
NIOBE: An Intelligent I/O Bridging Engine
for Complex and Distributed Workflows

Kun Feng, Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun

Department of Compute Science, Illinois Institute of Technology

{kfeng1, hdevarajan}@hawk.iit.edu, {akougkas, sun}@iit.edu

Abstract—In the age of data-driven computing, integrating
High Performance Computing (HPC) and Big Data (BD) en-
vironments may be the key to increasing productivity and to
driving scientific discovery forward. Scientific workflows consist
of diverse applications (i.e., HPC simulations and BD analysis)
each with distinct representations of data that introduce a se-
mantic barrier between the two environments. To solve scientific
problems at scale, accessing semantically different data from
different storage resources is the biggest unsolved challenge. In
this work, we aim to address a critical question: ”How can we
exploit the existing resources and efficiently provide transparent
access to data from/to both environments”. We propose iNtelligent
I/O Bridging Engine (NIOBE), a new data integration framework
that enables integrated data access for scientific workflows with
asynchronous I/O and data aggregation. NIOBE performs the
data integration using available I/O resources, in contrast to
existing optimizations that ignore the I/O nodes present on the
data path. In NIOBE, data access is optimized to consider both
the ongoing production and the consumption of the data in
the future. Experimental results show that with NIOBE, an
integrated scientific workflow can be accelerated by up to 10x
when compared to a no-integration baseline and by up to 133%
compared to other state-of-the-art integration solutions.

I. INTRODUCTION

As the exascale era approaches, the total data volume pro-

duced and consumed has exploded [1]. Large scale scientific

simulations, typically running in HPC environments, act as

data producers generating large amounts of data stored on

a Parallel File System (PFS). Data is currently stored in a

self-descriptive format, such as HDF5 [2] and netCDF [3],

and consumed by large-scale data analysis frameworks custom

to the HPC ecosystem. Recently, BD frameworks, such as

Hadoop [4] and Spark [5], are emerging with increasingly

large popularity and are known for their usability, capability,

and versatility in processing large amounts of data. Using

BD analysis applications can significantly enhance the data

processing power, facilitate the exploration of huge data sets,

and boost scientific discovery [6]. BD frameworks are usually

deployed in distributed computing environments, significantly

different from HPC machines. However, the tools and cultures

of HPC and BD have diverged, to the detriment of both [7],

and unification is essential to address a spectrum of major

research domains. The very first step towards this unification

is to solve the semantically different data representations by

bridging storage solutions from both ecosystems, and thus, to

offer an integrated data access. As one of the key system

components, storage systems play an imperative role in the

feasibility of such mixed environments. When applications

from both environments are used in a scientific workflow,

resolving data dependencies between different phases of the

workflow with diverse semantics while maintaining high per-

formance is challenging and can create obstacles for scientists.

To address this issue, different solutions have been pro-

posed. First, many supercomputing sites, such as National

Aeronautics and Space Administration (NASA)’s Goddard

Space Center [8], utilize two separate clusters to achieve their

mission (i.e., one for simulations using HPC software stack

called Discover and one for analysis and visualization called

Data Analytics Storage Service (DASS) [9] running Apache

Big Data Stack (ABDS)). This implies that scientists must

copy data between two clusters between each phase of their

scientific workflows. Even though the storage solutions can

perform well for native workloads inside each cluster, data

movement and transformations introduce high I/O cost and

significantly reduce the benefit of the native performance [10].

Second, to avoid the expensive data movement, many

connectors have been introduced to expose data to applications

from non-native environments. For instance, IBM’s Spectrum

Scale [11] and Lustre offer a Hadoop Distributed File

System (HDFS) connector [12], [13] that allows a variety

of BD applications, spanning from MapReduce to SQL, to

run on top of a PFS. Similarly, Google’s Cloud Storage

FUSE, Amazon’s AWS Storage Gateway, and Microsoft’s

Azure Files and Disks all have built file semantics on top

of their existing object store solutions. However, using a

single storage system as the unified solution cannot serve

all workloads since it’s vendor-specific, proprietary, and not

optimized for all storage systems, which may decelerate the

performance of the entire workflow [14].

Lastly, several open-source specialized middleware libraries,

such as IRIS [15], SciDP [16], and CephFS [17], that are re-

sponsible to map semantically different data representations to

one another have been developed to accelerate cross-platform

data access for integrated scientific workflows. Resources on

the compute nodes are used to facilitate the integrated data

access. Specifically, dedicated client processes, CPU cycles,

and memory space are required to convert data before issuing

I/O requests to storage systems. These operations are carried

out along application processes on the same nodes, which

consequently slow down the applications due to hardware978-1-7281-0858-2/19/$31.00 ©2019 IEEE

contention and software overheads.

In this research, we first identify the existence of several

available resources in the I/O path between compute nodes

and storage nodes (e.g., I/O forwarding layer [18], data stag-

ing [19], [20], burst buffers [21], and data nodes [22]) We

then propose a new I/O service called iNtelligent I/O Bridging

Engine (NIOBE) that can leverage these resources to enable

an integrated path to data, avoiding expensive overheads, and

accelerate integrated data access for scientific workflows. In

other words, NIOBE moves the conversion of integrated I/O

away from the compute nodes and returns the compute re-

sources back to application processes. NIOBE utilizes the data

aggregation hardware and software to enable asynchronous I/O

integration. The repetitive nature of scientific workflows (i.e.,

periodic I/O behavior [23]) is utilized by NIOBE to make

better decisions for the destination of integrated I/O. With

NIOBE, the performance of the integrated scientific workflow

can be improved significantly by minimizing mapping over-

heads, performing data aggregations before integration, and

offering asynchronous I/O to free precious resources back to

the applications. The contributions of NIOBE are as follows:

• Demonstrate how to use existing data aggregation resources

to enable transparent data access for scientific workflows.

• Highlight how important a modular and non-intrusive

design is to guarantee portability and interoperability with

existing I/O middleware.

• Illustrate the benefit of overlapping I/O with data integration

to improve the throughput by avoiding blocking I/O.

• Show the power of having a global view of data accesses

compute nodes perform to enable several I/O optimizations

such as deduplication, compression, and caching.

• Boost end-to-end performance of workflows by up to 10.5x

than a baseline of no-integration and by 133% compared

to state-of-the-art solutions.

II. BACKGROUND

A scientific workflow system is built by coupling a sequence

of applications to serve different goals of scientific research.

In a typical integrated scientific workflow, HPC applications

generate large volume of data, which is accessed and analyzed

by BD applications. The analysis results are then fed back to

the HPC applications to drive discovery. One common issue

in such an integrated workflow is the storage which serves

as the shared data pool between two distinct environments.

