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Abstract—Parallel applications benefit considerably from the
rapid advance of processor architectures and the available mas-
sive computational capability, but their performance suffers
from large latency of I/O accesses. The poor I/O performance
has been attributed as a critical cause of the low sustained
performance of parallel systems. Collective I/O is widely
considered a critical solution that exploits the correlation
among I/O accesses from multiple processes of a parallel
application and optimizes the I/O performance. However, the
conventional collective I/O strategy makes the optimization
decision based on the logical file layout to avoid multiple file
system calls and does not take the physical data layout into
consideration. On the other hand, the physical data layout in
fact decides the actual I/O access locality and concurrency. In
this study, we propose a new collective I/O strategy that is
aware of the underlying physical data layout. We confirm that
the new Layout-Aware Collective I/O (LACIO) improves the
performance of current parallel I/O systems effectively with
the help of noncontiguous file system calls. It holds promise in
improving the I/O performance for parallel systems.

Keywords-Parallel I/O; Collective I/O; Storage Systems;
Parallel Applications; Parallel File Systems; High Performance
Computing; Data Intensive Computing

I. INTRODUCTION

With the rapid advance of semiconductor process tech-
nology and the evolvement of microarchitectures, the pro-
cessor cycle times have been significantly reduced in
the past decades. In addition, the widely-adopted multi-
core/manycore architectures in recent years bring parallel
processing on chip and significantly increase the com-
putational performance of single processor chip. High-
Performance Computing applications benefit from the pro-
cessor architectural enhancement and massive computational
capability considerably. However, compared to the processor
performance improvement, data-access performance (latency
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and bandwidth) improvement has been at snail’s pace. The
disk drive speed has only increased by roughly 7% each year
over the past two decades, which is significantly lower than
the improvement speed of nearly 50% per year for processor
performance [15]. This performance disparity is predicted
to continually expand in next decades. Fig. 1 compares
the single disk drive bandwidth improvement (left vertical
axis) and the computational capability improvement of well-
known supercomputers (right vertical axis) for the past
decades [36]. The computational performance improvement
rate is magnitudes higher than the bandwidth improvement
rate of single drive. The rapid advance of processor architec-
tures and computing capability has put ever more pressure
on sluggish storage and I/O systems, especially for high-
performance computing where performance is key.

Figure 1. FLOPS of Supercomputers v.s. Single Disk Drive Band-
width [36]. The computational performance improvement rate is magnitudes
higher than the bandwidth improvement rate of single drive. Parallel I/O
systems are essential to match the rapid advance of processor architectures
and the fast increasing scale of computational capability.

Parallel I/O is essential to match the rapid advance of
processor architectures and the fast increasing scale of
computational capability. Although multi-level memory hi-
erarchy architecture can avoid large performance loss due
to long disk-access delays, the memory capacity is always
limited. Furthermore, as the multicore/manycore architec-



tures become universal, the available memory capacity per
core even decreases, especially if the scale of HPC systems
is projected to million cores or beyond. Many scientific
and engineering simulations in critical areas of research,
such as nanotechnology, astrophysics, climate, and high
energy physics, are becoming more and more data inten-
sive [36][26]. These applications contain a large number
of I/O accesses, where large amounts of data are stored to
and retrieved from storage systems. Table I shows the data
requirements of several representative INCITE applications
run at Argonne Leadership Computing Facility of Argonne
National Laboratory in 2008 [36][21]. The data sets accessed
by these applications are far beyond the memory capacity
of supercomputers and need high-performance parallel I/O
systems to meet their demands. There is a great need for
research to improve the parallel I/O performance of high-
performance computing systems.

