
YARNsim: Simulating Hadoop YARN

Ning Liu, Xi Yang, Xian-He Sun
Computer Science Department
Illinois Institute of Technology

Chicago, Illinois
{nliu8, xyang34}@hawk.iit.edu, sun@iit.edu

Johnathan Jenkins, Robert Ross
Mathematics and Computer Science Department

Argonne National Laboratory
Argonne, Illinois

{jenkins, rross}@mcs.anl.gov

Abstract—Despite the popularity of the Apache Hadoop
system, its success has been limited by issues such as single points
of failure, centralized job/task management, and lack of support
for programming models other than MapReduce. The next
generation of Hadoop, Apache Hadoop YARN, is designed to
address these issues. In this paper, we propose YARNsim, a
simulation system for Hadoop YARN. YARNsim is based on
parallel discrete event simulation and provides protocol-level
accuracy in simulating key components of YARN. YARNsim
provides a virtual platform on which system architects can
evaluate the design and implementation of Hadoop YARN
systems. Also, application developers can tune job performance
and understand the tradeoffs between different configurations,
and Hadoop YARN system vendors can evaluate system
efficiency under limited budgets.

To demonstrate the validity of YARNsim, we use it to model
two real systems and compare the experimental results from
YARNsim and the real systems. The experiments include
standard Hadoop benchmarks, synthetic workloads, and a
bioinformatics application. The results show that the error rate is
within 10% for the majority of test cases. The experiments prove
that YARNsim can provide what-if analysis for system designers
in a timely manner and at minimal cost compared with testing
and evaluating on a real system.

Keywords: Hadoop; MapReduce; YARN; Parallel Discrete
Event Simulation; HDFS

I. INTRODUCTION
Apache Hadoop [1] is the most popular open-source

implementation of the MapReduce [2] framework. However,
the first generation of Hadoop is based on a centralized model,
where a JobTracker manages both resource allocation and job
processing. This design is convenient for implementation and
management, but its inherent limitations become issues as
Hadoop enters an era of jobs with millions of concurrent tasks
and systems with tens of thousands of nodes. The master
JobTracker is a single point of failure, meaning that a simple
failure in the JobTracker will bring down the entire system. It
is also a bottleneck for scalability, since all jobs and tasks are
managed through this single point. In HDFS [3], the
NameNode functions similar to the JobTracker. It manages all
files, the associated blocks, and their locations.

To best quantify such design limitations and aid in the
design and implementation of Hadoop systems, many
researchers have leveraged tools such as simulators or
emulators. Quite a few Hadoop performance models and

simulation systems exist. In terms of simulation techniques
used, Mumak [4], SimMR [5], MRperf [6], MRSG [7], and
MRsim [8] are based on discrete-event modeling and
simulation, and Starfish [9] [10] is based on analytical
modeling and simulation. In terms of system design, Mumak
and SLS [11] are Hadoop scheduler simulators focusing on
MapReduce job scheduling and resource allocation; and
MRperf, MRSG, and MRsim focus on simulating the
MapReduce job/task execution engine.

Simulations have provided useful insights into the Hadoop
system performance. Most important, simulation provides a
timely and cost-effective way to design and validate a next
generation system. However, these simulation systems are
constrained because (1) most discrete-event simulation systems
are based on a sequential event processing engine, limiting the
fidelity of simulations that may be run in a reasonable time; (2)
simulation systems based on analytical models are unable to
accurately model complex systems, and the accuracy is often
sacrificed because of the necessary simplifications [12]; and
(3) no a comprehensive simulation system exists for modeling
Hadoop that includes both the software stack and hardware
components. For example, Mumak and SimMR cannot capture
the resource contention because of the lack of detailed network
models. MRperf is based on the network simulation system ns-
2 [13] but lacks a detailed model for HDFS and local file
systems. In fact, most simulation systems do not include a
model for HDFS.

Hadoop YARN [14] was recently proposed as the next-
generation Hadoop system, addressing issues in the first-
generation and providing new capabilities. The central idea of
Hadoop YARN is to provide a generalized platform for
managing resources and supporting diverse programming
models, including MapReduce and MPI. Many researchers
have already focused on the performance optimization of
Hadoop YARN [15]. However, the community still lacks a
comprehensive Hadoop YARN simulation system that can
provide a sandbox for exploring design alternatives and
understanding YARN behavior. In this paper, we present
YARNsim: a simulation system for Hadoop YARN. Our
contributions are as follows:

• To the best of our knowledge, YARNsim is the first
comprehensive Hadoop YARN simulation system.

• YARNsim runs in parallel and thus is capable of
modeling and simulating large-scale scenarios.

• YARNsim includes a detailed, protocol-level accurate
HDFS model that increases simulation fidelity. A
detailed HDFS model is not covered in most existing
MapReduce simulation systems.

• We develop a bioinformatics application model and
verify its accuracy through comparing performance
results from both YARNsim and a real system.

The rest of the paper is organized as follows. Section II
addresses the motivation and background of YARNsim.
Section III presents the design and implementation of
YARNsim system components, including a MapReduce
module, an HDFS module, and a local storage system module.
Section IV discusses the experimental evaluation and
demonstrates the validity of YARNsim. Section V introduces
the related works. Section VI summarizes our conclusions and
points out future directions of this study.

II. MOTIVATION AND BACKGROUND
In this section, we first present the motivation of

developing YARNsim from two perspectives. We then discuss
the related systems used by YARNsim.