In a native environment, HPC applications (e.g., Message

Passing Interface (MPI)-based simulations) typically utilize

PFS to store well-structured data and access it via POSIX

I/O or MPI-IO interface. At the same time, BD applications

(e.g., High Performance Data Analytics (HPDA) applications)

are designed to process unstructured or semi-structured data

and the preferred storage system is most likely an Object

Store. The differences in workloads and data access APIs

create an obstacle to access data from/to another environ-

ment. For instance, NASA scientists convert output of the

climate modeling application NASA-Unified Weather Research

and Forecasting (NU-WRF) to text format and load it into

Hive [24] running on another cluster to enable SQL-like

queries upon the data. Such a process is found to be extremely

slow [16] and significantly prolongs the turnaround time to

generate useful insights from HPC applications.

To overcome this, several approaches have been proposed.

Convert and Copy: Scientific workflows are executed in

two separate and isolated clusters. Two sets of compute and

storage environments work as independent systems with the

data dependency solved by simple data conversion and copy

to and from different storage subsystems. Such a process is

known to be exceedingly expensive [16]. The data conversion

and copying dominates the total execution time, and thus,

becomes the bottleneck. This becomes especially prohibitive

once the data size that is moved from cluster to cluster grows.

Connector-based integration: Hadoop, as one of the pop-

ular BD frameworks, is a target platform to enable integrated

data access. Several solutions have been proposed to enable

Hadoop to access data from PFS in addition to its native

HDFS. HDFS connectors attempt to convert PFS into HDFS-

compatible file systems to build unified storage system for both

environments. However, HDFS connectors are not designed

to serve integrated workflows since using PFS to be the

underlying file system for HDFS cannot provide the optimal

performance. PFS can only be configured to favor either HPC

or BD applications and, consequently, slow down the other

group of applications. Moreover, these connectors are either

designed for a specific PFS, such as HDFS Transparency from

IBM [12] and Intel Enterprise Edition for Lustre Software on

top of Lustre [25], or found to be slow [13], [16].

Application-level integration: Several runtime libraries

have been proposed to enable cross-environment data access.

SciDP [16] is an extended Hadoop framework to utilize the

MPI library to access data from PFS. IRIS [15], on the other

hand, is a library that dynamically converts PFS data access

to Key-value Store (KVS). Both frameworks utilize computing

resources to carry out the integration of data access to another

storage system. Application’s CPU cores are responsible in

mapping semantically different data between the source and

the destination storage subsystems. The associated costs of

data translation lies onto the application which decreases the

flexibility of integrated systems, increases the programming

errors, and forces the data integration to be synchronous.

Our approach for data integration: In modern HPC

systems, specialized resources, such as the I/O forwarding

layer [26], Burst Buffers [21], and data staging [20], [27],

have been introduced to ease the pressure to external storage.

These resources are deployed in between compute and storage

nodes with the responsibility to aggregate I/O requests, as well

as to stage in/out data. With the help of these middleware

resources, overlapped/asynchronous I/O is enabled to perform

data operations in a decoupled fashion as applications continue

their computations after data is sent to these data aggregation

services which flush the data to the PFS in the background.

Existing supercomputers already have such technologies in

production. For example, the Cori system at National Energy

Research Scientific Computing Center (NERSC) has a 1.8 PB

2

Burst Buffer managed by Cray Data Warp with a peak I/O

bandwidth of 1.7 TB/s [28].

The additional dedicated hardware provides a perfect place

to also carry out data integration. This middleware layer

holds application data closer to compute nodes with high

I/O bandwidth and can serve applications from different en-

vironments at the same time. This is the observation that our

proposed system NIOBE leverages to offload the conversion

to those intermediate hardware resources freeing computation

resources. NIOBE utilizes the capabilities of existing data

aggregation services to aggregate I/O requests from applica-

tions and intelligently selects the best storage solution based

on the knowledge of the access pattern of all the involved

components. Integrated data access is managed transparently

as NIOBE intercepts existing incoming data without user’s

intervention. NIOBE can act as an add-on to existing data

aggregation services such as I/O forwarders and Burst Buffers.

Custom APIs are also created to maximize the capability of

NIOBE with extra information provided by the users. NIOBE

is designed to be modular to enable easy extension to support

several storage systems in the integrated scientific workflow

(e.g., from PFS to KVS to HDFS etc.).

III. NIOBE

A. Design Requirements

NIOBE is expected to be an add-on to the existing data

aggregation services for integrated scientific workflows. As a

result, we set three major requirements as our design priorities.

Transparency: The existing applications have been de-

veloped and used for a long time. The interfaces they are

using have also been standardized to maximize the portability

across different platforms. Transparency to applications allows

NIOBE to benefit more users. Thus, NIOBE needs to work

with minimal to no modification and intervention to the user’s

application source code.

Compatibility: As we mentioned in Section II, there are

some existing data aggregation services. NIOBE is required

to work alongside these services to accelerate integrated data

accesses while not affecting the existing objectives. The design

is expected to be compatible with as many existing data

aggregation services as possible.

Lightweight: As we move towards exascale, the scale

of the system is growing dramatically. Current systems are

running using data aggregation services to accelerate their I/O

operations. They are designed to work well with hundreds of

thousands of processes across the system. The introduction of

a new service plugin, such as NIOBE, has to keep minimal

overhead to ensure it would not limit the performance of the

system and become its bottleneck.

Workflow-specific optimization: Since NIOBE targets

integrated scientific workflows, specific optimizations have to

be proposed to take advantage of the characteristics of these

systems. Each phase of a scientific workflow can be drastically

different. These optimizations need to be general enough to be

applied to as many integrated scientific workflows as possible.

HPC Applications
(e.g., MPI simulation)

BigData Applications
(e.g., analysis, query)

NIOBE

Data Aggregation Service
(e.g., I/O forwarder, Burst Buffers)

Mapping
Engine

Metadata
Manager

I/O Clients
PFS KVSDFS

Client API
Interceptor NIOBE Lib

Object Store

Redis MongoDB

Distributed File System

Ceph HDFS

Parallel File System

Lustre OrangeFS

Other
Storage
Systems

NVMe

Profiler

NVMe

... ...

Fig. 1: Architecture design of NIOBE

B. High-level Architecture

Figure 1 shows the architecture of NIOBE. NIOBE sits

in-between two environments and works as a bridge for I/O

services in both environments. As discussed in Section II,

applications in a traditional integrated scientific workflow

prefer to access data vertically to/from their native storage

systems. Data dependency in-between two environments is

currently solved with slow data copy and conversion. NIOBE

is designed to bring two native vertical I/O paths closer to each

other by integrating the I/O from both paths and make better

decisions based on knowledge from executed phases in the

workflow. Additionally, with modern hardware architecture,

shared data can be stored in the data aggregation nodes (e.g.,

Burst Buffers) temporarily without reaching the remote global

storage system right away. Existing data aggregation services,

such as I/O forwarders and Burst Buffers, can be used as

storage for the shared data pool for both environments. NIOBE

intercepts I/O calls to existing data aggregation services, and,

thus, gains access to the aggregated data. The I/O requests are

then analyzed and possibly converted into one or more requests

targeting a different storage system accordingly. NIOBE is

designed to be transparent to applications and aggregation

services. Enabling NIOBE is as simple as turning a switch on

by preloading the NIOBE library (e.g., via LD PRELOAD

mechanism) with potential user configuration afterwards. Sim-

ilar interception is also used to connect analysis applications

to NIOBE. Analysis applications from another environment

accesses the data as from native storage system. NIOBE maps

the original metadata into the namespace within NIOBE and

carries out the I/O operation as required by the applications.