Table I
DATA REQUIREMENTS OF SELECTED 2008 INCITE APPLICATIONS AT

ALCF OF ANL [36]

Project On-Line
Data

Off-Line
Data

FLASH: Buoyancy-Driven Turbulent Nuclear
Burning

75TB 300TB

Reactor Core Hydrodynamics 2TB 5TB
Computational Nuclear Structure 4TB 40TB
Computational Protein Structure 1TB 2TB
Performance Evaluation and Analysis 1TB 1TB
Kinetics and Thermodynamics of Metal and
Complex Hydride Nanoparticles

5TB 100TB

Climate Science 10TB 345TB
Parkinson’s Disease 2.5TB 50TB
Plasma Microturbulence 2TB 10TB
Lattice QCD 1TB 44TB
Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Gating Mechanisms of Membrane Proteins 10TB 10TB

Exploring parallelism and exploring physical locality have
been the primary solutions to providing high-performance
I/O systems to meet the ever-increasing demands of HPC
applications. In this study, we take these two approaches to
improve collective I/O, the most critical performance opti-
mization strategy for parallel I/O middleware that connects
users’ applications and the underlying parallel file systems.
We propose a new collective I/O strategy, called Layout-
Aware Collective I/O, or LACIO in short. The motivation
of this study comes from an observation that the existing
collective I/O strategy is unaware of the physical data layout
on underlying storage. The existing strategy makes the
optimization decision based on the logical file layout only.
The reason of this choice is that this strategy can minimize
the number of file system calls, as the processing overhead of
system calls is costly, and can balance the workload as well.
However, the physical data layout actually decides the access
locality and concurrency. The optimization decision based
on the logical file layout does not necessarily translate to

optimal physical locality and concurrency of accesses. The
proposed new strategy LACIO enhances the existing strategy
by taking the physical data layout into consideration. With
the support of noncontiguous file system calls, it still keeps
the overhead of system calls minimal. Furthermore, it rear-
ranges accesses for better access locality and concurrency,
and thus have a better matched I/O. The recent works in
log-like reordering of accesses and intermediate library of
rearranging accesses [2][22][46] have demonstrated the im-
portance and significant potential of arranging data accesses
in a proper manner. The primary goal of this research is to
bring intelligent access awareness to parallel I/O middleware
and collective I/O strategy to improve the parallel I/O system
performance for high-performance computing.

The rest of this paper is organized as follows. Section II
briefly reviews the parallel I/O software stack and the most
important optimization strategy, collective I/O, in parallel
I/O middleware. Section III introduces the idea, design
and implementation methodology of the proposed LACIO.
Section IV presents the experimental results of the proposed
strategy. Section V discusses important related works in
parallel I/O optimization and compares our work with ex-
isting works. Section VI concludes this study and discusses
potential future work.

II. MPI-IO, COLLECTIVE I/O AND TWO-PHASE
IMPLEMENTATION

In this study, we assume parallel applications are written
in MPI (Message Passing Interface) [14][28], the dominant
parallel programming model on all large-scale parallel ma-
chines, such as IBM Blue Gene/P and Cray XT5, as well
as on many clusters of various sizes. We briefly review the
MPI-IO, the I/O interface for parallel applications, and its
common implementation as a middleware sitting between
applications and the underlying parallel file systems in
this section. We also review the most critical performance
optimization strategy, collective I/O, in MPI-IO middleware
and its commonly adopted two-phase implementation.

MPI-IO is a subset of the MPI-2 specification
[14][26][28]. It defines an I/O access interface for parallel
applications. The primary motivation for MPI-IO specifica-
tion came from the observation that parallel I/O optimiza-
tions require two basic abstractions: the ability to define a set
of processes (MPI communicators), and the ability to define
complex data access patterns (MPI datatypes). MPI interface
has already equipped the ability for these two abstrac-
tions. Therefore, built upon communicators and datatypes
from MPI, the MPI-IO designers created an interface that
supports many parallel I/O operations and optimizations.
The implementation of MPI-IO is usually a middleware
connecting parallel applications and underlying various par-
allel file systems, providing the code-level portability across
many different machine architectures and operating systems.
ROMIO is a popular MPI-IO implementation [39][34]. It



provides an abstract-device interface called ADIO [40] for
implementing the portable parallel I/O API. It performs
various optimizations, including collective I/O and data
sieving, for common access patterns of parallel applications
[39].