A. Big Data
In the past few years, the focus of large-scale parallel and

distributed processing has transitioned gradually from
computation to storage. Increasing compute capabilities have
generated enlarged data-processing needs, encouraging
scientists in different endeavors to pursue bigger and more
complex problems. However, the capability of the storage
system has severely lagged behind in terms of both access
speed and capacity. Even with the wide use of enhanced
storage media, such as SSD, and countless data caching and
data placement optimization techniques [16], [17], the gap
between the capabilities of computation and storage systems
still increases. As suggested in [18], the gap will continue to
widen given the current technology trends. Scientific
applications are severely constrained by the I/O bottleneck in
data preloading, defensive checkpointing and simulation
postprocessing. Commercial applications face similar
dilemmas, where users are generating data at an unprecedented
rate and the data processing and storage needs quickly go
beyond the capacity of current storage system. For example,
Facebook users were storing a total of 300 petabytes of data as
of November 2013 [19].

The challenge of big data, at its core, is large-volume data
processing, movement, and storage. Thus, a successful Hadoop
simulation system should also include the model for data and
its related operations to cater to the challenges of big data. In
particular, YARNsim differs from other MapReduce
simulators in that it provides more accurate models describing
details of data movement, communication contention over the
network, and task interactions due to data request conflicts.

B. Hadoop
Because of its simplicity and efficacy, MapReduce is one

of the most well-accepted programming models in the
distributed-computing community. According to a report from
Gartner [20], 65% of the packaged data analytic applications
will be built on Hadoop by 2015. Because of Hadoop’s

popularity, we are motivated to develop a tool that helps the
community better understand the advantages and disadvantages
of Hadoop systems and quantitatively measure the trade-offs
between different design points.

Good scalability is one of the primary reasons Hadoop is
widely adopted for large-scale data analytic solutions [21]. As
the system grows in size, scalability has also become a top
challenge facing Hadoop development [22]. Although Hadoop
YARN has separated the management of resources and jobs
and largely decreased the load of the master, the resource
management and scheduling are still based on centralized
model and will face scalability issues again as the need for
computation and data movement keeps increasing. As Hadoop
YARN proposes to support diverse programming models (in
addition to MapReduce), the system may encounter new
challenges in terms of system service design, fair resource
scheduling, and system utilization in a hybrid workload
environment. It is favorable to have an efficient simulation to
aid in the evaluation and redesign of a complex system such as
Hadoop YARN after deployment, especially since different
datacenters may favor different domains of applications and
since system architectures (in terms of both software and
hardware) varies considerably from one to another. Thus, an
efficient and cost-effective tool is necessary and the key to
successful system design. In this paper, we show that
YARNsim can be used to evaluate MapReduce jobs at the
minimal cost of mainly CPU cycles.

C. Background
YARNsim is based on two parallel simulation packages:

the Rensselaer Optimistic Simulation System (ROSS) [23] and
the Co-Design of Exascale Storage System (CODES) [24].

ROSS is a massively parallel discrete-event simulator that
has demonstrated the ability to process billions of events per
second by leveraging large-scale HPC systems [25]–[27]. A
parallel discrete-event simulation (PDES) system consists of a
collection of logical processes (LPs) each modeling a distinct
component of the system (e.g., a DataNode). LPs communicate
by exchanging time stamped event messages (e.g., denoting the
arrival of a new I/O request at that node). The goal of PDES is
to efficiently process all events in a global timestamp order
while minimizing any processor synchronization overheads.
Two well-established approaches toward this goal are broadly
called conservative processing and optimistic processing.
ROSS supports both approaches. In this paper, we adopt the
conservative approach.

CODES is a simulation system based on ROSS. Its goal is
to enable the exploration and co-design of exascale storage
systems by providing a detailed, accurate, and highly parallel
simulation toolkit for exascale storage systems. Two
particularly important modules in CODES are the network
module (CODES-net) and the local storage model (CODES-
lsm). Specifically, CODES-net provides parallel discrete-
event-based networking models. The current CODES-net
toolkit includes four modules: a torus network model [26], a
dragonfly network model [28], a loggp [29] model, and a
simple bandwidth-latency model called “simple-net.” CODES-
net provides a unified user interface that facilitates the use of

all these underlying networking models. For example, Tang et
al. has buit a cloud scheduler for multi-workflow system [30].

III. YARNSIM DESIGN AND IMPLEMENTATION
The Hadoop system is inherently complex. In particular, its

design features a multilayered and multicomponent software
architecture. The underlying hardware model is flexible, in that
a variety of low-end commodity-level equipment could be
deployed, and thus adds complexity to the design space. The
community needs the ability to understand and redesign such
complex systems with limited time and budget. One viable
approach is to use parallel discrete-event simulation. A
successful simulation system design relies on accurate
abstraction of the software and hardware stacks and
pinpointing the key components from the big picture.

TABLE I. MODELED SYSTEM PROCESSES

Daemon Process YARNsim Abbreviation
Client

Resource Manager
Application Manager
Resource Scheduler

Node Manager
Map Task

Reduce Task
Application Master
Resource Scheduler

Node Manager
Map Task

Reduce Task
Application Master

CODES-lsm
CODES-net
NameNode
DataNode

CLT
RM
AM
RS
NM

MAP
RED
AMS
RS
NM

MAP
RED
AMS
LSM
CN
NN
DN

Table 1 list all the Hadoop modules modeled in YARNsim
from a daemon process perspective. The abbreviations are used
throughout the rest of the paper.

Hadoop YARN and its ecosystem comprise millions of
lines of source code. One of our targets in designing YARNsim
is to develop a rich simulation that captures the salient
properties of this complex system so as to mimic the behavior
in terms of task execution and data flow. In YARNsim, we
categorized the internal communication to metadata flow and
data flow. Both flows can have a significant impact on the
overall system performance. The model of metadata flow
follows the basic protocols used in YARN. Specifically,
YARN internal communication follows the client-server model
and is based on a customized RPC library. A Hadoop RPC
server consists of a listener module and a callQueue module.
The message passing between different daemon processes is
essentially RPC calls. We follow the client-server model in the
design of YARNsim’s communication system. Specifically, a
client and a server are modeled as two distinct LPs, and the
message passed between the client and server are modeled as
events sent and received between LPs. Our model does not
include thread-level details, but the server models the message
queuing effects. We later show that this level of abstraction
provides a reasonable accuracy in performance evaluation.