C. Component Analysis

Several components are designed, each one in charge of

different functionalities in NIOBE.

1) Client API: The client API is designed to provide users

an interface to communicate with NIOBE. There are two

different ways of using the client API of NIOBE.

Compatibility-prioritized Mode. User applications can run

as before and utilize existing data aggregation services, such

3

as I/O forwarder and Burst Buffers, to enable overlapped I/O

and fast data sharing. NIOBE transparently intercepts data

aggregation services to enable access to the same memory

buffer, which is used to receive data from application processes

and flush to the underlying PFS. NIOBE consequently converts

the data for integrated access to the optimal storage system

for best overall I/O performance in an integrated scientific

workflow. Information about the requests is collected from

the standard I/O routines and job descriptions to facilitate

the decision making. This mode can maximize the applica-

tion compatibility of NIOBE. Theoretically, all the existing

applications which use data aggregation services can benefit

from NIOBE for their integrated workflow. However, standard

interfaces of existing data aggregation services have limited

information about the data such as how it will be accessed by

following data consumers. Thus, NIOBE can only make the

best effort to understand the access pattern of data consumers

by profiling the access pattern during the first run with the

I/O Profiler (see Section III-C2). NIOBE utilizes the repetitive

nature of scientific workflows and assume a unified access

pattern throughout all the iterations. With the access pattern

obtained by profiling the first iteration, NIOBE can decide the

optimal storage plan to provide the best overall performance

for the entire workflow using the output of its I/O profiler.

Performance-prioritized Mode. To provide better decisions

on data integration, NIOBE also introduces some new APIs to

allow users to pass data access pattern information to NIOBE

Lib without the overhead of the I/O Profiler. An XML file

can be specified as the description of access pattern of the

consequent phases in the workflow. For example, an HPC

application can specify that the generated data will be analyzed

by a K-means clustering application which expects the data

to be in key-value pair of < coordinate, data >. The

granularity of the data access will be in a grid size of 4×4×4
when it is in the memory. With this information, NIOBE will

decide to write the data into KVS as a better option compared

to the default destination PFS. To match the access size, the

raw data will be partitioned into multiple 4 × 4 × 4 grids as

key-value pairs. The data at each grid will be written to KVS

with the coordinate as the key and the partitioned raw data as

the value. Since this information is provided by the user, it can

be more accurate than what is detected by the I/O Profiler. In

addition, it can avoid the overhead of using the profiler, which

may slow down the application. It does, however, require the

user to know exactly what the I/O requirements are, which

may not always be possible.

2) I/O Profiler: NIOBE’s I/O Profiler is designed to cap-

ture how data is consumed to provide guidance for the Map-

ping Engine to determine the optimal storage policy. When the

I/O Profiler is enabled, it may slightly affect the performance

of the application that is being profiled by some overheads.

Nevertheless, due to the repetitive nature of the workflow, the

I/O Profiler only needs to be triggered once in the first iteration

of execution. The access pattern of following iterations is

highly possible to be the same as the first one. Furthermore,

minimal information is caught to lower the overhead as much

as possible. The I/O Profiler keeps track of the granularity of

all the data accesses generated by data producer applications. It

also records access information of data consumer applications,

such as which portion of the data is accessed again and how the

data is accessed. Since not all the data will be accessed after

it is generated, profiling the reuse coverage of the data can

avoid redundant conversion in NIOBE to minimize overhead.

Profiling the access pattern in the data producer applications

can help the decision of mapping in the Mapping Engine. For

instance, I/O Profiler may understand a piece of data will

be read 1MB each time with a 2MB strided pattern. With

this knowledge, the Mapping Engine can convert the future

write requests to 1MB objects in KVS to utilize the significant

performance benefit of KVS in the read performance of small

access over PFS. In contrary, the Mapping Engine may keep

the original data path if a sequential access pattern is detected

by the I/O Profiler since PFS can provide good enough read

performance in such case. Conversion in such case loses too

much performance in writing the data, which hurts the overall

performance instead. The profiling result is saved in memory

to avoid unnecessary disk I/O. Thus, the overhead of I/O

Profiler can be minimized. The I/O Profiler sends the profiling

result to the Mapping Engine to adjust the default storage plan

for integrated data accesses.

3) Mapping Engine: The Mapping Engine is the decision

maker in NIOBE. It determines whether a data access needs

to be converted due to all the knowledge it perceives. This

information comes from the workflow data dependency graph,

which can be easily generated from the workflow script,

profiling results from I/O Profiler and the request itself. If

a piece of data needs to be accessed by another application

with different semantics, the access will be converted to the

corresponding format to speedup the anticipated access. If the

data will not be touched again, NIOBE will ignore it and carry

out the I/O as the default system. The decision is also made

based on the trade off between current access and future ones.

Using our previous work [15], [29], we have equipped NIOBE

with a model that can intelligently select the best storage

policy. NIOBE is also capable of buffering data into locally-

attached high performance storage devices, such as NVMe

SSDs, when the local memory is not large enough. These two

main features of NIOBE are performance-oriented and can

boost the overall performance experienced by applications.

Notice that such a mapping is different from IRIS, which is

carried out on compute nodes. NIOBE utilizes the aggregation

nodes on the I/O path and leaves all the compute resources

to the applications. More importantly, NIOBE selects the

optimal storage policy based on global access information

of the data accesses. No redundant data from the data pro-

ducer applications is converted as a result of the profiling

phase in compatibility-prioritized mode or the user inputs

in performance-prioritized mode. Moreover, generated data

is optimally stored to match the access pattern of the data

consumer applications to guarantee the best performance.

4) Metadata Manager: The Metadata Manager keeps track

of all the integrated data accesses. It stores locations of all the

4

data mapped by NIOBE. It maintains a distributed namespace

across all the nodes which run NIOBE services. Mappings

between files and objects are stored as hash map entries in the

Metadata Manager. For write access, entries will be inserted

with the file name or the key of the data as the identifier of the

metadata. For read access, the hash map is queried to return

the location of the data. The metadata is stored in memory

to maximize the insertion and query performance. It will be

flushed to local storage periodically to guarantee persistency.

