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Abstract—Despite the popularity of the Apache Hadoop 
system, its success has been limited by issues such as single points 
of failure, centralized job/task management, and lack of support 
for programming models other than MapReduce. The next 
generation of Hadoop, Apache Hadoop YARN, is designed to 
address these issues. In this paper, we propose YARNsim, a 
simulation system for Hadoop YARN. YARNsim is based on 
parallel discrete event simulation and provides protocol-level 
accuracy in simulating key components of YARN. YARNsim 
provides a virtual platform on which system architects can 
evaluate the design and implementation of Hadoop YARN 
systems. Also, application developers can tune job performance 
and understand the tradeoffs between different configurations, 
and Hadoop YARN system vendors can evaluate system 
efficiency under limited budgets. 

To demonstrate the validity of YARNsim, we use it to model 
two real systems and compare the experimental results from 
YARNsim and the real systems. The experiments include 
standard Hadoop benchmarks, synthetic workloads, and a 
bioinformatics application. The results show that the error rate is 
within 10% for the majority of test cases. The experiments prove 
that YARNsim can provide what-if analysis for system designers 
in a timely manner and at minimal cost compared with testing 
and evaluating on a real system. 

Keywords: Hadoop; MapReduce; YARN; Parallel Discrete 
Event Simulation; HDFS 

I.  INTRODUCTION 
Apache Hadoop [1] is the most popular open-source 

implementation of the MapReduce [2] framework. However, 
the first generation of Hadoop is based on a centralized model, 
where a JobTracker manages both resource allocation and job 
processing. This design is convenient for implementation and 
management, but its inherent limitations become issues as 
Hadoop enters an era of jobs with millions of concurrent tasks 
and systems with tens of thousands of nodes. The master 
JobTracker is a single point of failure, meaning that a simple 
failure in the JobTracker will bring down the entire system. It 
is also a bottleneck for scalability, since all jobs and tasks are 
managed through this single point. In HDFS [3], the 
NameNode functions similar to the JobTracker. It manages all 
files, the associated blocks, and their locations. 

To best quantify such design limitations and aid in the 
design and implementation of Hadoop systems, many 
researchers have leveraged tools such as simulators or 
emulators. Quite a few Hadoop performance models and 

simulation systems exist. In terms of simulation techniques 
used, Mumak [4], SimMR [5], MRperf [6], MRSG [7], and 
MRsim [8] are based on discrete-event modeling and 
simulation, and Starfish [9] [10] is based on analytical 
modeling and simulation. In terms of system design, Mumak 
and SLS [11] are Hadoop scheduler simulators focusing on 
MapReduce job scheduling and resource allocation; and 
MRperf, MRSG, and MRsim focus on simulating the 
MapReduce job/task execution engine.  

Simulations have provided useful insights into the Hadoop 
system performance. Most important, simulation provides a 
timely and cost-effective way to design and validate a next 
generation system. However, these simulation systems are 
constrained because (1) most discrete-event simulation systems 
are based on a sequential event processing engine, limiting the 
fidelity of simulations that may be run in a reasonable time; (2) 
simulation systems based on analytical models are unable to 
accurately model complex systems, and the accuracy is often 
sacrificed because of the necessary simplifications [12]; and 
(3) no a comprehensive simulation system exists for modeling 
Hadoop that includes both the software stack and hardware 
components. For example, Mumak and SimMR cannot capture 
the resource contention because of the lack of detailed network 
models. MRperf is based on the network simulation system ns-
2 [13] but lacks a detailed model for HDFS and local file 
systems. In fact, most simulation systems do not include a 
model for HDFS. 

Hadoop YARN [14] was recently proposed as the next- 
generation Hadoop system, addressing issues in the first-
generation and providing new capabilities. The central idea of 
Hadoop YARN is to provide a generalized platform for 
managing resources and supporting diverse programming 
models, including MapReduce and MPI. Many researchers 
have already focused on the performance optimization of 
Hadoop YARN [15]. However, the community still lacks a 
comprehensive Hadoop YARN simulation system that can 
provide a sandbox for exploring design alternatives and 
understanding YARN behavior. In this paper, we present 
YARNsim: a simulation system for Hadoop YARN. Our 
contributions are as follows: 

• To the best of our knowledge, YARNsim is the first 
comprehensive Hadoop YARN simulation system. 

• YARNsim runs in parallel and thus is capable of 
modeling and simulating large-scale scenarios.  



• YARNsim includes a detailed, protocol-level accurate 
HDFS model that increases simulation fidelity. A 
detailed HDFS model is not covered in most existing 
MapReduce simulation systems. 

• We develop a bioinformatics application model and 
verify its accuracy through comparing performance 
results from both YARNsim and a real system. 

The rest of the paper is organized as follows. Section II 
addresses the motivation and background of YARNsim. 
Section III presents the design and implementation of 
YARNsim system components, including a MapReduce 
module, an HDFS module, and a local storage system module. 
Section IV discusses the experimental evaluation and 
demonstrates the validity of YARNsim. Section V introduces 
the related works. Section VI summarizes our conclusions and 
points out future directions of this study. 

