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Abstract— Multicore processors are now part of mainstream 
computing. However, data access contention among multiple 
cores is a significant performance bottleneck in utilizing these 
processors. Typically, memory hierarchies in multicore 
architectures use shared last level cache or shared memory. As 
multiple cores concurrently send requests to access data from 
these shared memory hierarchy levels, their capacity to serve 
all the requests is overwhelming and causes performance 
bottlenecks. In this paper, we introduce simple analytical 
models for predicting the occurrence of data access contention 
and provide a guideline for choosing optimal number of cores 
in running an application without causing data access 
contention. We verify our models by comparing the predicted 
optimal number of cores without causing data contention with 
the measured value in running MIMD Lattice Computation 
(MILC) application. The proposed analytical models are 
accurate and promising in guiding data access optimizations to 
improve multicore utilization. 
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performance prediction; modeling 

I. INTRODUCTION

The historical trend in processor technology had been 
increasing processor speeds as the number of transistors 
increased. Processor speeds were increasing rapidly as 
feature sizes shrunk and the number of transistors increased 
in accordance with Moore’s law. However, higher power 
consumption and heat generation by faster processors have 
driven chipmakers instead towards packaging multiple 
simple processor cores into a single chip and reducing 
speeds. The trend of scaling the number of cores per chip is 
expected to continue from the 2 to 6 core processors 
currently available on the market to many more in the future. 

While multicore processors offer computing power to 
improve the performance of applications significantly by 
providing hardware support for running multiple threads 
concurrently, it is mainly in the hands of developers to utilize 
them efficiently. The biggest challenge with multicore 
processors has been utilizing their computing power. Thread 
or task level parallelism (TLP) and data-level parallelism 
(DLP) are the two popular models to utilize their computing 
power. There are many obstacles in programming for 
multicore processors using these models. 

A critical hurdle in achieving full utilization of multicore 
processors is data access latency. It has been shown by 
studies that concurrent multicore processing often achieves 
much lower performance than expected; sometimes it is even 
worse than single-core processors due to data access delay 
[13]. Data access latency has even been a problem with 
single-core processors as processors are much faster than 
memory. With the emergence of multicore processors, a 
more severe problem arises with data access due to 
bandwidth limitation of shared resources in the memory 
hierarchy. In a multicore system, multiple cores compete for 
shared resources (e.g. memory bandwidth, cache memories, 
and TLB’s), which leads to performance degradation if the 
data requirements are more than what the shared resources 
can provide. 

Identifying data access delay bottlenecks is a valuable 
step in helping developers to understand their application 
performance on multicore processors. Modeling data access 
latency on multicore processors is a way to identify these 
bottlenecks. In this study, we introduce basic performance 
models for predicting data access latency, the number of 
cores to use in running an application without contention, 
and the impact of data access optimizations. Using the 
number of data access requests that come to a shared 
memory, and based on its available bandwidth, we develop a 
simple analytical model to predict the amount of data 
transferred between a shared level in memory hierarchy and 
the level above it. We use this model as a foundation, and 
two additional models that are designed for user and system 
level performance optimizations. We then model the impact 
of optimizations on an application using data prefetching 
optimization. Using these models, we predict and verify the 
number of cores for running an application without causing 
data access contention. These models are designed for 
different data access and computation patterns in multicores. 
While the models introduced in this study are simple, they 
can be used effectively to provide developers an idea of 
scaling behavior of their application. There exist many 
models to predict the number of data access requests to 
memory accurately [7, 5, 2, 11, 1]. The number of data 
access requests by these models can be directly used in our 
models to identify contention. The objective of our study is 
to focus the spotlight on contention caused by shared 
resources and identifying it using analytical models. 
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The paper is organized as follows. In section 2, we 
provide a brief introduction to memory hierarchy in 
multicore architectures and to data access contention. In 
section 3, we introduce our analytical models to predict data 
access contention and its corollaries. Section 4 presents 
experimental results that verify our model with measured 
performance results in running MILC application, and 
section 5 discusses related work in multicore data access 
delay modeling. We conclude and provide future directions 
of our work in section 6.   