5) I/O Clients: An I/O client is the interface of NIOBE

to communicate with an underlying storage system. It has

modules for all supported storage systems, which include PFS

such as IBM Spectrum Scale (used to be called General Par-

allel File System (GPFS), Lustre and OrangeFS, Distributed

File System (DFS) such as HDFS, Ceph and GlusterFS, and

KVS such as MongoDB, DynamoDB and Redis. After the

data is converted by the Mapping Engine, the request will be

forwarded to I/O clients to actually carry out the I/O operation.

Internally, the operations will be described using standard

interfaces, such as fopen/fwrite/fread/fclose for POSIX I/O

and put/get/delete for key-value access. The corresponding

module consequently translates the standard description to its

native interface. Due to the modular design of I/O clients,

NIOBE can be extended to other storage systems with minimal

development of a corresponding module driver.

D. Implementation Details

The implementation quality has a big impact on the final

performance of NIOBE.

1) Interceptor: As discussed in Section III-B, NIOBE in-

tercepts standard I/O calls to maintain the compatibility with

the existing software stack. Since we utilize the existing data

aggregation services, we intercept the recv() call in aggregation

services. Typically, these services receive I/O requests from the

applications running on the compute nodes over the network.

With the intercepted recv() on the network socket, we can

obtain the access to the aggregated I/O data in a non-intrusive

way. After the call is intercepted, we change the default mem-

ory allocation calls to reallocate the memory block to shared

memory allocated by shm open to enable data sharing between

the aggregation service’s original process and NIOBE’s service

process. Since the same amount of memory is allocated as

the default aggregation services, NIOBE does not increase

memory consumption. Resources on aggregation nodes can be

provisioned as before without any change. The interception

is achieved by using dynamic linking. It is a mechanism

provided by Linux’s dynamic loader to dynamically change

the behavior of the program without the need of recompiling.

It is used by setting the optional environmental variable

LD PRELOAD to point to a shared library file which contains

the new implementation of functions used in the program.

When using NIOBE, only one command needs to be added

to set LD PRELOAD before starting the data aggregation

services. No code modification or compilation is needed for

existing aggregation services.

The same technique is used to intercept standard I/O calls,

such as fwrite/fread for HPC applications and put/get for BD

applications. The intercept calls will be redirected to NIOBE

where the metadata is queried to locate the required data which

might have been re-directed to another storage system, or still

reside on the native storage system.

Users can enable and disable the interception by setting

another environmental variable ENABLE NIOBE to manually

switch on and off NIOBE. The interceptor will check this

variable to behave accordingly.

2) Mapping Engine: The mapping engine of NIOBE is

similar with IRIS [15]. We use the balanced mapping from

IRIS in NIOBE. More sophisticated mapping can be extended

to provide better performance for specific workflows. In this

paper, we focus on the proof-of-concept implementation to

validate the idea of NIOBE. When mapping file I/O to key-

value pair access, tuples of file name, offset and length are

converted to a unique key using a hash function. When the

same data needs to be analyzed by BD applications, the same

hash function is used to locate the key of the data. NIOBE’s

mapping engine is previously proven to be lightweight and

robust while performing faster than other mappings such as

that of the various connectors.

3) Metadata Manager: The Metadata Manager in NIOBE

is a distributed service running on all data aggregation nodes.

The metadata is managed across all participating nodes. Shared

memory on each node is allocated to hold the metadata for

fast access. The metadata will be periodically flushed to local

disk to persistent the metadata. The partition of metadata

namespace is achieved with hashing. A fixed size of key range

is managed on each node. Once an entry needs to be accessed

from/to the metadata, the client process firstly contacts the

service process running locally. It consequently contacts the

server which is in charge of the corresponding key range that

the key belongs to. The hash function can guarantee a unique

server for a specific key to actually store the entry. An RPC call

will be sent from the local service process to the destination

one to carry out the operation remotely.

4) Profiler: For profiling and analyzing of application’s I/O

patterns we use IOSIG [30]. IOSIG uses similar interception

technique as we use in NIOBE to intercept POSIX I/O

calls. We also extend IOSIG to profile data access from BD

applications to IOSIG keeps track of all data access operations

with their parameters to analyze the access pattern, such as

file descriptor, offset and length for HPC applications, and file

segment translated from the key and corresponding access size

for BD applications. File descriptor is consequently converted

to a file name that gets fed to the mapping engine to generate

keys along with offset and length. The overhead of IOSIG is

low enough to guarantee minimal performance impact of the

profiling step in NIOBE. To further cut the overhead, we trim

IOSIG to only use its I/O tracing functionality. Only minimal

data is saved in a memory-mapped file to provide both high

performance and persistency.

5) I/O Clients: NIOBE is designed to be modular and

extensible. It is supposed to support arbitrary types of PFS

5

Aggr

Comp

 Analysis

A
p
p
-l
ev
el

In
te
g
ra
ti
o
n

Aggr

Comp

 Analysis

Aggr

Comp

 Analysis

Time

N
IO
B
E

N
o

In
te
g
ra
ti
o
n

x3 time steps

Bypass

KVS
Write

Copy &
Convert

KVS
Read

PFS
Write

Analysis

Profiling

Compute

Aggre-
gation

T1 T2

T3 T4 T5

Timet1 t2 t3

Fig. 2: Timeline comparison between NIOBE and existing

solutions. (The time axis is cut after T4 due to the page limit.)

and KVS. We define the basic functions of I/O clients in

a base class. Users can extend the support of new storage

system by following existing modules of storage systems and

re-implement the corresponding functions.

E. NIOBE in Action

Figure 2 gives the timeline of an example use case for

NIOBE and the other two types of existing solutions No

Integration and App-level Integration. In this example, an

integrated workflow with one HPC simulation and one BD

analysis application is used. Four time steps of data is gener-

ated by the simulation and processed by the analysis applica-

tion. Data conversion is required between two applications by

default. All nodes are divided into three groups Comp, Aggr

and Analysis which represents nodes for compute, aggregation,

and analysis, respectively. No Integration represents the default

system with data aggregation service enabled, such as systems

with I/O forwarding layer and Burst Buffers. Data follows the

traditional path without data integration. App-level Integration

illustrates the existing solutions which integrate data access

using resources on compute nodes, such as IRIS and SciDP.

For data generation, No Integration and NIOBE utilizes data

aggregation nodes to overlap writing data of one iteration with

compute of next iteration. In contrast, App-level Integration

ignores these nodes and access the KVS directly from the

compute nodes. It also makes the data access slower than

that in NIOBE due to I/O interference generated by high

I/O concurrency from the compute nodes, as observed from

longer KVS Write times in the App-level Integration solution

in Figure 2. For data consumption, App-level Integration and

NIOBE addresses the mismatch between files on PFS and key-

value pairs on KVS to avoid the extremely expensive and

redundant I/O in data copy and conversion.