II. MOTIVATION AND BACKGROUND 
In this section, we first present the motivation of 

developing YARNsim from two perspectives. We then discuss 
the related systems used by YARNsim.  

A. Big Data 
In the past few years, the focus of large-scale parallel and 

distributed processing has transitioned gradually from 
computation to storage. Increasing compute capabilities have 
generated enlarged data-processing needs, encouraging 
scientists in different endeavors to pursue bigger and more 
complex problems. However, the capability of the storage 
system has severely lagged behind in terms of both access 
speed and capacity. Even with the wide use of enhanced 
storage media, such as SSD, and countless data caching and 
data placement optimization techniques [16], [17], the gap 
between the capabilities of computation and storage systems 
still increases. As suggested in [18], the gap will continue to 
widen given the current technology trends. Scientific 
applications are severely constrained by the I/O bottleneck in 
data preloading, defensive checkpointing and simulation 
postprocessing. Commercial applications face similar 
dilemmas, where users are generating data at an unprecedented 
rate and the data processing and storage needs quickly go 
beyond the capacity of current storage system. For example, 
Facebook users were storing a total of 300 petabytes of data as 
of November 2013 [19]. 

The challenge of big data, at its core, is large-volume data 
processing, movement, and storage. Thus, a successful Hadoop 
simulation system should also include the model for data and 
its related operations to cater to the challenges of big data. In 
particular, YARNsim differs from other MapReduce 
simulators in that it provides more accurate models describing 
details of data movement, communication contention over the 
network, and task interactions due to data request conflicts. 

B. Hadoop 
Because of its simplicity and efficacy, MapReduce is one 

of the most well-accepted programming models in the 
distributed-computing community. According to a report from 
Gartner [20], 65% of the packaged data analytic applications 
will be built on Hadoop by 2015. Because of Hadoop’s 

popularity, we are motivated to develop a tool that helps the 
community better understand the advantages and disadvantages 
of Hadoop systems and quantitatively measure the trade-offs 
between different design points. 

Good scalability is one of the primary reasons Hadoop is 
widely adopted for large-scale data analytic solutions [21]. As 
the system grows in size, scalability has also become a top 
challenge facing Hadoop development [22]. Although Hadoop 
YARN has separated the management of resources and jobs 
and largely decreased the load of the master, the resource 
management and scheduling are still based on centralized 
model and will face scalability issues again as the need for 
computation and data movement keeps increasing. As Hadoop 
YARN proposes to support diverse programming models (in 
addition to MapReduce), the system may encounter new 
challenges in terms of system service design, fair resource 
scheduling, and system utilization in a hybrid workload 
environment. It is favorable to have an efficient simulation to 
aid in  the evaluation and redesign of a complex system such as 
Hadoop YARN after deployment, especially since different 
datacenters may favor different domains of applications and 
since system architectures (in terms of both software and 
hardware) varies considerably from one to another. Thus, an 
efficient and cost-effective tool is necessary and the key to 
successful system design. In this paper, we show that 
YARNsim can be used to evaluate MapReduce jobs at the 
minimal cost of mainly CPU cycles.  

C. Background 
YARNsim is based on two parallel simulation packages: 

the Rensselaer Optimistic Simulation System (ROSS) [23] and 
the Co-Design of Exascale Storage System (CODES) [24].  

ROSS is a massively parallel discrete-event simulator that 
has demonstrated the ability to process billions of events per 
second by leveraging large-scale HPC systems [25]–[27]. A 
parallel discrete-event simulation (PDES) system consists of a 
collection of logical processes (LPs) each modeling a distinct 
component of the system (e.g., a DataNode). LPs communicate 
by exchanging time stamped event messages (e.g., denoting the 
arrival of a new I/O request at that node). The goal of PDES is 
to efficiently process all events in a global timestamp order 
while minimizing any processor synchronization overheads. 
Two well-established approaches toward this goal are broadly 
called conservative processing and optimistic processing. 
ROSS supports both approaches. In this paper, we adopt the 
conservative approach. 

CODES is a simulation system based on ROSS. Its goal is 
to enable the exploration and co-design of exascale storage 
systems by providing a detailed, accurate, and highly parallel 
simulation toolkit for exascale storage systems. Two 
particularly important modules in CODES are the network 
module (CODES-net) and the local storage model (CODES-
lsm). Specifically, CODES-net provides parallel discrete-
event-based networking models. The current CODES-net 
toolkit includes four modules: a torus network model [26], a 
dragonfly network model [28], a loggp [29] model, and a 
simple bandwidth-latency model called “simple-net.” CODES-
net provides a unified user interface that facilitates the use of 



all these underlying networking models.  For example, Tang et 
al. has buit a cloud scheduler for multi-workflow system [30]. 