II. DATA ACCESS CONTENTION

Memory hierarchy in processors is an important design 
feature. To bridge the performance gap between processor 
and memory, multiple levels of cache memories have been 
introduced. In the ideal scenario, the data being accessed by 
a processor should be available in processor registers or in a 
cache memory that is closer to the processor to avoid stall-
time. If data is not available near a processor core, the core 
has to stall waiting for the data, and computation capabilities 
of the core are wasted. While multicore processors are 
designed with the goal of amortizing this stall time by 
switching the core to run another application, this goal 
cannot often be realized when running scientific applications 
where processors (compute nodes) are dedicated to run only 
one application. 

From existing multicore architectures, we can observe 
two types of memory hierarchies. One has a private cache 
hierarchy, and the other has a shared outer-most cache. In the 
private cache architecture, each core has its own cache 
memories (L1 and L2). In the shared outer-most cache 
architecture, multiple cores share the lowest level of cache. 
Figure 1 illustrates two types of two level cache hierarchies 
in processors, with four cores. In processors, such as IBM 
POWER multicore processors [9], the last level on-chip 
cache is split into multiple banks and shared by two or more 
processor cores. In some processors, there are two levels of 
private cache with a shared off-chip L3 cache, and in others 
more than one level of cache memory is shared.  It can be 
concluded that in all types of multicore memory hierarchy, a 
level is shared among multiple cores, either closer to or 
farther from the cores. 

Sharing a level of memory hierarchy is required as there 
are benefits of sharing same data by multiple cores. For 
instance, when the same data is being accessed by multiple 
cores, having a shared cache requires data transfer only once 
from DRAM. Multiple private caches require twice the 
number of data transfers. When multiple cores are processing 
different sets of data, however, the shared resource becomes 
a performance bottleneck, if the bandwidth of the shared 
level is not high enough to support the multiple cores. For 
instance, if main memory is shared and its bandwidth is not 
enough to satisfy requests from all the cores of a processor 
concurrently, then the memory becomes overwhelmed with 
requests for data and becomes a performance bottleneck. 
This has been already experienced in some of current 
processors [13]. 

Data access contention in multicore processors is 
application dependent. When an application has its data 
access workload distributed over time and does not cause 
bursts of simultaneous accesses, there is no contention. If the 
number of concurrent data accesses to a shared level of 
memory hierarchy is higher than the shared level can handle, 
then that level becomes a source of contention. But, how can 
one know that there exists data access contention in running 
an application? To answer that question, in this study we 
develop analytical models, first to calculate the number of 
accesses to a level of memory hierarchy, and then to find out 
whether a shared resource would become a source of 
contention. Throughout this paper, the term contention refers 
to data access contention.

III. PREDICTING CONTENTION IN MULTICORE
PROCESSORS

To derive the contention model, we assume the following 
memory hierarchy in a multicore architecture. We assume 
two levels of private cache (private L1 and L2), and we 
assume that the data bus between L2 cache and main 
memory is shared. The shared memory becomes a bottleneck 
if there is contention among multiple cores. We use this 
bottleneck as the target example throughout this paper to 
illustrate how the contention can be modeled and analyzed. 
In the presence of a shared L3 cache, as in POWER 
processors [9], the data bus between the L2 and L3 caches 
can also be the subject of contention analysis. 

We assume that the application under consideration uses 
one-stage divide-and-conquer problem partitioning, which is 
common in scientific computing [3, 6]. In this pattern, there 
are two separate phases in the application: a computing 
phase and a data access phase. During the computing phase, 
multiple threads perform computing, and during the data 
access phase, multiple threads try to access data 
concurrently. We assume that there is no data dependency 
among multiple threads. We also assume that each thread is 
running on its own core (or hardware threads), a typical OS 
scheduling method on multicore processors. 