The YARN design is also based on event-driven and state-
machine modeling. Specifically, a state transition is defined by
a tuple <preState, postState, event, hook>, where the preState
and postState are the actual states of the system components
(e.g., resource manager), the event is the system-defined
transition trigger (e.g., a task to get the requested resource is a
transition trigger), and the hook is the execution function
corresponding to each event. Similarly, YARNsim uses these
concepts in the model and simulation. The changes of states
and event communications are the exact flow logic we want to
capture in YARN. Here, we made many simplifications and
abstractions. For example, we don’t model the security
modules in the current version and leave this for future
development. We don’t differentiate between preState and
postState; that is, the state transition is regulated by the
transition function, which is based on the RPC protocols. We
also merge events if they are functionally similar and will not
affect performance.

Hardware is a key factor affecting the Hadoop system and
application performance. In general, the hardware models
considered in YARNsim are CPU, memory, network, and disk.
We use analytical models for CPU and memory, since they are
ideal in modeling less complex scenarios in terms of data
movement.

 𝑇! = !!"#"
!!

+ 𝑡! (1)

 𝑇!"# = 𝛼! ∙
!!"#"
!!"#

+ 𝑡!"# (2)

Equations 1 and 2 describe the analytical model used in
YARNsim to compute the data movement cost in memory and
the data processing cost in CPU. In Equation 1, we define the
data transmission time (𝑇!) such that it is influenced by data
request size (𝐿!"#"), memory bandwith (𝐵!), and memory
access latency (𝑡!). In Equation 2, we define the data-
processing time (𝑇!"#) such that it is determined by data
request size (𝐿!"#"), CPU speed (𝑃!"#), CPU context switch
time (𝑡!"#), and request intensity (𝛼!). Here, request intensity
𝛼! is a factor used to decide whether a request is compute
intensive or data intensive and thus is application dependent.
We argue that these simplified models are sufficient to model
the data-flow latency in a single node and are on a par with
other components of YARNsim.

The I/O system is usually more complex than the CPU and
memory system in terms of data-processing latency. I/O
latency is determined by many factors, including request size,
request pattern (continuous or noncontinuous), request type
(read or write), and media type (HDD or SSD). It is less
compelling to use a linear analytical model to describe such a
nonlinear system. Many other MapReduce simulation systems
such as MRperf [6] and MRsim [8] don’t have a
comprehensive I/O system model. We argue that the I/O
system can have a significant impact on the overall system and
application performance. We use CODES-lsm to model a disk
for a single physical node. CODES-lsm is a coarse-grained
hardware model that captures the nonlinear nature of HDD in
response to different I/O request offsets and sizes. Before

configuring the YARNsim disk model, users are required to
collect data about the I/O performance and feed it to the disk
model such that the simulation system can return the correct
I/O latency when

Figure 1. YARNsim architecture

provided with a real or synthetic request. Current experimental
results show that YARNsim disk model is suitable for our
simulation purposes. If a higher-fidelity disk model is required,
one can extend this model or replace the CODES-lsm module
and still use the standard interface.

Figure 2. YARNsim workflow

The hardware-related parameters are configurable through
user-defined input configuration files. Upon initialization, users
can customize the Hadoop hardware system and get an
accurate hardware platform. The software stack model of
YARNsim is illustrated in Fig. 1. The major components are
the application module, MapReduce module, YARN module,
and HDFS module. The ovals are used to illustrate the daemon
processes modeled in YARNsim. Each oval represents one
type of daemon process. We describe in detail each LP and its
functionality in the following sections.
A. Application Module

YARNsim uses one type of LP to model a client, and it is a
key component of the application Module (Apps). A client LP
is responsible for collecting application information and
sending it to RM upon YARNsim initialization. At the end of
the simulation, CLT collects simulation statistics and provides
the user with an estimation of application performance. We
currently provide job parameters in the input configuration file.
Thus the client LP will load these parameters at initialization.
In the case of multiple clients, there are multiple LPs, and each
is responsible for initializing a specific application and
collecting the corresponding information after the simulation
terminates.

B. YARN Module
The workflow of YARN is illustrated in Fig. 2. Here, the

rectangle boxes represent a modeled physical node, and ovals
represent the daemon processes modeled in YARNsim. The
numbered labels in Fig. 2 represent the order of the data flow
in YARNsim. For example, a CLT initially submits a job to
AM and gets an acknowledgment. Internally, AM updates the
global job queue and handles the job execution. YARNsim
uses these flows to model the protocols used in YARN. In Fig.
2, the RM consists of two services provided separately by
application manager and resource scheduler. The two services
are functionally independent but are all designed as a
centralized communication point. We use two different types
of LPs to model them because they are the potential bottleneck
in the simulation system. The AM LP handles job submission
and processing, while the RS LP implements the scheduling
algorithms. Currently, YARNsim supports the default FIFO
scheduling algorithm.