Collective I/O is one of the most important I/O access
optimizations for parallel applications. It stands in contrast
to independent I/O, in which each process of a parallel
application issues I/O requests independently of all other
processes. Although independent I/O is a straightforward
form of I/O and is widely used in many applications, this
form of I/O is not recommended for parallel applications
because it does not capture the complete data access infor-
mation of a parallel application. The independent I/O can be
implemented directly with I/O system calls depending on
specific underlying file systems. However, the implemen-
tation has no idea of what other processes might do and
therefore have to service the I/O requests of each process
individually.

With collective I/O, requests from all processes of a
parallel application can be serviced together, allowing the
middleware to take advantage of correlations between those
requests. The motivation of collective I/O is several-fold.
First, collective I/O can filter overlapping and redundant
requests from multiple processes. Second, for many par-
allel applications, even though each process may access
several noncontiguous portions of a file, the requests of
multiple processes are often interleaved and may constitute
a large contiguous portion of a file together [39]. Third, the
collective I/O can reduce the number of system calls by
combining small and noncontiguous requests into large and
contiguous ones. Note that the collective I/O is a general idea
that exploits the correlations among accesses from multiple
processes of a parallel application and optimizes its I/O
accesses. It can be applied at many levels, such as disk level
[19], server level [37] or client level [39]. In this study, we
focus on parallel I/O middleware level, i.e. the MPI-IO level.
If the user chooses collective I/O semantics and provides
the entire access information of a group of processes to the
underlying MPI-IO middleware, the MPI-IO implementation
can improve I/O performance significantly by combining the
requests of different processes and servicing the combined
aggregate requests.

The most popular method of implementing collective I/O
is a two-phase strategy [35] (and its extension - generalized
two-phase I/O [41]). This strategy separates the servicing
of I/O requests into an I/O phase and data exchange phase
(or communication phase). Fig. 2 shows the strategy of a
two-phase collective I/O read for four processes. In this
example, we assume two processes participate in the I/O
phase (the processes participating the I/O phase are termed
as aggregators and the number of aggregators can be spec-
ified by users) and each aggregator has sufficient memory
for temporary buffer. The two-phase I/O implementation has

Figure 2. Collective I/O and Two-phase Implementation. Collective I/O
optimizes parallel I/O performance by combining the requests of multiple
processes and servicing the combined aggregate request. The two-phase
implementation strategy separates the servicing of I/O requests into an
I/O phase and data exchange phase (or communication phase). This figure
demonstrates the strategy of a two-phase collective I/O read for four
processes with two processes participating as aggregators.

a first-round of communication to let each aggregator know
the aggregated span of the I/O requests of all processes.
The implementation then partitions the aggregated span of
requests into multiple file domains with each aggregator
responsible for carrying out I/O requests for its own file
domain. This phase is called the I/O phase. In the data
exchange phase, each aggregator sends data to the requesting
processes, and each process receives its required data from
corresponding aggregators that fetch the data on behalf of
it.

III. LAYOUT-AWARE COLLECTIVE I/O (LACIO)
DESIGN AND METHODOLOGY

In this section, we present the idea and the design of
the Layout-Aware Collective I/O (LACIO) strategy. We
first present a motivating example, and then introduce the
new LACIO strategy. We also present the implementation
methodology of the LACIO and analyze its impact on I/O
accesses.

A. A Motivating Example

Fig. 3 demonstrates a representative example of current
collective I/O strategy and the data layout on file servers.
We assume to have four aggregators serving the I/O requests
from all processes of a parallel application collectively in
this example. We illustrate the access details and show the
relationship between I/O requests and the actual data layout
on file servers in this figure. The logical block number, i.e.
LB#, shows the position of I/O requests. The file server
number, i.e. S#, represents the file server where the requested
data reside on. We assume there are four file servers/storage
nodes. The data is assumed to be distributed across all
file servers with the most common round-robin data layout
strategy.