Assume that n cores are used for computing, and that the 
achievable speed of each core is Psustained MIPS (million 
instructions per second). The total number of instructions in 
each iteration is I, and the ratio between total memory 

Figure 1. Memory Hierarchy in Multicore. 
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access instructions and total instructions is R. Then, the 
computation time of the application running on n cores is: 

nP
RIT

sustained
comp

)1(              (1) 

Now, let us calculate memory access time in running 
one iteration with I instructions and the ratio of memory 
accesses are R. The total number of memory accesses from 
all cores for one iteration is RI , despite the number of 
cores. While the total number of memory accesses is the 
same for single core or multicore processor per iteration, in 
a multicore processor, there will be simultaneous accesses 
from multiple cores, which could result in cause contention. 
Let us assume that the L1 cache hit ratio of the iteration be 
HL1, the L2 cache hit ratio be HL2, the L2 cache line be 
Lcache, and assume that each memory instruction accesses 
one word of Lword bytes of data. We define spatial reuse 
factor (F), to represent the spatial locality characteristic of 
an application. It is well known that according to the 
principle of locality, instead of fetching just the requested 
element, a full cache line is fetched into cache memory. If 
data elements in the fetched cache line are also used by the 
processor core, then the spatial reuse factor is higher, 
otherwise, it is lower. The value of F ranges from 0 (in the 
case where strides between successive accesses is larger 
than Lcache) to 1 (in the case of all contiguous access, where 
all of the fetched cache line is used). If each instruction 
requires one word, the actual amount of data accessed for 
one memory instruction on average then is: 

cacheword LFLF )1(  (2) 
Therefore, the actual data transferred on the bus between 

L2 cache and the memory is: L = 
])1([)1()1( 21 cachewordLL LFLFHHRI           (3) 

If the sustained bandwidth of the bus between L2 and 
main memory is Bsustained, (in bytes/sec) then, the data access 
latency between L2 and main memory is: 

Tcomm=
1 2(1 ) (1 ) [ (1 ) ]L L word cacheI R H H F L F L /

Bsustained               (4) 
Without cache optimizations, such as data prefetching, 

loop transformations, etc., the total execution time of one 
iteration is the summation of the computing time and data 
access time at each iteration. 

T = Tcomp + Tcomm.    (5) 

A. Finding the Number of Cores without Contention 
When an application is run on a multicore processor, it is 

important to choose an appropriate number of cores without 
causing contention. Otherwise, many cores will be idle 
waiting for overwhelmed memory, which becomes a 
performance bottleneck due to contention. We now show 
how a user can choose an appropriate number of cores for 
computing.  

The performance of multicore parallel processing can be 
given in terms of utilization or in terms of execution time.  
If we assume that the cache hit ratios are unchanged with 
the number of cores, then the data access time from equation 
(3) is independent of the number of cores and the computing 
time decreases with the number of cores. When the number 

of cores used for computing increases, the data access time 
quickly becomes the dominant factor of the execution time. 
If it is required to maintain a certain computing/data access 
ratio and to maintain the utilization at a certain level, we 
have to limit the number of cores used for computing. For 
instance, if we want the computing time to be more than 
90% of the execution time, then Tcomp > 9Tcomm.  From 
equations (1) and (2), we can derive that: 

commsustained TP
RIn

9
)1(           (6) 

This equation gives a guideline to compute the number 
of cores in a multicore processor to be used for computing 
in order to keep computing time as a dominant factor.  

If the performance requirement is given in terms of 
execution time, we get different inequalities. For instance, if 
we require that the execution time of each iteration must be 
less than C, i.e. T < C, then from equations (1)-(5), we have: 
 Tcomp + Tcomm  < C    Tcomp  <  C- Tcomm

       
nP

RI

sustained

)1( < C- Tcomm

n >
)(

)1(
commsustained TcP

RI  (7) 

This equation is helpful in calculating the appropriate 
number of cores for achieving the goal of execution time of 
running an iteration of an application. Note that Tcomp is a 
non-negative real number. Hence, an implied assumption of 
in the inequality equation (7) is that C- Tcomm.> 0. 