III. YARNSIM DESIGN AND IMPLEMENTATION 
The Hadoop system is inherently complex. In particular, its 

design features a multilayered and multicomponent software 
architecture. The underlying hardware model is flexible, in that 
a variety of low-end commodity-level equipment could be 
deployed, and thus adds complexity to the design space. The 
community needs the ability to understand and redesign such 
complex systems with limited time and budget. One viable 
approach is to use parallel discrete-event simulation. A 
successful simulation system design relies on accurate 
abstraction of the software and hardware stacks and 
pinpointing the key components from the big picture.  

TABLE I.  MODELED SYSTEM PROCESSES 

Daemon Process YARNsim Abbreviation 
Client 

Resource Manager 
Application Manager 
Resource Scheduler 

Node Manager 
Map Task 

Reduce Task 
Application Master 
Resource Scheduler 

Node Manager 
Map Task 

Reduce Task 
Application Master 

CODES-lsm 
CODES-net 
NameNode 
DataNode 

CLT 
RM 
AM 
RS 
NM 

MAP 
RED 
AMS 
RS 
NM 

MAP 
RED 
AMS 
LSM 
CN 
NN 
DN 

 

Table 1 list all the Hadoop modules modeled in YARNsim 
from a daemon process perspective. The abbreviations are used 
throughout the rest of the paper. 

Hadoop YARN and its ecosystem comprise millions of 
lines of source code. One of our targets in designing YARNsim 
is to develop a rich simulation that captures the salient 
properties of this complex system so as to mimic the behavior 
in terms of task execution and data flow. In YARNsim, we 
categorized the internal communication to metadata flow and 
data flow. Both flows can have a significant impact on the 
overall system performance. The model of metadata flow 
follows the basic protocols used in YARN. Specifically, 
YARN internal communication follows the client-server model 
and is based on a customized RPC library. A Hadoop RPC 
server consists of a listener module and a callQueue module. 
The message passing between different daemon processes is 
essentially RPC calls.  We follow the client-server model in the 
design of YARNsim’s communication system. Specifically, a 
client and a server are modeled as two distinct LPs, and the 
message passed between the client and server are modeled as 
events sent and received between LPs. Our model does not 
include thread-level details, but the server models the message 
queuing effects. We later show that this level of abstraction 
provides a reasonable accuracy in performance evaluation.  

The YARN design is also based on event-driven and state-
machine modeling. Specifically, a state transition is defined by 
a tuple <preState, postState, event, hook>, where the preState 
and postState are the actual states of the system components  
(e.g., resource manager), the event is the system-defined 
transition trigger (e.g., a task to get the requested resource is a 
transition trigger), and the hook is the execution function 
corresponding to each event. Similarly, YARNsim uses these 
concepts in the model and simulation. The changes of states 
and event communications are the exact flow logic we want to 
capture in YARN. Here, we made many simplifications and 
abstractions. For example, we don’t model the security 
modules in the current version and leave this for future 
development. We don’t differentiate between preState and 
postState; that is, the state transition is regulated by the 
transition function, which is based on the RPC protocols. We 
also merge events if they are functionally similar and will not 
affect performance. 

Hardware is a key factor affecting the Hadoop system and 
application performance.  In general, the hardware models 
considered in YARNsim are CPU, memory, network, and disk. 
We use analytical models for CPU and memory, since they are 
ideal in modeling less complex scenarios in terms of data 
movement. 

 𝑇! = !!"#"
!!
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 𝑇!"# = 𝛼! ∙
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Equations 1 and 2 describe the analytical model used in 
YARNsim to compute the data movement cost in memory and 
the data processing cost in CPU. In Equation 1, we define the 
data transmission time (𝑇!) such that it is influenced by data 
request size (𝐿!"#"), memory bandwith (𝐵!), and memory 
access latency ( 𝑡! ). In Equation 2, we define the data-
processing time (𝑇!"# ) such that it is determined by data 
request size (𝐿!"#"), CPU speed (𝑃!"#), CPU context switch 
time (𝑡!"#), and request intensity (𝛼!).  Here, request intensity 
𝛼! is a factor used to decide whether a request is compute 
intensive or data intensive and thus is application dependent. 
We argue that these simplified models are sufficient to model 
the data-flow latency in a single node and are on a par with 
other components of YARNsim.  

The I/O system is usually more complex than the CPU and 
memory system in terms of data-processing latency. I/O 
latency is determined by many factors, including request size, 
request pattern (continuous or noncontinuous), request type 
(read or write), and media type (HDD or SSD). It is less 
compelling to use a linear analytical model to describe such a 
nonlinear system. Many other MapReduce simulation systems 
such as MRperf [6] and MRsim [8] don’t have a 
comprehensive I/O system model. We argue that the I/O 
system can have a significant impact on the overall system and 
application performance. We use CODES-lsm to model a disk 
for a single physical node. CODES-lsm is a coarse-grained 
hardware model that captures the nonlinear nature of HDD in 
response to different I/O request offsets and sizes. Before 



configuring the YARNsim disk model, users are required to 
collect data about the I/O performance and feed it to the disk 
model such that the simulation system can return the correct 
I/O latency when 

 
Figure 1.  YARNsim architecture 

provided with a real or synthetic request. Current experimental 
results show that YARNsim disk model is suitable for our 
simulation purposes. If a higher-fidelity disk model is required, 
one can extend this model or replace the CODES-lsm module 
and still use the standard interface.    