With data integration in App-level Integration and NIOBE,

users can get the analysis result of the first time step much

earlier than No Integration (t1 and t2 compared to t3). No data

copy and conversion is required as the data has been converted

into key-value pairs and stored in KVS. However, the write

to KVS in App-level Integration consumes compute resources

and delays the following iterations of computation. In addition,

the aforementioned slower write further delays the remaining

iterations. Thus, the data analysis in following iterations starts

later than NIOBE in App-level Integration.

As a workflow-aware data service, NIOBE accelerates the

whole process and enhances the efficiency by reducing the ex-

ecution time on both environments. NIOBE and No Integration

are efficient on compute nodes and finishes their computation

at T1 on compute nodes (indicated by the vertical olive green

dash-dotted lines). App-level Integration, on the other hand,

occupies the compute nodes much longer (until T3) because

of the synchronous I/O on compute nodes. The total time of

the whole workflow (presented by the vertical bright green

dashed lines) shows the benefit of NIOBE from the perspective

of analysis nodes. No Integration is encumbered by slow data

copy and conversion and wastes a lot of resources on the

analysis nodes. As a result, the finish time of the workflow is

much later than the other two solutions (denoted as T5, notice

the break in the time axis). App-level Integration has a low

utilization on the analysis nodes as the analysis application

sits idle and waits for the data of the next iteration due to

its ignorance of data aggregation. Visible time intervals can

be found between the analysis of the results of each iteration,

which pushes the end time to T4. NIOBE can benefit from

both the data integration and aggregation, and accelerates the

workflow significantly. As it can be seen, NIOBE has the

shortest time on both computation and analysis (shown as T1

and T2, respectively). With NIOBE, the resource utilization

on both nodes is improved. The time waiting for data is

significantly reduced on both clusters (denoted by smaller gaps

between processing of data from each time step). Resources

can be returned to the system and allocated to application

processes of other scientific workloads.

IV. EVALUATION

A. Experimental Setup

Testbed: We have implemented and evaluated NIOBE on

the Ares cluster [31] at Illinois Institute of Technology. To

emulate a real supercomputer equipped with I/O forwarders

and/or Burst Buffers, we leveraged the topology of the network

and configured the cluster as follows: 28 compute nodes as

clients running HPC and BD applications, and four compute

nodes as the I/O forwarding or Burst Buffer nodes. The

mapping between compute nodes and I/O nodes is set to

seven (i.e., I/O requests from every seven compute nodes get

aggregated to one I/O node). We use MPICH 3.2.1 as the MPI

library for HPC applications. We run OrangeFS 2.9.7 as the

PFS and Redis 3.2.13 for KVS on 16 storage nodes. We chose

these systems as representatives of a PFS and KVS architecture

due to their popularity, ease-of-use, extended documentation,

and their high performance in their respective ecosystems.

Workload: We use synthetic benchmarks to evaluate the

pure I/O performance of NIOBE. Each test case reads and

writes 128MB of data per process, which leads to a total

of 140GB data size for the largest scale. We also use two

scientific workflows, CM1 [32] and Weather Research and

Forecasting (WRF) [33], to validate the benefit of NIOBE in

terms of end-to-end performance. Up to 89GB and 26GB of

6

0

50

100

150

200

250

0

1

2

3

4

5

6

7

8

100 1000 10000 100 1000 10000

File to Object Object to File

T
h

ro
u

g
h

p
u

t
(M

O
p

/s
)

E
la

p
se

d
 T

im
e

(M
il

li
se

co
n

d
)

Number of Requests

Time 1MB Time 2MB Time 4MB Time 8MB

Throughput 1MB Throughput 2MB Throughput 4MB Throughput 8MB

Fig. 3: Mapping overhead of NIOBE.

0

50

100

150

200

250

0

5

10

15

20

25

32 64 128 256 512 1024 32 64 128 256 512 1024

Insertion Query
T

h
ro

u
g

h
p

u
t

(K
O

p
/s

)

E
la

p
se

d
 T

im
e

(M
il

li
se

co
n

d
)

Number of Request Per Process

Time Per Request Throughput

Fig. 4: Metadata overhead of NIOBE.

data is produced and consumed in each iteration of CM1 and

WRF workflow, respectively. We flush the page cache every

time before the run to avoid OS caching. All the results come

from an average of five runs to eliminate OS noise.

B. Overhead Evaluation

The data integration in NIOBE is achieved by mapping data

access from one environment to another. Therefore, we test the

overhead by measuring only the mapping time.

Figure 3 shows the mapping overhead per I/O request within

NIOBE. Both file-to-object and object-to-file mappings are

evaluated for HPC I/O and BD I/O, respectively. We supply

NIOBE with multiple numbers of I/O requests, namely 100,

1000 and 10000 requests. They are mapped to the other storage

system by the Mapping Engine. From the figure, we observe

that the mapping time stays stable as the number of requests

increases for both mapping directions. All the mappings are

finished within 7ms. As discussed in Section III, the mapping

is implemented using a hash function to map tuples of file

name, offset, and request size into keys. The mapping has

a time complexity of O(1), hence is not dependent on the

request size. That leads to fast and stable mapping time shown

in Figure 3. We additionally calculate the throughput (defined

by the number of mappings per second). As the number

of requests increases, the throughput keeps increasing and

reaches 200K mappings per second at 10000 requests.

Metadata is another critical internal component for NIOBE

to sustain high throughput. The Metadata Manager keeps

record of mapped I/O and retrieves the mapping when con-

sequent requests upon the mapped data come to NIOBE.

Figure 4 demonstrates the cost of metadata operations per I/O

request. As we can observe, the average metadata operation

time per request is about the same for all test cases. Due to

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

No Intgrtn App-level

Intgrtn

NIOBE No Intgrtn App-level

Intgrtn

NIOBE

Write Read

B
an

d
w

id
th

 (
M

B
/s

)

32KB 128KB 512KB 2MB 8MB 32MB 128MB

Write

(a) File I/O

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

No Intgrtn App-level

Intgrtn

NIOBE No Intgrtn App-level

Intgrtn

NIOBE

Write Read

B
an

d
w

id
th

 (
M

B
/s

)

32KB 128KB 512KB 2MB 8MB 32MB 128MB

Write

(b) Object I/O

Fig. 5: Synthetic I/O performance comparison of NIOBE and

existing solutions.

the bucket-based design of metadata structure, which is similar

to a distributed hashmap [34], query is faster than insertion.

The average metadata operation time tends to increase as the

number of requests increases (e.g., more than 512 requests

per process for insertion and more than 64 requests per

process for query). The aggregate throughput is quite stable

for insertion operation which indicates NIOBE can provide

stable performance for adding new metadata entries in its

Metadata Manager. For the throughput of metadata query,

which is the most dominant operation, NIOBE achieves up to

over 200K operations/second to guarantee good performance

for applications to query metadata of integrated data.