Figure 3. Selected event algorithms used in application manager LP

Compared with real system implementations, YARNsim
makes a number of simplifications. For example, the container
manager is the key module in the node manager daemon. It
contains many services, including the resource localization
service, container launcher, auxiliary services, container
monitor, log handler, and container event dispatcher. We do
not model all the services but, instead, focus on the data-related
services and abstract these to events flowing in and between
the LPs. For example, in Fig. 3, we list the three selected

Application Manager LP
1: /* accept job submission event */
2: job_queue ← submitted new jobs
3: ack back job submission
3: while job_queue non empty do
4: execute jobs
5: end while

1: /* job execution event */
2: inquire node manager LP
3: if container available then
4: init AMS
5: acknowledge AMS
6: else
7: job_queue ← current_job
8: execute jobs
9: end if

1: /* heart beat event */
2: if heart_beat_interval > threshhold then
3: register dead_node
4: update resource_lists
5: reallocate AMS
6: else
7: claim released resources
8: end if

events and the core algorithms used in the application manager
LP. The accept-job event manages the centralized job queue
and schedules the job execution and termination. The job-
execution event handles the execution of a job in YARNsim,
and the heartbeat event models the resource dynamic allocation
and reallocation related to each heartbeat message.

Figure 4. Selected event algorithms used in node manager LP

In Figs. 4 and 5, we list the selected events and the core
algorithms used in NM and RS, respectively. Here, each NM
keeps a local list of resources. When AMS queries NM for a
container for a specific task, NM will make decisions based on
the resource list. This procedure is the AMS request event.
AMS controls the job and tasks execution and will release a
specific container when the corresponding task is finished. This
procedure is the AMS release event. The RS basically
implements the scheduling module. Currently, YARNsim
supports FIFO scheduling; we plan to incorporate fair and
capacity schedulers in the near future.

Figure 5. Selected event algorithms used in resource scheduler LP

C. MapReduce Module
YARN is designed to support multiple programming

models, including MapReduce. In YARNsim, the MapReduce
module is a model of the first-generation Hadoop system,
except for a few major differences including the model for
YARN application master, which is responsible for task
management. When a job is submitted and the corresponding
application master gets the allocated container, it can initiate
the MapReduce job. In YARNsim, the map task and reduce

task are modeled as different types of LPs, respectively. In Fig.
6, we illustrate the map task model. Here, the HDFS model, the
local storage system model, and the network model are
involved. The HDFS model is discussed in detail in the
following section. We use CODES-lsm module to model the
local file system and the corresponding hardware. To capture
the shuffle phase network contention, we use CODES-net as
the underlying network abstraction. CODES-net provides
protocol level accuracy in modeling network behaviors. CN LP
is the network interfaces where a task LP can send and receive
messages.

Figure 6. Map task model

The centralized resource scheduler allocates containers to
each job and task. Upon initialization, the map task starts
reading the input split from HDFS; this procedure is labeled as
Flow 1 in Fig. 6. Here, we illustrate the YARNsim MapReduce
module through an example MapReduce job in which the
number of map tasks is three and the number of reduce tasks is
two. The map task computation time is given in Equation 2.
The intermediate results are saved to the local file system; this
procedure is labeled as Flow 4. We use a configurable
parameter slow.start.rate to simulate the start of a reduce task.
This is the same as defining the slow start rate in a real system.
The reduce tasks are based on a pull model, and thus Flow 5 is
a set of requests sent by the reduce task to retrieve data from
the map tasks. The circular buffer is modeled by using
Equation 1, where a local file commit is triggered if the buffer
is filled. In the shuffle phase, the reduce task can retrieve data
from memory or local file system. Thus performance depends
on the application.

Figure 7. Reduce task model

The reduce task model is illustrated in Fig. 7. The
computation time is based on Equation 2, and the I/O time is
based on the local file system and HDFS models. As we can
see, YARNsim models all key factors contributing to the
overall job execution time. Any change in the system could
lead to variation in the system/application performance.
System designers can leverage the functionalities provided by
YARNsim and choose to focus on a specific component to
study the best optimization solutions.

Node Manager LP
1: /* AMS request event */
2: check resources_list
3: if container available then
4: allocate resource
5: update resources_list
6: else
7: return exception
8: end if

1: /* AMS release event */
2: collect released resources to resource_list
3: ack back AMS
4: update NM info to RS

Resource Scheduler LP
1: /* application request event */
2: check resources_list
3: init scheduling module(request)
4: if schedule successful then
5: grant resources
6: update resources_list
7: else
8: ack deny message
9: end if

D. HDFS Module
As discussed, YARNsim includes an HDFS module. The

network data transmission in the HDFS module leverages the
features provided by CODES-net. We illustrate its details in
Fig. 8. Here, the NameNode daemon and data daemon are
modeled as two types of LPs. The client daemon is the HDFS
client, which could be a map task or a reduce task. For
example, upon initialization, map tasks start reading input split
from HDFS. In YARNsim, the map task LP starts by
contacting the DataNode LP and specifying its I/O request. The
DataNode LP forwards this request to the underlying local
storage model LP that gives the exact delay for such request.
When a map task tries to load a remote data block, the request
goes through the network. In YARNsim, the request goes
through the CODES-net module, and therefore we can capture
the network contention and accurately account for the delay in
retrieving the data block.

In the MapReduce programming model, the NameNode
keeps an image of the HDFS file system. The image contains
information about data block locations, IDs, file association,
and all the replicas. In YARNsim, we leverage the libxml
library to build a similar but simplified HDFS image and store
it in the NameNode LP. We use this image for HDFS model
management and operations. For example, if an application
writes data block to HDFS, this image is updated with new
data block information. The NameNode LP also tracks the
status of DataNode LPs through heartbeat events. Similar to
other components, we made several simplifications. For
example, we do not yet support the secondary NameNode, and
each DataNode LP does not keep the real data block but rather
the metadata about the block. Currently, the HDFS module
does not support DataNode additions or removals, contrary to
real systems. We argue that this kind of simplification is
sufficient for system modeling and evaluation. As YARNsim
grows, one can extend the support to include the above-
mentioned features.