The current collective I/O strategy adopts a file domain
partitioning and request scheduling method by evenly parti-
tioning the aggregate request into equal-length sub-requests
based on the logical file layout. Each aggregator is then
responsible for carrying out the I/O request for its own file
domain. For instance, the aggregator 0 carries out the I/O
request for LB#0-2, while aggregator 1, 2 and 3 carry out
I/O requests for LB#3-5, LB#6-8 and LB#9-11 respectively.
The goal of this strategy is to balance the workload for each
aggregator, as the performance of a collective I/O will be
decided by the slowest aggregator. In addition, the partition-
ing method based on the logical file layout can minimize
the number of file system calls and the overhead involved.
However, since the file is striped across multiple server
nodes, this existing file domain partitioning and request
scheduling strategy would make each aggregator generates
many concurrent and burst requests to all file servers (not
the metadata server) simultaneously. Such a strategy without
being aware of the physical data layout could in turn
generate access contention and lose the physical access
locality. For instance, as shown in Fig. 5b with the detailed
communication and I/O pattern, the existing strategy leads to
file server 0 serving aggregator 0, 1 and 2 respectively with
one striping unit size of request, while file servers 1, 2 and
3 serving three different aggregators with one striping unit
size of request respectively. This access method loses the
access locality to physical storage and increases the access
contention. As demonstrated in the following subsection,
the proposed new LACIO strategy rearranges accesses to
increase the access locality and reduce the access contention.

Figure 3. A Representative Example of Collective I/O and Data Layout.
In this example, four aggregators serve a group of compute processes.
The data is distributed across four file servers following the round robin
layout strategy. The existing collective I/O strategy adopts a file domain
partitioning and request scheduling method by evenly partitioning the
aggregate request into equal-length sub-requests based on the logical file
layout with each aggregator responsible for carrying out the I/O request for
its own file domain.

B. LACIO Design, Methodology, and Analysis

1) LACIO Design: As shown in Fig. 3 and explained in
the previous section, a limitation of the current collective I/O
strategy and the implementation is that they are unaware
of the physical layout of data on file servers and storage
devices. The calculation of the span of the combined I/O
requests and the creation of the file domains are based on
the logical file layout only. Even though the file domain that
each aggregator is responsible for carrying out I/O requests
is logically contiguous, it does not translate to physical
contiguity, as which is decided by the layout strategy of the
underlying parallel file systems. We propose to incorporate
the physical layouts of data distribution among servers, the
information from parallel file systems, with parallel I/O
middleware, and rearrange file domain’s partition and the
requests from aggregators in a fashion that matches with
the physical layout on servers. We call this new collective
I/O methodology a Layout-Aware Collective I/O (LACIO)
strategy.

Following the previous example, Fig. 4 illustrates the
idea of the proposed LACIO strategy. The proposed strategy
rearranges the partitions of file domains and the requests of
aggregators such that: 1) the requests are grouped and need
as few file servers as possible to reduce access contention
and exploit better concurrency; 2) the requests are reordered
to be physically contiguous as much as possible to exploit
better locality.

Fig. 4a demonstrates how file domain partitions and
access requests are rearranged following the new LACIO
strategy with the previous example. Fig. 4b illustrates the
accesses of each aggregator after rearranging and reorder-
ing. These examples demonstrate that the LACIO strategy
rearranges requests of aggregators to have each aggregator
accesses data on file servers contiguously, and multiple
aggregators access file servers concurrently. In this design,
we assume that the data layout information can be obtained
from the API provided by the underlying parallel file sys-
tems. It is not unusual that parallel file systems provide
the interface to inquire the data layout on file servers, such
as in PVFS2 [7][32]. Note that the rearrangement here is
to change the requests that each aggregator carries out on
behalf of the processes. In other words, the rearrangement
changes the responsible portion of the aggregators and
the way the aggregators access data. It is critical to note
that the rearrangement does not exchange data themselves
among aggregators. Also, note that the I/O requests in this
example can be either reads or writes. The LACIO strategy
is designed for both I/O reads and writes.