 
Figure 2.  YARNsim workflow 

The hardware-related parameters are configurable through 
user-defined input configuration files. Upon initialization, users 
can customize the Hadoop hardware system and get an 
accurate hardware platform. The software stack model of 
YARNsim is illustrated in Fig. 1. The major components are 
the application module, MapReduce module, YARN module, 
and HDFS module. The ovals are used to illustrate the daemon 
processes modeled in YARNsim. Each oval represents one 
type of daemon process. We describe in detail each LP and its 
functionality in the following sections.  
A. Application Module 

YARNsim uses one type of LP to model a client, and it is a 
key component of the application Module (Apps). A client LP 
is responsible for collecting application information and 
sending it to RM upon YARNsim initialization. At the end of 
the simulation, CLT collects simulation statistics and provides 
the user with an estimation of application performance. We 
currently provide job parameters in the input configuration file. 
Thus the client LP will load these parameters at initialization. 
In the case of multiple clients, there are multiple LPs, and each 
is responsible for initializing a specific application and 
collecting the corresponding information after the simulation 
terminates. 

B. YARN Module 
The workflow of YARN is illustrated in Fig. 2. Here, the 

rectangle boxes represent a modeled physical node, and ovals 
represent the daemon processes modeled in YARNsim. The 
numbered labels in Fig. 2 represent the order of the data flow 
in YARNsim. For example, a CLT initially submits a job to 
AM and gets an acknowledgment. Internally, AM updates the 
global job queue and handles the job execution. YARNsim 
uses these flows to model the protocols used in YARN.  In Fig. 
2, the RM consists of two services provided separately by 
application manager and resource scheduler. The two services 
are functionally independent but are all designed as a 
centralized communication point. We use two different types 
of LPs to model them because they are the potential bottleneck 
in the simulation system. The AM LP handles job submission 
and processing, while the RS LP implements the scheduling 
algorithms. Currently, YARNsim supports the default FIFO 
scheduling algorithm.  

 
Figure 3.  Selected event algorithms used in application manager LP 

Compared with real system implementations, YARNsim 
makes a number of simplifications. For example, the container 
manager is the key module in the node manager daemon. It 
contains many services, including the resource localization 
service, container launcher, auxiliary services, container 
monitor, log handler, and container event dispatcher. We do 
not model all the services but, instead, focus on the data-related 
services and abstract these to events flowing in and between 
the LPs. For example, in Fig. 3, we list the three selected 

Application Manager LP 
1: /* accept job submission event */  
2: job_queue ← submitted new jobs 
3: ack back job submission 
3: while job_queue non empty do  
4:    execute jobs 
5: end while 
 
1: /* job execution event */ 
2: inquire node manager LP 
3: if container available then 
4:     init AMS 
5:     acknowledge AMS 
6: else 
7:      job_queue ← current_job 
8:      execute jobs 
9: end if 

  
1: /* heart beat event */ 
2: if heart_beat_interval > threshhold then 
3:     register dead_node  
4:     update resource_lists 
5:     reallocate AMS 
6: else  
7:     claim released resources 
8: end if 

 



events and the core algorithms used in the application manager 
LP. The accept-job event manages the centralized job queue 
and schedules the job execution and termination. The job-
execution event handles the execution of a job in YARNsim, 
and the heartbeat event models the resource dynamic allocation 
and reallocation related to each heartbeat message.  

 
Figure 4.  Selected event algorithms used in node manager LP 

In Figs. 4 and 5, we list the selected events and the core 
algorithms used in NM and RS, respectively. Here, each NM 
keeps a local list of resources. When AMS queries NM for a 
container for a specific task, NM will make decisions based on 
the resource list. This procedure is the AMS request event. 
AMS controls the job and tasks execution and will release a 
specific container when the corresponding task is finished. This 
procedure is the AMS release event. The RS basically 
implements the scheduling module. Currently, YARNsim 
supports FIFO scheduling; we plan to incorporate fair and 
capacity schedulers in the near future. 

 
Figure 5.  Selected event algorithms used in resource scheduler LP 

C. MapReduce Module 
YARN is designed to support multiple programming 

models, including MapReduce. In YARNsim, the MapReduce 
module is a model of the first-generation Hadoop system, 
except for a few major differences including the model for 
YARN application master, which is responsible for task 
management. When a job is submitted and the corresponding 
application master gets the allocated container, it can initiate 
the MapReduce job. In YARNsim, the map task and reduce 

task are modeled as different types of LPs, respectively. In Fig. 
6, we illustrate the map task model. Here, the HDFS model, the 
local storage system model, and the network model are 
involved. The HDFS model is discussed in detail in the 
following section. We use CODES-lsm module to model the 
local file system and the corresponding hardware. To capture 
the shuffle phase network contention, we use CODES-net as 
the underlying network abstraction. CODES-net provides 
protocol level accuracy in modeling network behaviors. CN LP 
is the network interfaces where a task LP can send and receive 
messages. 