Figure 8. HDFS model

Figures 6–8 provide intuitive examples to explain the
details of YARNsim. In reality, the number of different type of
LPs and the corresponding parameters is configurable through
user-defined input files. A YARNsim user can configure a
customized YARN system of arbitrary size and run a
customized application for evaluation and validation.

IV. EXPERIMENTAL EVALUATION
Our experiments are conducted on two small-scale clusters,

Craysun and HEC, in the Scalabe Computing Software
Laboratory at the Illinois Institute of Technology. Craysun has
16 nodes, each node equipped with a quad-core Intel Xeon

CPU geared at 3.40 GHz. However, each node currently only
has 1 GB of memory. For this study, we want to mimic the
situation where a MapReduce framework is built on a low-end
cluster with commodity-level devices. HEC is a 51-node Sun
Fire Linux-based cluster having one head node and 50
computing nodes. The head node is a Sun Fire X4240,
equipped with dual 2.7 GHz Opteron quad-core processors, 8
GB memory, and 12 500 GB 7200RPM SATA-II drives
configured as a RAID5 disk array. The computing nodes are
Sun Fire X2200 servers, each node with dual 2.3GHz Opteron
quad-core processors, 8 GB memory, and a 250 GB 7200RPM
SATA hard drive. All 51 nodes are connected through Gigabit
Ethernet. As of this paper, the most up-to-date Hadoop YARN
is version 2.5.0, which we used for all our experiments.
A. YARNsim Configuration

YARNsim is a comprehensive simulation system with both
software and hardware models. Thus, proper configurtion of
the system is important for obtaining faithful simulation
results. YARNsim uses CODES-lsm as the storage system
model where its input is based on a set of parameters indicating
varied read/write performance for different request sizes. We
use the IOzone [31] benchmark to get the disk performance
curve for both Craysun and HEC. Only the results on HEC are
presented in Fig. 9 because of limited space. Here, we tested
both read and write performance under both random and
sequential I/O modes. The reported results are the average of
10 identical runs. In HDFS, we assumed that the data blocks
are transferred sequentially between file system clients and
servers. Thus the points in sequential mode were used as input
to CODES-lsm. YARNsim’s local file system component deals
with the merge-sort I/O requests in map and reduce tasks, so
we assumed that those data are random, and we used the
random I/O performance as input. As Fig. 9 indicates, the
curve depicts the nonlinear nature of HDD performance under
varied I/O requests. This curve was used as a real disk
performance in YARNsim and thus provides a trustworthy
hardware model as compared with the fixed bandwidth
analytical model used in other MapReduce models[6][9].

Figure 9. IOzone benchmark tests on HEC

 In YARNsim, the HDFS model records only the simplified
metadata information, namely the files, blocks, and their
locations. Before a MapReduce job starts, the name of the

0	

10	

20	

30	

40	

50	

60	

70	

4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

Ba
nd
w
id
th
	
 (M

iB
/s
ec
)	

Request	
 Size	
 (MB)	

read-­‐HDD-­‐seq	
 write-­‐HDD-­‐seq	

read-­‐HDD-­‐ran	
 write-­‐HDD-­‐ran	

required data file is presented to NM, and NM will respond
with the corresponding block location information. The
scheduler will then schedule the corresponding tasks. This
input determines the balance and data skew of a specific
MapReduce job and thus the overall job execution time.

YARNsim uses the CODES-net module as the network
layer simulator. In this study, we used the simple-net module,
which models the switch connected Ethernet topology. It is a
loosely defined p2p network with full connections at each
node. As we show later, this module best suits our needs in
modeling the network topology of Craysun and HEC.

Similar to running a real job in Hadoop YARN, both
benchmark jobs and application jobs can be configured before
execution. Users choose to define the number of tasks used, the
running mode, and so forth. In YARNsim, users are required to
provide a little more information to help YARNsim accurately
capture the characteristics of each job. For example, users must
tell YARNsim if the submitted job is computation intensive or
data intensive through a user-defined configuration file. The
weight is usually job-specific. Benchmarks such as TestDFSIO
and Teragen are usually considered data intensive, whereas K-
means and grep can be considered compute intensive.

Figure 10. Performance comparison between HEC and YARNsim on Teragen
benchmark: input data size varies from 128 MB to 16 GB; the number of
nodes is 16.

B. Hadoop I/O Benchmarks
We chose Teragen as the I/O benchmark tests to focus on

the HDFS model validation. Also, the generated data were used
as inputs for the following benchmark tests in the real system.
In Craysun, we used a total of 16 nodes and varied the
generated data from 128 MB to 16 GB. The block size was
configured as 32 MB, the number of map tasks was configured
to match the number of blocks, and the number of reduce tasks
was the default value 1. In YARNsim, we also configured the
system as above. To compare the results from Craysun and
YARNsim, we built a model for Teragen in YARNsim to
simulate the data generation process. The comparison results
are reported in Fig. 10. The errors between simulation results
and real system results are with 10% for all test cases. Since
the data is balanced out to each compute node, we can get a
balanced MapReduce tasks execution in the following tests.

Figure 11. Performance comparison between Craysun and YARNsim on
Terasort benchmark: input data size varies from 128 MB to 16 GB; the
number of nodes is 16. Blue stacks are the reported performance for each
MapReduce phase on Craysun. Red stacks are the reported performance for
each MapReduce phase on YARNsim. Error is the accumulated error rate
between Craysun and YARNsim.

Figure 12. Performance comparison between Craysun and YARNsim on
Wordcount benchmark: input data size varies from 128 MB to 16 GB; the
number of nodes is 16. Blue stacks are the reported performance for each
MapReduce phase on Craysun. Red stacks are the reported performance for
each MapReduce phase on YARNsim. Error is the accumulated error rate
between Craysun and YARNsim.