2) LACIO Implementation Methodology: The implemen-
tation methodology of the proposed LACIO is not compli-
cated with the underlying parallel file system support. Since
LACIO is a collective operation over all processes that open
the file (associated with the file handle), the implementation



(a) Collective I/O with Layout Awareness

(b) Collective I/O with Layout Awareness After Reordering

Figure 4. Layout-aware Collective I/O (LACIO). This new LACIO strategy
incorporates the physical layouts of data distribution among servers and
rearranges file domain’s partition and the requests from aggregators in a
fashion that matches with the physical layout on servers. It is designed
to have each aggregator accesses data on file servers contiguously, and
multiple aggregators access file servers concurrently. The new LACIO
strategy reduces the access contention and improves the request locality.

obtains the data layout information (including the striping
width, striping factor, and layout strategy) via parallel file
systems API and then broadcast to all aggregators, instead
of letting each aggregator retrieve the data layout informa-
tion respectively. The obtaining of data layout knowledge
happens at the very first time a collective I/O occurs. The
data layout information is then cached in each aggregator.
Such a caching is safe as the data layout of a specific file
is determined when it is created and will be static except
deleted or explicitly changed.

After obtaining the layout knowledge, all aggregators
partition file domains and rearrange requests follow the
design in each collective I/O operation. Depending on the
number of aggregators configured and the striping factor,

three mappings between aggregators and file servers are
possible, including multiple-to-one, one-to-one, and one-to-
multiple mappings. The desired case would be the one-to-
one mapping, as shown in the previous examples, which
is similar to the software I/O forwarding layer currently
under active exploration of parallel I/O researchers. In the
case of multiple-to-one or one-to-multiple mapping, the
implementation can balance the load by considering the ratio
between the number of aggregators and the number of file
servers.

A common concern for the LACIO strategy is that it might
result in many file system calls and incur extra overhead,
as the partitioned requests are not logically contiguous
anymore. However, with the advanced parallel file system
development and the support of noncontiguous system call
access [11], the implementation can still reduce the num-
ber of system calls and the overhead incurred. As the
I/O requests of aggregators rearranged, the communication
between aggregators and compute processes (I/O client
processes) are changed correspondingly. This can be done by
exchanging the requests information among aggregators and
compute processes at the very beginning of each collective
I/O operation. Such information will be used to decide
how data is exchanged in the communication phase. Fig. 5
compares the communication and I/O pattern of the LACIO
strategy and the conventional strategy. It can be seen that the
new LACIO strategy groups accesses with the consideration
of data layout information and results in the accesses in a
neater and matched way.

3) LACIO Analysis: The proposed LACIO strategy might
raise an interesting question - why do we need all these
hassles by combining I/O requests from parallel processes
and then splitting and carrying out them? Note that, consid-
ering the noncontiguous accesses from multiple processes
of an application, the conventional strategy combines these
noncontiguous accesses and then split them in a logically
contiguous way. The new LACIO is essentially combin-
ing noncontiguous accesses and split them in a logically
noncontiguous way but with better physical locality and
reduced access contention. A special case would be, if the
underlying file system only utilizes one file server/storage
node, the proposed LACIO would have the same way of
combining noncontiguous accesses from multiple processes
and carrying out them contiguously as the conventional
strategy does. The reason why the new LACIO strategy
is desired and could be beneficial is several-fold. First,
this strategy still performs collective I/O, which means
the overlapping and redundant requests are still removed.
Second, the number of requests to the parallel file system
are still controlled by taking advantage of the noncontiguous
file system calls supported by advanced parallel file systems.
Third, the access rearranging and reordering can exploit
better locality and reduce access contention and thus achieve
better performance.



(a) LACIO Strategy

(b) Conventional Collective I/O Strategy

Figure 5. Communication and I/O Pattern: LACIO Strategy v.s. Con-
ventional Collective I/O Strategy. The new LACIO strategy results in I/O
accesses in a neater and better matched way.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We have performed experimental tests for the new LACIO
and compared it with the existing collective I/O strategy.
The experiments were conducted with several benchmarks
and one user-level checkpointing/restart application. We
first briefly describe the experimental environment and then
present the experimental testing results.