 
Figure 6.  Map task model 

The centralized resource scheduler allocates containers to 
each job and task. Upon initialization, the map task starts 
reading the input split from HDFS; this procedure is labeled as 
Flow 1 in Fig. 6. Here, we illustrate the YARNsim MapReduce 
module through an example MapReduce job in which the 
number of map tasks is three and the number of reduce tasks is 
two. The map task computation time is given in Equation 2. 
The intermediate results are saved to the local file system; this 
procedure is labeled as Flow 4. We use a configurable 
parameter slow.start.rate to simulate the start of a reduce task. 
This is the same as defining the slow start rate in a real system. 
The reduce tasks are based on a pull model, and thus Flow 5 is 
a set of requests sent by the reduce task to retrieve data from 
the map tasks. The circular buffer is modeled by using 
Equation 1, where a local file commit is triggered if the buffer 
is filled. In the shuffle phase, the reduce task can retrieve data 
from memory or local file system. Thus performance depends 
on the application. 

 
Figure 7.  Reduce task model 

The reduce task model is illustrated in Fig. 7. The 
computation time is based on Equation 2, and the I/O time is 
based on the local file system and HDFS models. As we can 
see, YARNsim models all key factors contributing to the 
overall job execution time. Any change in the system could 
lead to variation in the system/application performance.  
System designers can leverage the functionalities provided by 
YARNsim and choose to focus on a specific component to 
study the best optimization solutions. 

Node Manager LP 
1: /* AMS request event */ 
2: check resources_list  
3: if container available then 
4:     allocate resource 
5:     update resources_list 
6: else 
7:     return exception 
8: end if 
 
1: /* AMS release event */ 
2: collect released resources to resource_list 
3: ack back AMS 
4: update NM info to RS 

 

Resource Scheduler LP 
1: /* application request event */ 
2: check resources_list  
3: init scheduling module(request) 
4: if schedule successful then 
5:     grant resources 
6:     update resources_list 
7: else 
8:      ack deny message 
9: end if 

  



D. HDFS Module 
As discussed, YARNsim includes an HDFS module. The 

network data transmission in the HDFS module leverages the 
features provided by CODES-net. We illustrate its details in 
Fig. 8. Here, the NameNode daemon and data daemon are 
modeled as two types of LPs. The client daemon is the HDFS 
client, which could be a map task or a reduce task. For 
example, upon initialization, map tasks start reading input split 
from HDFS. In YARNsim, the map task LP starts by 
contacting the DataNode LP and specifying its I/O request. The 
DataNode LP forwards this request to the underlying local 
storage model LP that gives the exact delay for such request. 
When a map task tries to load a remote data block, the request 
goes through the network. In YARNsim, the request goes 
through the CODES-net module, and therefore we can capture 
the network contention and accurately account for the delay in 
retrieving the data block.  

In the MapReduce programming model, the NameNode 
keeps an image of the HDFS file system. The image contains 
information about data block locations, IDs, file association, 
and all the replicas. In YARNsim, we leverage the libxml 
library to build a similar but simplified HDFS image and store 
it in the NameNode LP. We use this image for HDFS model 
management and operations. For example, if an application 
writes data block to HDFS, this image is updated with new 
data block information. The NameNode LP also tracks the 
status of DataNode LPs through heartbeat events. Similar to 
other components, we made several simplifications. For 
example, we do not yet support the secondary NameNode, and 
each DataNode LP does not keep the real data block but rather 
the metadata about the block. Currently, the HDFS module 
does not support DataNode additions or removals, contrary to 
real systems. We argue that this kind of simplification is 
sufficient for system modeling and evaluation. As YARNsim 
grows, one can extend the support to include the above-
mentioned features. 

 
Figure 8.  HDFS model 

Figures 6–8 provide intuitive examples to explain the 
details of YARNsim. In reality, the number of different type of 
LPs and the corresponding parameters is configurable through 
user-defined input files. A YARNsim user can configure a 
customized YARN system of arbitrary size and run a 
customized application for evaluation and validation.  

IV. EXPERIMENTAL EVALUATION 
Our experiments are conducted on two small-scale clusters, 

Craysun and HEC, in the Scalabe Computing Software 
Laboratory at the Illinois Institute of Technology. Craysun has 
16 nodes, each node equipped with a quad-core Intel Xeon 

CPU geared at 3.40 GHz. However, each node currently only 
has 1 GB of memory.  For this study, we want to mimic the 
situation where a MapReduce framework is built on a low-end 
cluster with commodity-level devices. HEC is a 51-node Sun 
Fire Linux-based cluster having one head node and 50 
computing nodes. The head node is a Sun Fire X4240, 
equipped with dual 2.7 GHz Opteron quad-core processors, 8 
GB memory, and 12 500 GB 7200RPM SATA-II drives 
configured as a RAID5 disk array. The computing nodes are 
Sun Fire X2200 servers, each node with dual 2.3GHz Opteron 
quad-core processors, 8 GB memory, and a 250 GB 7200RPM 
SATA hard drive. All 51 nodes are connected through Gigabit 
Ethernet. As of this paper, the most up-to-date Hadoop YARN 
is version 2.5.0, which we used for all our experiments. 
A. YARNsim Configuration 