C. Synthetic I/O Performance Evaluation

As a native storage solution for HPC and BD environments,

PFS and KVS can provide the best performance for represen-

tative I/O workloads in each environment. In NIOBE, mapping

I/O requests between different storage systems sacrifices the

native data access for better overall performance since the

data will be accessed using another semantics. As a result,

we evaluate this trade-off using synthetic workloads.

The file and object I/O performance of three different solu-

tions are compared in Figure 5 for write and read, respectively.

It is easy to observe that read performance is lower than

write performance since the page cache is flushed before

each run. Default configuration is used in both OrangeFS and

Redis, which utilizes memory to buffer write accesses. In these

tests, we use all the cores, which leads to 1120 application

processes. For all the following figures, No Intgrtn stands

for the default solution for systems with data aggregation

7

services, such as I/O forwarding layer and Burst Buffers. App-

level Intgrtn is short for Application-level Integration, which

represents existing integration solutions in compute nodes,

such as IRIS. All the performance results are presented as

bandwidths. They are measured from the clients of the storage

system which issue the I/O requests. For example, bandwidths

are calculated by dividing total data size over the time of

writing from aggregation service processes and application

processes to the storage systems for solutions with and without

data aggregation services utilized, respectively. Overlapping

between computation and I/O is not presented here. Workflow-

related performance can be found in Section IV-D.

File I/O: As we can see from Figure 5a, No Intgrtn shows

the best performance for large file write I/O as it has a highly

optimized I/O stack for HPC workloads performing large write

accesses. For small write accesses (i.e., write accesses smaller

than 512KB), No Intgrtn is relatively slower, which can be

attributed to the well-known low efficiency of smaller accesses

on hard drives in our testbed. App-level Intgrtn and NIOBE

map the file OrangeFS writes to put operations to Redis,

which significantly improves the write performance as KVS

is less sensitive to small accesses compared with PFS. Since

the total data size for all test cases is the same (i.e., 128MB

per application process), larger request size leads to less I/O

concurrency. For large write accesses (i.e., write accesses

larger than 8MB), App-level Intgrtn slows down as the total

I/O bandwidth cannot be saturated by low I/O concurrency.

NIOBE avoids the decline due to its better mapping policy on

the aggregation nodes. For large write accesses, NIOBE splits

the requests into multiple smaller ones to maintain proper I/O

concurrency. Thus, NIOBE is less sensitive to request size

variation from applications. NIOBE is 78% faster than No

Intgrtn for write accesses smaller than 512KB, and 73% faster

than App-level Intgrtn for write accesses larger than 8MB. The

same pattern applies to the read accesses.

Object I/O: For object I/O, the same amount of data is

generated and consumed as the file I/O tests. It is clear that

NIOBE has the best overall write performance compared with

the other two solutions. Comparing with App-level Intgrtn for

file I/O, the performance of No Intgrtn does not drop since

PFS favors large write accesses after the requests are mapped.

NIOBE has 125% performance improvement over App-level

Intgrtn for small writes (i.e., smaller than 512KB) due to larger

request size in NIOBE after aggregation, which PFS prefers.

Results for read test is analogous to write results.

Summary: Compared with No Intgrtn and App-level Int-

grtn, NIOBE provides the most stable performance for various

request sizes. It utilizes the benefits of both file and object I/O

to sustain the performance when the request size is away from

the optimal ones. NIOBE utilizes data aggregation services to

avoid small requests. Meanwhile, large requests are divided to

preserve I/O concurrency for good performance in NIOBE.

D. Workflow Performance Evaluation

NIOBE targets integrated scientific workflows. It utilizes

the benefits of both data aggregation and integration to pro-

vide the optimal overall performance. We use two integrated

workflows of real applications to evaluate the performance of

NIOBE. Firstly, the CM1 simulation generates data which is

analyzed by a K-means application expecting data from Redis.

Secondly, a pair of WRF simulation and analysis applications

are deployed with the same data dependency in-between. The

number of iterations is set to ten. A total of up to 1120

processes are involved in both workflows.

Figure 6 shows the breakdown of the total execution time of

two workflows for all three solutions. The total execution time

is presented as wall time of the entire workflow starting from

the first iteration of HPC simulation to the last iteration of data

analysis. The total execution time is broken down into each

phases. Since phases are overlapped with each other on all the

nodes, only the time that is not overlapped with any processing

on compute nodes is calculated. We present the results in this

way to highlight the time that the workflow is prolonged due to

the operations which unnecessarily fall behind the processing

on compute nodes. The less time it takes, the sooner users

can get the results, which consequently leads to better system

utilization due to less idle time on compute nodes.

Similar to the timeline in Figure 2, NIOBE is significantly

faster than App-level Intgrtn and No Intgrtn. The total execu-

tion time of NIOBE is 7.9x, 8.3x and 10.5x shorter than No

Intgrtn for 280, 560 and 1120 processes in the CM1 workflow,

respectively. The speedups come to 5.9x, 6.7x and 9.3x for

the WRF workflow. The aggregation time is unique and the

same to NIOBE and No Intgrtn. Copy&Convert dominates and

significantly prolongs the execution time of No Intgrtn. It is

interesting to notice that No Intgrtn is explicitly optimized in

our evaluations. In reality, the performance could be worse due

to three reasons. 1) The data copy and conversion are carried

out in parallel to be the optimal by our effort. It is much

faster than a simple cp or rsync between two storage systems.

All compute nodes are involved in data access and format

conversion. However, it requires much more programming ex-

perience, which puts a big burden on the users. 2) The number

of iterations is relatively small. The phase of Copy&Convert

is too long to be overlapped with the simulation. It also

heavily delays the start of the analysis of the data generated

in each iteration, which results in the non-overlapped KVS

I/O (Redis Read) and analysis computation (Analysis) in our

tests. 3) No Intgrtn is implemented with the assumption of

an iteration-based data analysis application in Figure 6. In

practice, scientists often analyze the data in an offline fashion.

They wait for the completion of the entire HPC application

and readiness of all the data before they start the analysis. No

overlapping is utilized to reduce the total execution time.