C. Hadoop Synthetic Benchmarks
We chose Terasort and Wordcount for our experiments

because both benchmarks are widely accepted and can
represent a class of Hadoop applications. To further analyze
the application performance, we decomposed each job into
three phases—map, shuffle, and reduce, assuming that the map
phase and reduce phase contain the merge-sort operations. In
Craysun and HEC, we used the data generated from the
Teragen benchmark on 16 nodes and varied the input data size
from 128 MB to 16 GB. To accurately record the performance
of each phase in the real system, we leveraged the job history
service provided by Hadoop, in which the detailed performance
for each phase is reported. We collected these numbers and
compared them with the numbers collected from the YARNsim
system. In YARNsim, we used the same configuration as in
Craysun and HEC for configuring the simulated clusters. We
also built models for the Terasort and Wordcount benchmarks
and ran them separately on the two different simulated clusters.

0	

50	

100	

150	

200	

250	

300	

350	

400	

128	
 256	
 512	
 1024	
 2048	
 4096	
 8192	
 16384	

Ex
ec
ut
io
n	

Ti
m
e	

(s
ec
)	

Data	
 size	
 (MB)	

job	
 execution	
 time	
 simulated	
 job	
 execution	
 time	

We compared the performance between the simulated jobs and
real jobs for each phase and report the results in Figs. 11–14.

Figure 13. Performance comparison between HEC and YARNsim on Terasort
benchmark: input data size v aries from 128 MB to 16 GB; the number of
nodes is 16. Blue stacks are the reported performance for each MapReduce
phase on HEC. Red stacks are the reported performance for each MapReduce
phase on YARNsim. Error is the accumulated error rate between HEC and
YARNsim.

Figure 14. Performance comparison between HEC and YARNsim on
Wordcount benchmark: input data size varies from 128 MB to 16 GB; the
number of nodes is 16. Blue stacks are the reported performance for each
MapReduce phase on HEC. Red stacks are the reported performance for each
MapReduce phase on YARNsim. Error is the accumulated error rate between
HEC and YARNsim.

As illustrated in Fig. 11, YARNsim can match the real
system performance well in most cases, the maximum error
rate between YARNsim and Craysun being 11.29%. As shown,
the shuffle phase is the major part of overall performance. As
we can see from the stacked bars in Fig. 11, YARNsim
matches well in almost all test cases. The shuffle phase is
dominated by network transfers and hence is a good
representation of network accuracy. We show through this
experiment that CODES-net is suitable for performance
matching in YARNsim. We report the performance of Hadoop
YARN on small data sets in the subfigure of Fig. 11. The
purpose of these tests is to validate the Hadoop system
overhead. As we can see, YARNsim captures these overheads
accurately on the light-weight experiments. In Fig. 12, we use
the Wordcount benchmark and report similarly to Fig. 11. The
maximum error rate is 12.57%. We note that for some test
cases, the reduce phase generates relatively large errors. We

attribute these to a set of factors including the inaccurate
slow.start.rate, skewed data, and computation in the reduce
phase. To pinpoint the reason behind this phenomenon, we
need to conduct further experiments. In this set of experiments,
however, the reduce phase time constitutes only a small portion
of the overall execution time. Thus the overall error rates are
still acceptable for the majority of test cases.

In Figs. 13 and 14, we reports the experiments on HEC.
Here, we use configurations similar to those used in the
Craysun experiments. The experimental results are as expected,
and the maximum error rate is 13.15%. The shuffle phase is
still the overall peroformance bottleneck.

Figure 15. Performance comparison between HEC and YARNsim on
bioinformatic application: input data size varies from 948.8 MB to 60.7 GB;
the number of nodes is 16. Blue stacks are the reported performance for each
MapReduce phase on HEC. Red stacks are the reported performance for each
MapReduce phase on YARNsim. Error is the accumulated error rate between
HEC and YARNsim.

D. Bioinformatics Application
In the field of bioinformatics, large dataset clustering is a

challenging problem. Many biological scientists resort to
Hadoop MapReduce for large-scale and parallel processing
solutions. For example, researchers from the University of
Delaware have developed an octree-based clustering algorithm
for classifying protein-ligand binding geometries [32][33]. The
proposed method is implemented in Hadoop MapReduce and is
divided into a two-phase MapReduce workflow. The geometry
reduction and key generation constitute the first-phase
MapReduce job, where large datasets are read by the map
tasks. The output of the first phase is the input of the second-
phase MapReduce job. Here, an iterative octree-based
clustering algorithm is implemented as a chain of MapReduce
jobs indicating that the search has iterated to the deep level of
the search tree. In the first phase, the output data size is about
1% of the input data size. Thus the MapReduce job spends
most of its time on the map and shuffle phases.

We used this application as an exemplar for YARNsim. To
model the application, we identified the sizes and locations of
all data blocks in each phase and used them as input to the
modeled MapReduce jobs. We varied the input file of protein
geometry data from 948 MB to 60 GB and ran the experiments
on HEC using 16 nodes. We also built a model for this
clustering application and ran it on YARNsim with different
configuration. The performance on HEC and YARNsim are

reported in Fig. 15. As illustrated, models based on YARNsim
can help capture the application performance and thus provide
the potential to further optimize the application and its
environment. The clustering application used in this paper has
distinct features. For instance, its map phase is significantly
longer than the reduce phase because the data size in the reduce
phase is only 1% of the input data size in the map phase.
YARNsim faithfully captures this feature and can predict the
application performance under different input data size. The
maximum error is 6.84%.