YARNsim is a comprehensive simulation system with both 
software and hardware models. Thus, proper configurtion of 
the system is important for obtaining faithful simulation 
results.  YARNsim uses CODES-lsm as the storage system 
model where its input is based on a set of parameters indicating 
varied read/write performance for different request sizes. We 
use the IOzone [31] benchmark to get the disk performance 
curve for both Craysun and HEC. Only the results on HEC are 
presented in Fig. 9 because of limited space. Here, we tested 
both read and write performance under both random and 
sequential I/O modes. The reported results are the average of 
10 identical runs. In HDFS, we assumed that the data blocks 
are transferred sequentially between file system clients and 
servers. Thus the points in sequential mode were used as input 
to CODES-lsm. YARNsim’s local file system component deals 
with the merge-sort I/O requests in map and reduce tasks, so 
we assumed that those data are random, and we used the 
random I/O performance as input. As Fig. 9 indicates, the 
curve depicts the nonlinear nature of HDD performance under 
varied I/O requests. This curve was used as a real disk 
performance in YARNsim and thus provides a trustworthy 
hardware model as compared with the fixed bandwidth 
analytical model used in other MapReduce models[6][9]. 

 
Figure 9.  IOzone benchmark tests on HEC 

 In YARNsim, the HDFS model records only the simplified 
metadata information, namely the files, blocks, and their 
locations. Before a MapReduce job starts, the name of the 
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required data file is presented to NM, and NM will respond 
with the corresponding block location information. The 
scheduler will then schedule the corresponding tasks. This 
input determines the balance and data skew of a specific 
MapReduce job and thus the overall job execution time. 

YARNsim uses the CODES-net module as the network 
layer simulator. In this study, we used the simple-net module, 
which models the switch connected Ethernet topology. It is a 
loosely defined p2p network with full connections at each 
node. As we show later, this module best suits our needs in 
modeling the network topology of Craysun and HEC. 

Similar to running a real job in Hadoop YARN, both 
benchmark jobs and application jobs can be configured before 
execution. Users choose to define the number of tasks used, the 
running mode, and so forth. In YARNsim, users are required to 
provide a little more information to help YARNsim accurately 
capture the characteristics of each job. For example, users must 
tell YARNsim if the submitted job is computation intensive or 
data intensive through a user-defined configuration file. The 
weight is usually job-specific. Benchmarks such as TestDFSIO 
and Teragen are usually considered data intensive, whereas K-
means and grep can be considered compute intensive.   

 
Figure 10.  Performance comparison between HEC and YARNsim on Teragen 
benchmark: input data size varies from 128 MB to 16 GB; the number of 
nodes is 16. 

B. Hadoop I/O Benchmarks 
We chose Teragen as the I/O benchmark tests to focus on 

the HDFS model validation. Also, the generated data were used 
as inputs for the following benchmark tests in the real system. 
In Craysun, we used a total of 16 nodes and varied the 
generated data from 128 MB to 16 GB. The block size was 
configured as 32 MB, the number of map tasks was configured 
to match the number of blocks, and the number of reduce tasks 
was the default value 1. In YARNsim, we also configured the 
system as above. To compare the results from Craysun and 
YARNsim, we built a model for Teragen in YARNsim to 
simulate the data generation process. The comparison results 
are reported in Fig. 10. The errors between simulation results 
and real system results are with 10% for all test cases. Since 
the data is balanced out to each compute node, we can get a 
balanced MapReduce tasks execution in the following tests. 

 

 
Figure 11.  Performance comparison between Craysun and YARNsim on 
Terasort benchmark: input data size varies from 128 MB to 16 GB; the 
number of nodes is 16. Blue stacks are the reported performance for each 
MapReduce phase on Craysun. Red stacks are the reported performance for 
each MapReduce phase on YARNsim. Error is the accumulated error rate 
between Craysun and YARNsim. 

 
Figure 12.  Performance comparison between Craysun and YARNsim on 
Wordcount benchmark: input data size varies from 128 MB to 16 GB; the 
number of nodes is 16. Blue stacks are the reported performance for each 
MapReduce phase on Craysun. Red stacks are the reported performance for 
each MapReduce phase on YARNsim. Error is the accumulated error rate 
between Craysun and YARNsim. 