When compared with App-level Intgrtn, NIOBE speeds up

the workflow by 14%, 44% and 233% for 280, 560 and 1120

processes for the CM1 workflow, respectively. For the WRF

workflow, NIOBE reduces the execution time by 51%, 45%

and 69% for different scales, respectively. App-level Intgrtn

avoids the aggregation time by writing to the KVS directly,

which is represented by Redis Write in Figure 6. The write

operation is noticeably longer than that in NIOBE because

8

0 400 800 1200 1600 2000 2400

280

560

1120

Elapsed Time (Second)

2
8

0
5
6
0

1
1

2
0

N
u

m
b

er
 o

f
P

ro
ce

ss
es

No Intgrtn

App-level Intgrtn

NIOBE

No Intgrtn

App-level Intgrtn

NIOBE

No Intgrtn

App-level Intgrtn

NIOBE

Simulation

Aggregation

OrangeFS Write

Redis Write

Copy&Convert

Redis Read

Analysis

(a) CM1

0 200 400 600 800 1000

280

560

112 0

Elapsed Time (Second)

Simulation

Aggregation

OrangeFS Write

Redis Write

Copy&Convert

Redis Read

Analysis

2
8
0

5
6
0

1
1
2
0

N
u
m

b
er

 o
f

P
ro

ce
ss

es

No Intgrtn

App-level Intgrtn

NIOBE

No Intgrtn

App-level Intgrtn

NIOBE

No Intgrtn

App-level Intgrtn

NIOBE

(b) WRF

Fig. 6: Execution time breakdown of CM1 and WRF workflow for NIOBE and existing solutions. (Only execution time that

cannot be overlapped with operations on compute nodes are presented.)

it is done synchoronously on compute nodes, which cannot

be overlapped by computing on compute nodes as NIOBE. It

utilizes the existing data aggregation service to enable asyn-

chronous I/O with the cost of the data aggregation time (Aggre-

gation in the figure). According to the evaluation results, the

cost pays off to provide a better overall performance. The over-

lapping benefit and integrated I/O gives NIOBE the capability

to significantly accelerate the integrated scientific workflow.

V. RELATED WORK

In the HPC community, data aggregation has been proposed

to reduce the pressure on external storage. Two-phase I/O [35]

aggregates small requests via a network communication phase

and carries out larger batches of contiguous I/O to the PFS.

Liao et al. proposed an improved collective I/O to consider the

locking mechanism in the underlying file system [36]. Tessier

et al. developed the TAPIOCA framework to adaptively aggre-

gate I/O with a network topology-aware design [37]. Following

the development of SSD, He et al. developed a heterogeneity-

aware collective I/O to optimize for heterogeneous PFS [38].

Most importantly, I/O forwarding layer [18] has been proposed

to alleviate the stress to PFS by aggregating I/O requests from

all compute nodes to dedicated I/O nodes. As a result, the

number of I/O clients that PFS serves reduces. The request

size is increased to favor hard drive-based PFS. Burst Buffers

[21] was designed to buffer data in fast local storage. Cray’s

DataWarp [39] technology is an example of such service in

production systems such as Cori [28]. Data staging services are

consequently introduced to utilize the I/O nodes. Datastager

[19] and Dataspace [20] provide interfaces to allow better

scheduling of staging in and out data.

All these works only target HPC applications without

addressing the general need for data integration. NIOBE

enhances the data aggregation services to better support in-

tegrated data access for extreme-scale computing.

Object stores have been explored in HPC due to its advan-

tage in scalability and performance in access latency. However,

no production HPC system is using object stores as the main

storage solution for its native workloads rather to enhance

the current PFS. Solutions such as IndexFS [40], BatchFS

[41], and FusionFS [42] aim to solve the scalability issue of

metadata operations by offloading them to an object store. In

contrast, MarFS [43] and Ceph [17] propose to use object store

as the data storage while maintaining POSIX-compatible inter-

face. In MarFS and Ceph, object store replaces the traditional

PFS in HPC and becomes the only storage system. However,

access to an object store natively from a scientific application

is still required and NIOBE fills this need.

Scientific applications generate large volumes of data only

from which scientists can gain useful insights. BD frameworks

are proven to be extremely capable in handling huge datasets.

As mentioned in Section II, IBM has built a Hadoop connector

to allow BD applications to communicate with GPFS directly

[12]. Multiple HDFS connectors have been similarly devel-

oped for Lustre [13], [44]. However, these solutions are either

proprietary or designed for a specific PFS restricting the flex-

ibility, programmability, and transparency that NIOBE offers.

NIOBE bridges multiple storage systems to provide the best

storage service for an integrated workflow which needs ser-

vices from these systems. No one storage system is the winner,

but each is great for its targeted workloads. The benefit of hav-

ing transparent access to any storage is where NIOBE shines.

VI. CONCLUSIONS AND FUTURE WORK

Combining the power of HPC and BD is becoming in-

creasingly interesting for scientists to gain insights in a more

efficient way. The inherent difference between data access API

and semantics brings an obstacle to an integrated scientific

workflow system, which involves applications from both en-

vironments. NIOBE tackles this issue by enabling integrated

I/O on existing data aggregation hardware and services to

maximize the overlapping between computation and I/O to

accelerate the workflow. With NIOBE, these workflows can be

accelerated by up to 10.5x compared with traditional solutions

involving data movements due to optimized I/O. When com-

pared with other state-of-the-art integration solutions, NIOBE

can also provide a speedup of up to 133% due to overlapped

I/O and data aggregation. In the future, we plan to extend

NIOBE to support more data aggregation services and storage

systems to test it to larger scales and with more workflows.

9

REFERENCES

[1] R. L. Rob Ross Rajeev Thakur,, Marc Unangst, and B. Welch, “Parallel
I/O in Practice,” in Supercomputing, 2009.

[2] M. Folk, A. Cheng, and K. Yates, “Hdf5: A File Format and I/O
Library for High Performance Computing Applications,” in Proceedings

of Supercomputing, 1999.
[3] R. Rew and G. Davis, “NetCDF: an interface for scientific data access,”

IEEE Computer Graphics and Applications, vol. 10, pp. 76–82, jul 1990.
[4] Apache Software Foundation, “Apache Hadoop.” http://hadoop.apache.

org/, 2011. Accessed: 2017-07-13.
[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark : Cluster Computing with Working Sets,” HotCloud’10 Proceed-

ings of the 2nd USENIX conference on Hot topics in cloud computing,
p. 10, 2010.

[6] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and
J. Srinivasan, “Scaling Spark on HPC Systems,” in Proceedings of the

25th ACM International Symposium on High-Performance Parallel and

Distributed Computing - HPDC ’16, (New York, New York, USA),
pp. 97–110, ACM Press, 2016.

[7] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, pp. 56–68, jun 2015.

[8] S. Zhou, B. H. Van Aartsen, and T. L. Clune, “A lightweight scalable
i/o utility for optimizing high-end computing applications,” in Parallel

and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, (Miami, FL, USA), pp. 1–7, IEEE, 2008.
[9] E. Salmon, “Evolving Storage and Cyber Infrastructure at the NASA

Center for Climate Simulation,” in Mass Storage Systems and Technolo-

gies (MSST), 2017 IEEE 33th Symposium on, (Santa Clara, CA), 2017.
[10] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers,

and Y. Solihin, “Active Flash: Towards Energy-Efficient, In-Situ Data
Analytics on Extreme-Scale Machines,” in Proceedings of the 11th

USENIX Conference on File and Storage Technologies (FAST’13), 2013.
[11] F. Schmuck and R. Haskin, “GPFS: A shared-disk File System for Large

Computing Clusters,” in Proceedings of the 1st USENIX Conference on

File and Storage Technologies, pp. 231–244, 2002.
[12] IBM, “HDFS Transparency.” https://www.ibm.com/support/

knowledgecenter/en/STXKQY 4.2.1/com.ibm.spectrum.scale.v4r21.
doc/bl1adv Overview.htm, 2012. Accessed: 2018-04-10.