B. Impact of Data Prefetching Optimization 
System level modeling provides performance analysis so 

that performance optimization can be evaluated. For 
instance, the impact of optimizations can be identified when 
optimizations, such as data prefetching and loop 
transformations, are implemented to mitigate data access 
delay. Following the same example used above, here we 
illustrate the model of prefetching. This model is useful for 
both system level and user level optimizations.  

Data prefetching is considered to be effective in 
improving memory performance. A prefetching engine 
predicts future memory references, and fetches the required 
data early enough to avoid cache misses. Prefetching can 
reduce execution time considerably if it is performed 
correctly.

Let us first assume that we have no-cost perfect 
prefetching, i.e. the prefetching mechanism incurs no cost 
for predicting future references, and the computing cost is 
overlapped perfectly with data access cost by accurately 
predicting and prefetching data in time. With this 
assumption the data access time is negligible and the total 
execution time is:  T = Tcomp ,   if Tcomp  Tcomm.         (8) 

In other words, when Tcomp is greater than or equal to 
Tcomm, there is no CPU stall. We can find the number of 
cores to satisfy this Tcomp Tcomm condition. From equations 
(1) and (6), we find that the condition is 

n
commsustained TP

RI )1( .                   (9) 
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Now, let us relax the perfect prefetching assumption. In 
practice, no-cost perfect prefetching is impossible to 
achieve. Prefetching may take some computing power away 
for data access prediction, thus, in general, we have 

 T’comp  = 
nP

RI

sustained'
)1(                 (10)

where P’sustained < Psustained and T’comp  > Tcomp . In 
equation (8) we assumed that the accuracy is 100%, which 
is also not practical. When the accuracy of prefetching is 
considered, it becomes even more complex. There are two 
types of inaccuracies: miss fetch and fetch miss. Miss fetch
fetches some data blocks which are not needed; and fetch
miss fails to fetch some data which is needed. Miss fetch 
leads to unnecessary data accesses and increases data 
transfer (it also may lead to cache pollution; for the sake of 
simplicity we do not consider the pollution factor here). 
Fetch miss leads to processor stall for accessing data.  

Let the miss fetch ratio be S, the ratio between the total 
data access instructions and the miss fetch prefetching 
instructions. The value of S ranges from 0, in the case there 
is no miss fetch, to 1, in the case of all prefetches are miss 
fetched. Therefore, the data access time is: T’comm
=

])1([])1()1[( 21 cachewordLL LFLFSHHRI
/ Bsustained    (11) 

T’comm can be overlapped with computing if T’comp
T’comm . Assume that the fetch miss ratio is , which is the 
ratio between the total data access instruction and fetch miss 
instructions. The execution time with optimization is: 

T’ = T’comp +  Tcomm (12)
where Tcomm is given by equation (4).  
Now, the number of cores in a multicore processor to be 

used for computing in order to keep computing time as a 
dominant factor with prefetching is: 

  n 
commsustained TP

RI
'9

)1(       (13)     

The equation for calculating the appropriate number of 
cores in achieving the goal of execution time for running an 
iteration of an application with prefetching becomes: 

n >
)('

)1(
commsustained TcP

RI (14) 

Comparing the performance between no-cost perfect 
prefetching and practical prefetching with cost, it can be 
observed that their performance could be quite different 
from equations (9) and (13).  

IV. EXPERIMENTAL RESULTS

We analyzed the performance of the MIMD Lattice 
Computation (MILC) application [8] to show selecting 
optimal number of cores without causing data access 
contention. MILC is a community code of the lattice 
quantum chromo-dynamics (LQCD) community and is a 
grand challenge application identified by US Department of 
Energy. It represents the QCD applications from high 
energy physics. Due to its importance to the scientific 
community, many performance optimizations have been 

applied to make MILC to run faster, but the success on 
multicore processors has been limited. LQCD has very poor 
temporal locality. Its computing/communication ratio is 
low. The current optimizations of MILC include no write 
allocation (write directly to lower level cache, which is the 
L2 cache) and prefetching. The no write allocation approach 
is helpful in single-core processors, but is not beneficial in a 
multicore system due to the L2 and L3 data access 
bottleneck. Prefetching in MILC has been achieved 
manually through exhaustive testing.  