C. Hadoop Synthetic Benchmarks  
We chose Terasort and Wordcount for our experiments 

because both  benchmarks are widely accepted and can 
represent a class of Hadoop applications. To further analyze 
the application performance, we decomposed each job into 
three phases—map, shuffle, and reduce, assuming that the map 
phase and reduce phase contain the merge-sort operations. In 
Craysun and HEC, we used the data generated from the 
Teragen benchmark on 16 nodes and varied the input data size 
from 128 MB to 16 GB. To accurately record the performance 
of each phase in the real system, we leveraged the job history 
service provided by Hadoop, in which the detailed performance 
for each phase is reported. We collected these numbers and 
compared them with the numbers collected from the YARNsim 
system. In YARNsim, we used the same configuration as in 
Craysun and HEC for configuring the simulated clusters. We 
also built models for the Terasort and Wordcount benchmarks 
and ran them separately on the two different simulated clusters. 
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We compared the performance between the simulated jobs and 
real jobs for each phase and report the results in Figs. 11–14. 

 
Figure 13.  Performance comparison between HEC and YARNsim on Terasort 
benchmark: input data size v aries from 128 MB to 16 GB; the number of 
nodes is 16. Blue stacks are the reported performance for each MapReduce 
phase on HEC. Red stacks are the reported performance for each MapReduce 
phase on YARNsim. Error is the accumulated error rate between HEC and 
YARNsim. 

 
Figure 14.  Performance comparison between HEC and YARNsim on 
Wordcount benchmark: input data size varies from 128 MB to 16 GB; the 
number of nodes is 16. Blue stacks are the reported performance for each 
MapReduce phase on HEC. Red stacks are the reported performance for each 
MapReduce phase on YARNsim. Error is the accumulated error rate between 
HEC and YARNsim. 

As illustrated in Fig. 11, YARNsim can match the real 
system performance well in most cases, the maximum error 
rate between YARNsim and Craysun being 11.29%. As shown, 
the shuffle phase is the major part of overall performance. As 
we can see from the stacked bars in Fig. 11, YARNsim 
matches well in almost all test cases. The shuffle phase is 
dominated by network transfers and hence is a good 
representation of network accuracy. We show through this 
experiment that CODES-net is suitable for performance 
matching in YARNsim. We report the performance of Hadoop 
YARN on small data sets in the subfigure of Fig. 11. The 
purpose of these tests is to validate the Hadoop system 
overhead. As we can see, YARNsim captures these overheads 
accurately on the light-weight experiments. In Fig. 12, we use 
the Wordcount benchmark and report similarly to Fig. 11. The 
maximum error rate is 12.57%. We note that for some test 
cases, the reduce phase generates relatively large errors. We 

attribute these to a set of factors including the inaccurate 
slow.start.rate, skewed data, and computation in the reduce 
phase. To pinpoint the reason behind this phenomenon, we 
need to conduct further experiments. In this set of experiments, 
however, the reduce phase time constitutes only a small portion 
of the overall execution time. Thus the overall error rates are 
still acceptable for the majority of test cases. 

In Figs. 13 and 14, we reports the experiments on HEC. 
Here, we use configurations similar to those used in the 
Craysun experiments. The experimental results are as expected, 
and the maximum error rate is 13.15%. The shuffle phase is 
still the overall peroformance bottleneck.  

 
Figure 15.  Performance comparison between HEC and YARNsim on 
bioinformatic application: input data size varies from 948.8 MB to 60.7 GB; 
the number of nodes is 16. Blue stacks are the reported performance for each 
MapReduce phase on HEC. Red stacks are the reported performance for each 
MapReduce phase on YARNsim. Error is the accumulated error rate between 
HEC and YARNsim. 

D. Bioinformatics Application 
In the field of bioinformatics, large dataset clustering is a 

challenging problem. Many biological scientists resort to 
Hadoop MapReduce for large-scale and parallel processing 
solutions. For example, researchers from the University of 
Delaware have developed an octree-based clustering algorithm 
for classifying protein-ligand binding geometries [32][33]. The 
proposed method is implemented in Hadoop MapReduce and is 
divided into a two-phase MapReduce workflow. The geometry 
reduction and key generation constitute the first-phase 
MapReduce job, where large datasets are read by the map 
tasks. The output of the first phase is the input of the second- 
phase MapReduce job. Here, an iterative octree-based 
clustering algorithm is implemented as a chain of MapReduce 
jobs indicating that the search has iterated to the deep level of 
the search tree. In the first phase, the output data size is about 
1% of the input data size. Thus the MapReduce job spends 
most of its time on the map and shuffle phases.  

We used this application as an exemplar for YARNsim. To 
model the application, we identified the sizes and locations of 
all data blocks in each phase and used them as input to the 
modeled MapReduce jobs. We varied the input file of protein 
geometry data from 948 MB to 60 GB and ran the experiments 
on HEC using 16 nodes. We also built a model for this 
clustering application and ran it on YARNsim with different 
configuration. The performance on HEC and YARNsim are 



reported in Fig. 15. As illustrated, models based on YARNsim 
can help capture the application performance and thus provide 
the potential to further optimize the application and its 
environment. The clustering application used in this paper has 
distinct features. For instance, its map phase is significantly 
longer than the reduce phase because the data size in the reduce 
phase is only 1% of the input data size in the map phase. 
YARNsim faithfully captures this feature and can predict the 
application performance under different input data size. The 
maximum error is 6.84%. 