[13] Seagate, “Diskless Hadoop 2 (YARN) on Lustre.” https://github.com/
Seagate/hadoop-on-lustre2. Accessed: 2017-09-10.

[14] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson, R. B. Ross,
S. Seung Woo, S. J. Lang, and R. B. Ross, “On the duality of data-
intensive file system design: Reconciling HDFS and PVFS,” in 2011

International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), pp. 1–12, 2011.
[15] A. Kougkas, H. Devarajan, and X.-H. Sun, “IRIS: I/O Redirection via

Integrated Storage,” in Proceedings of the 2018 International Conference

on Supercomputing - ICS ’18, (New York, New York, USA), pp. 33–42,
ACM Press, 2018.

[16] K. Feng, X.-H. Sun, X. Yang, and S. Zhou, “SciDP: Support HPC
and Big Data Applications via Integrated Scientific Data Processing,” in
2018 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 114–123, IEEE, sep 2018.

[17] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-performance Distributed File System,” in
Proceedings of the 7th Symposium on Operating Systems Design and

Implementation, pp. 307–320, 2006.
[18] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-

forwarding infrastructure for petascale architectures,” in Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and practice

of parallel programming - PPoPP ’08, (New York, New York, USA),
p. 153, ACM Press, 2008.

[19] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“DataStager: Scalable Data Staging Services for Petascale Applications,”
in Proceedings of the 18th ACM international symposium on High

performance distributed computing - HPDC ’09, (New York, New York,
USA), p. 39, ACM Press, 2009.

[20] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An Interaction
and Coordination Framework for Ccoupled Simulation Workflows,”
in Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing - HPDC ’10, (New York, New
York, USA), p. 25, ACM Press, jun 2010.

[21] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,

and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in 2012 IEEE 28th Symposium on Mass Storage Systems and

Technologies (MSST), pp. 1–11, IEEE, apr 2012.
[22] Y. Chen, C. Chen, X.-H. Sun, W. D. Gropp, and R. Thakur, “A Decou-

pled Execution Paradigm for Data-Intensive High-End Computing,” in
2012 IEEE International Conference on Cluster Computing, pp. 200–
208, IEEE, sep 2012.

[23] Oak Ridge National Lab, “Leadership Computing Requirements for
Computational Science.” https://www.olcf.ornl.gov/wp-content/uploads/
2010/03/ORNL TM-2007 44.pdf. Accessed: 2018-08-27.

[24] Apache Software Foundation, “Design - Apache Hive,” 2015.
[25] Intel, “Intel Enterprise Edition for Lustre Software.” http://www.

comnetco.com/wp-content/uploads/2015/01/ieel product brief.pdf,
2015.

[26] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan, “Scalable I/O forwarding framework
for high-performance computing systems,” in 2009 IEEE International

Conference on Cluster Computing and Workshops, pp. 1–10, IEEE,
2009.

[27] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“DataStager: scalable data staging services for petascale applications,”
Cluster Computing, vol. 13, pp. 277–290, sep 2010.

[28] NERSC, “Cori.” https://www.nersc.gov/users/computational-systems/
cori/. Accessed: 2019-04-30.

[29] A. Kougkas, H. Eslami, X.-H. Sun, R. Thakur, and W. Gropp, “Re-
thinking key–value store for parallel i/o optimization,” The International

Journal of High Performance Computing Applications, vol. 31, no. 4,
pp. 335–356, 2017.

[30] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting
Application-Specific Parallel I/O Optimization Using IOSIG,” in 2012

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (ccgrid 2012), pp. 196–203, IEEE, may 2012.
[31] “Ares cluster.” http://www.cs.iit.edu/{∼}scs/resources.html{#}

content6-8p, 2019. Accessed: 2019-04-24.
[32] G. H. Bryan, “CM1 Homepage.” http://www2.mmm.ucar.edu/people/

bryan/cm1/, 2019. Accessed: 2019-04-24.
[33] UCAR, “About the Weather Research & Forecasting Model.” http://

www2.mmm.ucar.edu/wrf/index.php, 2019. Accessed: 2019-04-24.
[34] “Basket.” https://github.com/hariharan-devarajan/basket. Accessed:

2019-04-24.
[35] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O

in ROMIO,” in The Seventh Symposium on the Frontiers of Massively

Parallel Computation, pp. 182–189, 1999.
[36] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain

partitioning methods for collective I/O based on underlying parallel file
system locking protocols,” in High Performance Computing, Network-

ing, Storage and Analysis, 2008. SC 2008. International Conference for,
pp. 1–12, IEEE, 2008.

[37] F. Tessier, V. Vishwanath, and E. Jeannot, “TAPIOCA: An I/O Li-
brary for Optimized Topology-Aware Data Aggregation on Large-Scale
Supercomputers,” in 2017 IEEE International Conference on Cluster

Computing (CLUSTER), vol. 2017-Septe, pp. 70–80, IEEE, sep 2017.
[38] S. He, Y. Wang, X.-H. Sun, C. Huang, and C. Xu, “Heterogeneity-Aware

Collective I/O for Parallel I/O Systems with Hybrid HDD/SSD Servers,”
IEEE Transactions on Computers, vol. 9340, no. c, pp. 1–1, 2016.

[39] Cray, “DataWarp Cray DataWarp Applications I/O Accelerator.” https:
//www.cray.com/products/storage/datawarp. Accessed: 2019-05-18.

[40] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling File Sys-
tem Metadata Performance with Stateless Caching and Bulk Insertion,”
in SC14: International Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 237–248, IEEE, nov 2014.
[41] Q. Zheng, K. Ren, and G. Gibson, “BatchFS: Scaling the File System

Control Plane with Client-Funded Metadata Servers,” in 2014 9th

Parallel Data Storage Workshop, pp. 1–6, IEEE, nov 2014.
[42] I. R. Dongfang Zhao, Chen Shou, Zhao Zhang, Iman Sadooghi, Xi-

aobing Zhou, Tonglin Li, “FusionFS: a distributed file system for large
scale data-intensive computing,” in 2nd Greater Chicago Area System

Research Workshop (GCASR), 2013.
[43] J. Inman, W. Vining, G. Ransom, and G. Grider, “MarFS, a Near-POSIX

Interface to Cloud Objects,” USENIX ;Login:, vol. 42, no. 1, pp. 26–31,
2017.

[44] Intel, “Hadoop Adapter for Lustre (HAL).” https://github.com/
intel-hpdd/lustre-connector-for-hadoop. Accessed: 2017-09-10.

10