A. Experimental Setup

Our experiments were conducted on a 65-node Sun Fire
Linux-based cluster. This cluster is composed of one Sun
Fire X4240 head node, with dual 2.7 GHz Opteron quad-
core processors and 8GB memory, and 64 Sun Fire X2200
compute nodes with dual 2.3GHz Opteron quad-core pro-
cessors and 8GB memory. The head node has 12 500GB
7.2K-RPM SATA-II drives configured as RAID-5 system.
Each compute node has a 250GB 7.2K-RPM SATA hard
drive. All 65 nodes are connected with Gigabit ethernet.
The experiments were tested with MPICH2-1.0.5p3 release
and PVFS 2.8.1 file system on Ubuntu 4.3.3-5 system with

kernel 2.6.28.10. We configured PVFS2 with 32 I/O server
nodes. The rest of 32 nodes were used as client nodes.

B. Experimental Results of A Synthetic Benchmark

This set of tests were carried out with a synthetic bench-
mark to measure the performance of LACIO and the exist-
ing collective I/O strategy. This synthetic benchmark does
strided reads for each process, and the aggregated requests of
all processes are sequential reads over the file. We performed
a series of tests on the Sun Fire cluster to compare the
performance of LACIO and the existing strategy. The total
size of the data accessed by all processes are 64MB, 160MB,
320MB, 800MB and 4000MB respectively. The results are
shown in Fig. 6.

Figure 6. Comparison of LACIO and Existing Collective I/O with
Synthetic Benchmark Testing. The benchmark does strided reads for each
process, and the aggregated requests of all processes are sequential reads
over the file with varying the total amount of data accessed.

It can be observed that the LACIO strategy with layout
awareness could have a considerable impact on the perfor-
mance of parallel I/O system. The performance variation was
up to 48.8% and the average performance improvement was
nearly 38%.

C. Experimental Results of IOR Benchmark

Fig. 7 and Fig. 8 report the testing results with IOR-2.10.2
benchmark from Lawrence Livermore National Laboratory
[17]. In these experiments, we performed the test with 64
processes on 32 client nodes (client nodes are separate
from I/O server nodes) with half of them configured as
aggregators. We performed both interleaved reads/writes and
random reads/writes tests, and varied the file size from
64MB to 16GB. Fig. 7a and Fig. 7b report the bandwidth
of read and write testing respectively with the existing
collective I/O strategy and the proposed LACIO in the
random access test case. It can be observed that the LACIO
strategy can clearly improve the I/O access performance. The
performance improvement of read tests are more sensitive
to the new strategy, as it varied from 4.8% improvement to
74.1% improvement. The performance improvement of write



tests are less sensitive - the performance speedup varied from
11.3% to 38.4%. The average performance improvement for
read and write tests are 40.4% and 22.7% respectively.

(a) Reads

(b) Writes

Figure 7. Comparison of LACIO and Existing Collective I/O with IOR
Benchmark Testing with Random Accesses. The results are the reported
bandwidth of reads and writes respectively with the existing collective I/O
strategy and the new LACIO strategy and varying the total amount of data
accessed.

Fig. 8a and Fig. 8b report the bandwidth of read and write
testing respectively in the interleaved test case. While the
access pattern is quite different from the previous testing,
the LACIO strategy can overcome the impact of different
application access patterns as it rearranges and reorders
accesses, and improves the I/O access performance over
the existing strategy constantly. The average performance
improvement for read and write tests are 45.3% and 16.7%
respectively in this series of tests. The performance improve-
ment trend is close to the previous series of tests. The reads
are more sensitive to the optimization while the performance
improvement of writes is relatively stable in most cases.

As can be seen from these results, the LACIO strategy can
affect the IOR benchmark testing performance considerably.

(a) Reads

(b) Writes

Figure 8. Comparison of LACIO and Existing Collective I/O with IOR
Benchmark Testing with Interleaved Accesses. The results are the reported
bandwidth of reads and writes respectively with the existing collective I/O
strategy and the new LACIO strategy and varying the total amount of data
accessed.