V. RELATED WORK
A plethora of community efforts on Hadoop system

simulations have been conducted in the past few years,
including Mumak [4], MRsim [8], SimMR [5], Hsim [33],
MRSG [7], SimMapReduce [34], SLS [11], Starfish [9], and
MRperf [6]. Most of the existing simulation systems focus on
the first-generation Hadoop system. Since Hadoop YARN is
relatively new to the community, few efforts have focused on
the simulation of YARN. The SLS simulator targets Hadoop
YARN; however, it focuses only on simulating job and task
scheduling. Compared with SLS, YARNsim provides a more
comprehensive view of the system; it includes the scheduling
component and a detailed model for network and disk. First-
generation Hadoop system simulators cannot handle the
performance modeling for Hadoop YARN because of the
fundamental changes in resource management and job/task
management: in particular, the resource manager
(ResourceManager) and application master (MRAppMaster),
have replaced the JobTracker. Therefore, the corresponding
protocols used in Hadoop YARN are different from the first
generation Hadoop.

The prior work can also be categorized from the
perspective of simulation techniques. The majority of the
simulation systems are based on discrete-event simulation; few
works are based on analytical models such as the Starfish
project. The convenience of using discrete-event simulation is
obvious. Hadoop system internal design is based on an event-
driven model and state machine model. It is natural to use
discrete events to model the flow logic flow and the change of
states of Hadoop system components. Mumak, MRsim,
SimMR, MRSG, and MRperf belong to this category. For
modeling large-scale systems, the analytical method can be fast
and efficient; however, it is constrained in terms of modeling
complex scenarios. For example, the I/O system is nonlinear in
terms of I/O request turnaround time. It is therefore
unwarranted to use a constant bandwidth to get the I/O request
response time. For systems based on discrete-event simulation,
the simulation engine is sequential, meaning there is only one
event queue for processing the model. Therefore, the
simulation performance is largely constrained in modeling
large-scale scenarios. YARNsim is based on parallel
simulation and has the potential to simulate large-scale systems
in a tractable amount of time.

 In terms of simulating Hadoop system components, many
simulation systems focus only on the MapReduce engine and
lack a detailed model for HDFS. MRperf, MRSG, SimMR, and
MRsim fall into this category. Mumak and SLS focus on the
job and task-scheduling component and thus care less about the

networking and disk models. Compared with these simulation
systems, YARNsim is a comprehensive simulation system for
Hadoop YARN. Its modules include both the software stacks
and hardware stacks.

MRperf [6] is a discrete-event simulation system based on
ns2 simulation framework. Compared with simulators such as
Mumak, SimMR, and MRSim, MRPerf is both application
aware and resource contention aware because of the detailed
networking model. However, MRperf lacks a detailed model
for hardware and HDFS. Moreover, because ns2 is based on
sequential discrete event simulation, the performance of
MRperf is determined by ns2. It is thus impractical to simulate
large scale system using MRperf.

Starfish [9] is based on analytical performance models of
the MapReduce system. It provides a what-if analysis
mechanism for analyzing the complex parameter spaces in the
Hadoop system. The system includes models for CPU,
memory, network and disk. It also considers a rich set of
parameters from the Hadoop system. The user is able to modify
the parameters and observe the impact on system and
application performance. However, the network and disk
models used are simplified as the divisions and multiplications
of a set of parameters. This kind of abstraction makes the
simulation fast and efficient but loses the accuracy in the local
model.

VI. CONCLUSIONS
In this paper, we present YARNsim, a Hadoop next-

generation simulation system. YARNsim consists of four core
modules: an application module, a YARN module, a
MapReduce module, and an HDFS module. YARNsim also
includes a set of hardware models. Different modules are
functionally independent but operationally connected; together
they capture different software and hardware layers in YARN
and can replay YARN system behaviors with satisfactory
granularity. YARNsim provides its users a comprehensive
simulation platform where system architects can evaluate
various design points and application developers can test/tune
the application performance.

We validate the performance of YARNsim through a set of
comprehensive Hadoop benchmark tests, including Terasort,
Teragen, and Wordcount, on both simulation systems and the
real-world clusters. We further validate YARNsim through a
bioinformatics application. The experiment results show less
than 10% error for most of the test cases.

YARNsim is not without its limitations. The current
version of YARNsim does not support fault tolerance models.
Thus, the user will not be able to simulate job execution under
failure. Additionally, the HDFS module cannot yet model the
secondary NameNode. We plan to incorporate a mechanism to
support system components failure model and simulation.
YARNsim also includes only the FIFO scheduling algorithm.
We plan to develop a capacity scheduler, fair scheduler, and
other advanced scheduling algorithms in the near future to
support the simulation of complex job and task execution.

AKNOWLEDGMENT
We thank Boyu Zhang and Dr. Michela Taufer from
University of Delaware for providing the MapReduce
application and test data. This material was based upon work
supported by the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research, under
Contract DE-AC02-06CH11357.

REFERENCES
[1] “Apache Hadoop,” http://hadoop.apache.org/. .
[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Commun ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” in 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1–10.

[4] “Mumak: Map-Reduce Simulator,” Mumak: Map-Reduce Simulator. .
[5] A. Verma, L. Cherkasova, and R. H. Campbell, “Play It Again,

SimMR!,” in 2011 IEEE International Conference on Cluster
Computing (CLUSTER), 2011, pp. 253–261.

[6] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation approach
to evaluating design decisions in MapReduce setups,” in IEEE
International Symposium on Modeling, Analysis Simulation of
Computer and Telecommunication Systems, 2009. MASCOTS ’09, 2009,
pp. 1–11.

[7] W. Kolberg, P. de B. Marcos, J. C. S. Anjos, A. K. S. Miyazaki, C. R.
Geyer, and L. B. Arantes, “MRSG – A MapReduce simulator over
SimGrid,” Parallel Comput., vol. 39, no. 4–5, pp. 233–244, Apr. 2013.