V. RELATED WORK 
A plethora of community efforts on Hadoop system 

simulations have been conducted in the past few years, 
including Mumak [4], MRsim [8], SimMR [5], Hsim [33], 
MRSG [7], SimMapReduce [34], SLS [11], Starfish [9], and 
MRperf [6]. Most of the existing simulation systems focus on 
the first-generation Hadoop system. Since Hadoop YARN is 
relatively new to the community, few efforts have focused on 
the simulation of YARN. The SLS simulator targets Hadoop 
YARN; however, it focuses only on simulating job and task 
scheduling. Compared with SLS, YARNsim provides a more 
comprehensive view of the system; it includes the scheduling 
component and a detailed model for network and disk. First-
generation Hadoop system simulators cannot handle the 
performance modeling for Hadoop YARN because of the 
fundamental changes in resource management and job/task 
management: in particular, the resource manager 
(ResourceManager) and application master (MRAppMaster), 
have replaced the JobTracker. Therefore, the corresponding 
protocols used in Hadoop YARN are different from the first 
generation Hadoop.  

The prior work can also be categorized from the 
perspective of simulation techniques. The majority of the 
simulation systems are based on discrete-event simulation; few 
works are based on analytical models such as the Starfish 
project. The convenience of using discrete-event simulation is 
obvious. Hadoop system internal design is based on an event-
driven model and state machine model. It is natural to use 
discrete events to model the flow logic flow and the change of 
states of Hadoop system components. Mumak, MRsim, 
SimMR, MRSG, and MRperf belong to this category. For 
modeling large-scale systems, the analytical method can be fast 
and efficient; however, it is constrained in terms of modeling 
complex scenarios. For example, the I/O system is nonlinear in 
terms of I/O request turnaround time. It is therefore 
unwarranted to use a constant bandwidth to get the I/O request 
response time. For systems based on discrete-event simulation, 
the simulation engine is sequential, meaning there is only one 
event queue for processing the model. Therefore, the 
simulation performance is largely constrained in modeling 
large-scale scenarios. YARNsim is based on parallel 
simulation and has the potential to simulate large-scale systems 
in a tractable amount of time. 

 In terms of simulating Hadoop system components, many 
simulation systems focus only on the MapReduce engine and 
lack a detailed model for HDFS. MRperf, MRSG, SimMR, and 
MRsim fall into this category. Mumak and SLS focus on the 
job and task-scheduling component and thus care less about the 

networking and disk models. Compared with these simulation 
systems, YARNsim is a comprehensive simulation system for 
Hadoop YARN. Its modules include both the software stacks 
and hardware stacks. 

MRperf [6] is a discrete-event simulation system based on 
ns2 simulation framework. Compared with simulators such as 
Mumak, SimMR, and MRSim, MRPerf is both application 
aware and resource contention aware because of the detailed 
networking model. However, MRperf lacks a detailed model 
for hardware and HDFS. Moreover, because ns2 is based on 
sequential discrete event simulation, the performance of 
MRperf is determined by ns2. It is thus impractical to simulate 
large scale system using MRperf.  

Starfish [9] is based on analytical performance models of 
the MapReduce system. It provides a what-if analysis 
mechanism for analyzing the complex parameter spaces in the 
Hadoop system. The system includes models for CPU, 
memory, network and disk. It also considers a rich set of 
parameters from the Hadoop system. The user is able to modify 
the parameters and observe the impact on system and 
application performance. However, the network and disk 
models used are simplified as the divisions and multiplications 
of a set of parameters. This kind of abstraction makes the 
simulation fast and efficient but loses the accuracy in the local 
model.   

VI. CONCLUSIONS 
In this paper, we present YARNsim, a Hadoop next-

generation simulation system. YARNsim consists of four core 
modules: an application module, a YARN module, a 
MapReduce module, and an HDFS module. YARNsim also 
includes a set of hardware models. Different modules are 
functionally independent but operationally connected; together 
they capture different software and hardware layers in YARN 
and can replay YARN system behaviors with satisfactory 
granularity. YARNsim provides its users a comprehensive 
simulation platform where system architects can evaluate 
various design points and application developers can test/tune 
the application performance. 

We validate the performance of YARNsim through a set of 
comprehensive Hadoop benchmark tests, including Terasort, 
Teragen, and Wordcount, on both simulation systems and the 
real-world clusters. We further validate YARNsim through  a 
bioinformatics application. The experiment results show less 
than 10% error for most of the test cases. 

YARNsim is not without its limitations. The current 
version of YARNsim does not support fault tolerance models. 
Thus, the user will not be able to simulate job execution under 
failure. Additionally, the HDFS module cannot yet model the 
secondary NameNode. We plan to incorporate a mechanism to 
support system components failure model and simulation. 
YARNsim also includes only the FIFO scheduling algorithm. 
We plan to develop a capacity scheduler, fair scheduler, and 
other advanced scheduling algorithms in the near future to 
support the simulation of complex job and task execution.   
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