The LACIO could improve the I/O bandwidth up to 74%,
38%, 112% and 28% for random reads, random writes,
interleaved reads and interleaved writes, respectively. The
average potential improvement of the LACIO strategy with
different file sizes was 40%, 23%, 45% and 16% for ran-
dom reads, random writes, interleaved reads and interleaved
writes respectively as shown in Fig. 9.

D. Experimental Results of User-Level Checkpointing Ap-
plication

Fig. 10 reports the results of a user-level checkpoint-
ing/restart application, where the user’s program explicitly
checkpoints the program data structures to the underlying
storage. The tests were carried out with 64 and 128 processes
respectively. The total checkpoint image size remains the
same as 6GB in total for all processes in each test. By
utilizing the new LACIO, the performance was improved
by 15% and 28% when tested with 64 and 128 processes



Figure 9. Average Bandwidth Improvement of LACIO

respectively. Note that, even though the total image size
remains the same, the performance varied with different
number of processes due to the different access contention
and request locality. However, in each case, the LACIO
strategy constantly improves the overall performance.

Figure 10. Application-level Checkpointing with Existing Collective I/O
and LACIO

V. RELATED WORK

Extensive studies have focused on improving parallel
I/O access performance at various levels. At the hardware
level, disk bandwidth has only improved at a very slow
pace, while the capacity has been increasing rapidly to
petabytes and even beyond. Research in software optimiza-
tions can be roughly classified into the areas of runtime I/O
libraries [26][39][6][41][30][37][19], parallel file systems
[7][9][38][42], caching, prefetching and data distribution
strategies[29][27][23][31][13][25][16][42][20].

A. Parallel I/O Runtime Library and File System Optimiza-
tions

There has been significant amount of research effort in
optimizing I/O performance using runtime libraries, such as
collective I/O [26][39], two-phase I/O [6], extended two-
phase I/O [41], data sieving [39], server-direct I/O [37] and

disk-directed I/O [19]. Recently, Zhang et. al. proposed to
find and match the I/O request pattern with the striping
pattern to make I/O resonance a common case [46]. Their
study demonstrated the great performance improvement with
considering proper I/O request arrangement. Ali et. al. pro-
posed a new I/O forwarding software layer sitting between
the MPI-IO and parallel file systems to ship the I/O calls to
dedicated I/O nodes and improves the scalability of parallel
I/O systems [1]. Iskra et. al. introduced an I/O forwarding
component in the ZeptoOS for petascale architectures such
as IBM Blue Gene systems [18]. All these strategies collect
and merge small requests into larger requests at the I/O
client/middleware/server level, or aggregates and ships I/O
calls to dedicated processes/nodes. This study addresses the
issues in the existing collective I/O and proposes a new
LACIO. It advances the state of the art in these areas.

Parallel file systems, such as Lustre [9], GPFS [38], PanFS
[45], PVFS [7], and PPFS2 [42], enable concurrent I/O
accesses from multiple clients to files. All these file systems
provide high bandwidth for large, well-formed parallel I/O
requests. In this study, we propose to reveal layout infor-
mation to parallel I/O middleware via the underlying file
system, which fosters a better integration of the parallel
I/O middleware and parallel file systems, the two major
components of parallel I/O systems, and improves the overall
parallel I/O performance.

B. Parallel I/O Caching and Prefetching

Many research efforts have also been devoted at caching
and prefetching optimizations for parallel I/O systems. Liao
et al. proposed collective caching at MPI-IO layer to con-
struct a global cache pool to enhance parallel I/O accesses
performance [23]. Nitzberg et al. proposed collective buffer-
ing [29], and Ma et al. proposed active buffering [27]
to boost the output performance of many scientific appli-
cations. Vilayannur et al. proposed discretionary caching
for parallel I/O to use compilation and runtime support to
bypass caching if the caching hurts the performance [43].
Eshel et al. designed a cluster file system cache named
Panache that exploits parallelism in many aspects of its
design and has been proven effective and scalable as a
parallel file system cache [12]. Several parallel or distributed
file systems, such as PanFS [45] and Ceph [44], also provide
client-side caching to improve file system performance.