[8] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, “MRSim: A
discrete event based MapReduce simulator,” in 2010 Seventh
International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), 2010, vol. 6, pp. 2993–2997.

[9] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S.
Babu, “Starfish: A Self-tuning System for Big Data Analytics,” in In
CIDR, 2011, pp. 261–272.

[10] H. Herodotou, F. Dong, and S. Babu, MapReduce Programming and
Cost-based Optimization? Crossing this Chasm with Starfish. .

[11] “Yarn Scheduler Load Simulator (SLS),” Yarn Scheduler Load
Simulator (SLS). .

[12] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Commun ACM,
vol. 33, no. 10, pp. 30–53, Oct. 1990.

[13] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
1st ed. Springer Publishing Company, Incorporated, 2008.

[14] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R.
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O.
O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet Another Resource Negotiator,” in Proceedings of the 4th
Annual Symposium on Cloud Computing, New York, NY, USA, 2013,
pp. 5:1–5:16.

[15] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt, and N. Fuller,
“MRONLINE: MapReduce Online Performance Tuning,” in
Proceedings of the 23rd International Symposium on High-performance
Parallel and Distributed Computing, New York, NY, USA, 2014, pp.
165–176.

[16] S. He, X.-H. Sun, and B. Feng, “S4D-Cache: Smart Selective SSD
Cache for Parallel I/O Systems,” in 2014 IEEE 34th International
Conference on Distributed Computing Systems (ICDCS), 2014, pp.
514–523.

[17] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A cost-aware
region-level data placement scheme for hybrid parallel I/O systems,” in
2013 IEEE International Conference on Cluster Computing
(CLUSTER), 2013, pp. 1–8.

[18] S. A. McKee, “Reflections on the Memory Wall,” in Proceedings of the
1st Conference on Computing Frontiers, New York, NY, USA, 2004, p.
162–.

[19] “Presto: Interacting with petabytes of data at Facebook,”
https://www.facebook.com/notes/facebook-engineering/presto-
interacting-with-petabytes-of-data-at-facebook/10151786197628920. .

[20] “Gartner Report,” http://www.gartner.com/newsroom/id/2313915. .
[21] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,

“Managing Data Transfers in Computer Clusters with Orchestra,” in
Proceedings of the ACM SIGCOMM 2011 Conference, New York, NY,
USA, 2011, pp. 98–109.

[22] K. Shvachko, “HDFS Scalability: The Limits to Growth,” Apr-2010.
[23] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: a high-performance,

low memory, modular time warp system,” in Fourteenth Workshop on
Parallel and Distributed Simulation, 2000. PADS 2000. Proceedings,
2000, pp. 53–60.

[24] “CODES: Enabling Co-Design of Multilayer Exascale Storage
Architectures.” [Online]. Available:
http://www.mcs.anl.gov/project/codes-enabling-co-design-multilayer-
exascale-storage-architectures. [Accessed: 24-Oct-2014].

[25] N. Liu, C. Carothers, J. Cope, P. Carns, and R. Ross, “Model and
simulation of exascale communication networks,” J. Simul., vol. 6, no.
4, pp. 227–236, Nov. 2012.

[26] N. Liu and C. D. Carothers, “Modeling Billion-Node Torus Networks
Using Massively Parallel Discrete-Event Simulation,” in Proceedings of
the 2011 IEEE Workshop on Principles of Advanced and Distributed
Simulation, Washington, DC, USA, 2011, pp. 1–8.

[27] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class
storage systems,” in In Proceedings of the 2012 IEEE Conference on
Massive Data Storage, 2012.

[28] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns, “Modeling a
Million-Node Dragonfly Network Using Massively Parallel Discrete-
Event Simulation,” in High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion:, 2012, pp. 366–376.

[29] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating Long Messages into the LogP
Model&Mdash;One Step Closer Towards a Realistic Model for Parallel
Computation,” in Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures, New York, NY, USA, 1995,
pp. 95–105.

[30] W. Tang, J. Jenkins, F. Meyer, R. Ross, R. Kettimuthu, L. Winkler, X.
Yang, T. Lehman, and N. Desai, “Data-Aware Resource Scheduling for
Multicloud Workflows: A Fine-Grained Simulation Approach,” in 2014
IEEE 6th International Conference on Cloud Computing Technology
and Science (CloudCom), 2014, pp. 887–892.

[31] D. Olker, Optimizing NFS Performance: Tuning and Troubleshooting
NFS on HP-UX Systems. Prentice Hall Professional, 2002.

[32] T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, and M. Taufer, “A
scalable and accurate method for classifying protein–ligand binding
geometries using a MapReduce approach,” Comput. Biol. Med., vol. 42,
no. 7, pp. 758–771, Jul. 2012.

[33] B. Zhang, D. T. Yehdego, K. L. Johnson, M.-Y. Leung, and M. Taufer,
“Enhancement of accuracy and efficiency for RNA secondary structure
prediction by sequence segmentation and MapReduce,” BMC Struct.
Biol., vol. 13, no. Suppl 1, p. S3, Nov. 2013.

[34] Y. Liu, M. Li, N. K. Alham, and S. Hammoud, “HSim: A MapReduce
Simulator in Enabling Cloud Computing,” Future Gener Comput Syst,
vol. 29, no. 1, pp. 300–308, Jan. 2013.

[35] F. Teng, L. Yu, and F. Magoulès, “SimMapReduce: A Simulator for
Modeling MapReduce Framework,” in 2011 5th FTRA International
Conference on Multimedia and Ubiquitous Engineering (MUE), 2011,
pp. 277–282.