Figure 2 shows an example of poor scalability in running 
the MILC code, on an Intel quad-core processor. As the 
lattice size increases, sustained performance by using 2-
cores or 4-cores scales poorly. It can also be observed that 
the sustained performance of each case degrades with larger 
lattice sizes. The main reason for this poor scaling and 
degrading performance is insufficient memory bandwidth. 
The severity of this problem is critical as the number of 
cores in multicore architectures announced is much higher 
than the two or four in existing processors.  

Let us now delve into the details of MILC to understand 
its data access. The main computation kernel of MILC is a 
conjugate gradient iteration. The primary data structures of 
MILC are su3 vectors, which are 3x1 complex arrays, and 
su3 matrices, which are 3x3 complex matrices. MILC uses 
4-D lattices.  On each lattice site, there are 8 su3 matrices 
connecting to the + and - neighbors in x, y, z, and t.  Each 
lattice site also has a su3 vector. When performing a 
conjugate gradient solution, all the sites are accessed in each 
iteration, and each neighboring su3 vector is multiplied by 
the corresponding su3 matrix. 

To verify our analytical models in predicting the optimal 
number of cores on a processor without contention, we 
retrieved performance results from MILC running on a 
system with quad-socket quad-core 2.4 GHz Xeon 
(Harpertown) processors.  These Xeon processors support 
Hyper-threading technology. The CPU has 64 KB L1 data 
cache, 64 KB L1 instruction cache, and 8 MB L2 cache, 
with a 1066MHz system bus.  The server chipset, Intel 
975X ExpressI, was released to support this processor in 
servers; its dual DDR channels operate to provide up to 
10.7GB/s of bandwidth and 8GB memory addressability for 
faster system response.  

On the test system, the sustained performance from the 
experiments is 130 MFlops/s when accessing 

Figure 2. Performance of MILC on Multicore. 
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strided/mapped data, where the spatial reuse factor (F) is 
nearly (but larger than) 0. The sustained performance is 710 
MFlops/s when accessing sequential data, where the value 
of F is 1. 

In MILC code, one matrix-vector multiplication 
operation with single-precision performs 96 bytes of 
reading, 24 bytes of writing (i.e. total 120 bytes), and 66 
floating point operations. Since each memory instruction of 
floating-point computing accesses 8 bytes of data, the MILC 
application needs 15 (i.e. 120/8) floating-point memory 
access instructions for one matrix-vector multiplication. The 
66 Flops can be translated into 66 instructions assuming that 
one instruction is needed to finish one floating-point 
operation. The ratio between the total number of memory 
access instructions and the total number of instructions, (i.e. 
R in our multicore performance models) is: 

19.0
6615

15R  . 

For one stage divide-and-conquer model, computing 
time decreases with the number of cores while data access 
time is independent of the number of cores used. It is 
intuitive to expect that the best utilization of multiple cores 
should be achieved at the smallest n such that T’comp
T’comm. From equation (9), T’comp  T’comm is true if  

  n 
commsustained TP

RI
''
)1( .  (15) 

In MILC, prefetching is implemented at the software 
level manually, which requires no prediction and thus the 
prediction overhead involved is zero. The loop code, where 
prefetching is implemented, has high prefetching distance 
ahead of actual DRAM requests due to cache misses. Hence, 
the number of requests to DRAM due to cache misses for 
data that has already been prefetched is negligible, i.e. 
P’sustained Psustained and T’comm Tcomm.

That is, equation (15) becomes nopt
commsustained TP

RI )1( ,

where nopt is the optimal number of cores without causing 
data access contention. 

