efficient and High-Performance Execution of Multi-threaded
Workloads on CMPS,” ASPLOS’08, Seattle, Washington, USA.

[15] Williams S, Patterson D, Oliker L, Shalf J, and Yelick K 2008 The
roofline model: A pedagogical tool for auto-tuning kernels on
multicore architectures Hot Chips 20: Stanford University, Stanford,
California, August 24–26, 2008.

219