From equation (11), we can derive Tcomm.

LP
BRI

n
sustained

sustained
opt

)1(

])1([)]1()1[(
)1(

21 cachewordLLsustained

sustained

LFLFHHRIP
BRI

The measured cache hit rates of L1 and L2 in running 
MILC is 90% and 80%, respectively. Using these numbers, 
the optimum number of cores without causing data 
contention is: 

8
]64)11(81[)]8.01()9.01[(19.097.1799

8.604)19.01(
optn

By using our model, the estimated number of cores 
without contention (nopt) is 8.  

We analyzed the performance results of running MILC 
on 1, 2, 4, 8, and 16 cores to verify our estimation. Table 1 
shows the performance of MILC, where communication is 
performed via MPI using the internal memory bus.  It shows 

the performance per core and the total performance in 
MFlops. From the Table, it can be seen that the performance 
of MILC reaches its peak when the number of cores is 8, 
which matches the model prediction. This verifies that our 
prediction model is accurate in predicting the optimal 
number of cores without causing contention. The optimal 
number of cores without contention can be used in 
estimating the impact of data access optimizations on 
performance improvement and scalability studies. For 
instance, improving cache performance, i.e. reducing cache 
miss rate, and increasing memory bandwidth are helpful in 
increasing nopt.

A. Usage of the Analytical Model 
The models introduced in this study are functional and 

can be effectively utilized in tuning applications. It has been 
intentionally kept simple to be effective. The values of the 
parameters used in predicting the occurrence of contention 
may be obtained by simple analysis and by the use of 
profiling applications. The number of memory instructions, 
total instructions, and cache miss rates can be directly 
obtained using hardware counters [12]. Sustained memory 
bandwidth can be measured using the Stream benchmark 
[4]. The achievable speed of each core is Psustained in MIPS 
(million instructions per second) can be calculated from the 
ratio of the number of instructions finished and the 
execution time of the application or iteration of a loop. 
These two values are available by simple analysis of 
hardware counters and profiling. The performance 
parameters, such hit ratio and spatial reuse factor, are 
important to the accuracy of the modeling. For most users, 
who need a guideline to determine the number of cores to 
use, these parameters can be found for an estimated 
performance guideline. The model can be extended to obtain 
accuracy critical results by considering various factors of 
cache memory, such as cache utilization, cache 
configuration including associativity, replacement policies, 
cache conflicts, memory bank parallelism, etc. In case of 
overlapping computing and data access phases, an 
overlapping factor can be introduced in equation (5) and in 
equations derived from it. A model with all these extensions 
is being considered in our future work.  

The analytical model presented in this study is useful in 
guiding memory hierarchy optimizations and in analyzing 
the impact of these optimizations. Memory performance 
optimizations for multicore processors can be broadly 

TABLE I. PERFORMANCE OF MILC (SUSTAINED BANDWIDTH =
604.842MB/S)

Number of 
cores

1 2 4 8 16 

Performance 
per core 

(MFlops) 
1799.97 1074.52 1010.04 894.29 429.79 

Total
Performance 

(MFlops) 
1799.97 2149.04 4040.16 7154.32 6876.64 
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categorized as architectural optimizations, such as 
improving memory bandwidth, and application-level 
optimizations, such as reducing cache misses by loop 
transformations and data prefetching. Our model represents 
all these optimizations. For instance, improving memory 
bandwidth, i.e. increasing the value of Bsustained, (MB/s) in 
equation (4), affects the occurrence of data access 
contention of a memory hierarchy for running an 
application. Reducing memory access traffic either by 
improving data access reordering or by other cache 
optimizations, reduces the number of cache misses and in 
turn reduces the number of memory access instructions. All 
of these parameters are included in the model to be able to 
guide the impact of optimizations on memory performance. 
The model is comprehensive in covering diverse parameters 
of memory performance for multicore processors and yet 
requires less time in calculating the impact of architectural 
and application level enhancements. This is an attractive 
feature for utilizing the model in automatic optimization 
tools that require faster models for tuning applications for 
certain hardware architectures.  

V. RELATED WORK

Performance prediction models have been developed to 
predict the number of cache misses to help programmers in 
estimating the cost of memory access. Much of this research 
effort has been spent in developing accurate cache 
performance models. Jacob [7] extracts address traces from 
the code, which requires execution of the program, and 
consumes a lot of time if an optimization has to be applied. 
Chatterjee et al. [2] and Ghosh et al. [5] study exact analysis 
of cache misses, which are very complex. Mao and 
Saavedra [11] present an analytical model for predicting the 
effectiveness of data prefetching. This model provides 
equations for predicting execution time with prefetching. 
However, it is limited to software-controlled prefetching 
and needs a major overhaul to model the behavior of new 
optimizations such as pre-execution based prefetching, 
accuracy of prediction based prefetching, source and 
destination of prefetching, and contention of shared 
resources in multicore processors.  

All the above data access latency prediction modes are 
complex and lack generality. They are bounded to a small 
set of algorithms. With the goal of simpler and faster models 
in order to predict performance while searching for various 
optimizations, we developed an analytical model [1]. 
However, this model is limited to single core processors. 
Our model introduced in this study predicts the appropriate 
number of cores to be used for running an application. It 
considers the traffic generated by cache misses as its model 
parameter in identifying the contention. We used a simple 
method in our study to show that even without accurate 
information of cache misses the model can serve the 
purpose of choosing the appropriate number of cores. There 
are several memory access cost prediction tools available, 
which can be used for improving the confidence in 
prediction further. 

Suleman et al. [14] introduced a system that measures 
the amount of utilized bandwidth and schedules threads 

until the bus bandwidth is saturated. Maury et al. [10] focus 
on prediction accuracy data access performance by using 
data collected form 18 counters of 8 events at system level. 
Both these methods are based on measurement using 
runtime system support. We use an analytical model to 
predict what number cores should be used, where cache 
miss information is used as a model parameter. Also, our 
study is based on simple analysis and used at the application 
level, which is helpful for programming as well as 
scheduling workload on multicore processors. 

Shalf et al. [13] have estimated execution time of 
applications in a dual-core processor by equally splitting 
memory bandwidth between two cores. In this way, the 
memory access time for a specific amount of data transfer in 
an application doubles and that is added to the computation 
time. This model is straightforward and does not consider 
any cache parameters or the impact of optimizations. The 
Roofline model [15] defines arithmetic intensity (AI) of a 
kernel as the ratio of floating point operations to bytes of 
DRAM communication and estimates performance by 
multiplying AI with peak DRAM bandwidth. The Roofline 
model gives an estimation of achievable performance. The 
purpose of our model is more specific to identify memory 
contention and to provide means to predict the optimal 
number of cores to be used so that memory contention can 
be avoided. Our analytical models can be helpful in 
estimating the effect of data access optimizations. Accuracy 
of our model is verified with experimental results. 

VI. CONCLUSION

Multicore architectures are becoming the norm of high-
performance computing by providing many cores and 
hardware resources for running multiple threads. However, 
utilization of their computing power has been very low for 
many scientific applications. Data access contention is a 
critical hurdle in utilizing multicore processors. Identifying 
the existence of contention in an application is the primary 
step in applying optimizations. In this study, we introduced 
an analytical model to provide guidelines for identifying 
data access contention, for finding the limit of the number of 
cores without causing contention, and for showing the effect 
of prefetching optimization on contention.  

Our experimental analysis proves that our models are 
accurate in predicting data access contention and in finding 
the number of cores that should be used for achieving 
performance without contention. These models are helpful 
for multicore application developers in assessing their 
applications and for identifying contention on a target 
system. We intend to extend this study further to predict 
memory contention at runtime and to re-schedule threads on 
multicore based compute nodes on-the-fly. 
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