Patterson et al. [31], Griffioen and Appleton [13] proposed
prefetching strategies using compiler, runtime, and access
pattern information. Various pattern based file prefetching
methods have been proposed [25][16][42] to improve I/O
performance of applications with regular data access. Many
other I/O prefetching strategies have been proposed in
both heuristic prediction based approaches and speculative
execution based approaches including Chang and Gibson’s
SpecHint [10] and Patterson’s informed prefetching TIP
[31]. Tran et al. proposed time series modeling to provide



efficient adaptive prefetching [42]. Recently, a more aggres-
sive pre-execution based prefetching [8], where a prefetching
thread runs ahead of main computing thread to prefetch
data, was introduced. Besides, a signature based prefetching
with post-execution analysis and runtime adjustment was
introduced in [3]. Blas et al. proposed multiple-level caching
and one-level prefetching for Blue Gene systems based on
ROMIO [5].

C. Data Layout and Access Optimization

In parallel file systems, file data is distributed among
multiple I/O servers and disks to provide higher degree
of parallelism. Parallel file systems, including Lustre [9],
GPFS [38], PanFS [45] and PVFS2 [7], implement a simple
striping data distribution function, that data is distributed
using a fixed block size in a round-robin manner among
available I/O servers and disks. Considering applications’ ac-
cess information and data layout information on file servers
to optimize accesses is possible at various levels including
application level, middleware level, and file system level.
At application level, many techniques have been developed
for accessing data in a way that improves disk access
parallelism by modifying application code [20]. The problem
is that these strategies are not transparent to developers
and often introduce extra programming burden. Library-
level optimizations, such as data sieving and two-phase
I/O, are helpful in reducing the number of requests to
the file system [4][39]. However, as demonstrated in this
study, when combined and optimized with physical layout
information of file systems, we can achieve an even better
result.

The data layout optimization at file system level primarily
focuses on providing variant data distribution strategies for
a variety of I/O workloads and user requirements. For
instance, PVFS2 [7] uses simple striping by default, and
provides two more data distribution strategies called variable
striping and two dimensional striping [33]. While many opti-
mizations exist, there lacks sufficient study that investigates a
better collective I/O strategy with aware of the physical data
layout. In this study, we propose a new LACIO strategy with
the goal of improving request locality and reducing access
contention, and have confirmed its benefits.

VI. CONCLUSION AND FUTURE WORK

With the tremendous advance in processor architectures
and the computational capability, I/O has been widely rec-
ognized as the bottleneck in high-performance computing
for many applications. In this study, we propose a new
collective I/O strategy, called Layout-Aware Collective I/O
(LACIO), to optimize parallel I/O performance and foster
a better integration of parallel I/O middleware and parallel
file systems. While both of the parallel I/O middleware and
parallel file systems technologies have made their success,
little has been done to investigate a layout-aware strategy for

collective I/O and a better integration of these two parallel
I/O subsystems to improve the overall performance.

The contribution of this study is three-fold. First, we
demonstrate that it is beneficial to integrate layout aware-
ness to collective I/O strategy, one of the most important
optimizations in parallel I/O systems. Second, we propose
a new LACIO to match the partitioning of file domains and
the request scheduling with physical layout to achieve a
better matched I/O form. This optimization is transparent to
users and benefits users’ applications automatically as long
as the collective MPI-IO API is used in the applications. This
new strategy improves request locality and reduce access
contention. In addition, although the existing parallel I/O
systems provide high bandwidth for simple, well-formed,
and generic I/O access characteristics, the performance
varies from application to application due to different access
patterns. The proposed new collective I/O strategy rearranges
and reorders accesses at MPI-IO layer and can potentially
overcome the impact of various application patterns on the
I/O performance. Third, as the experimental results demon-
strate, the new LACIO can clearly improve the parallel
I/O system performance. It is a promising new strategy
for collective I/O. Furthermore, this study reveals that an
API to obtain the relevant physical information about the
file system and data storage is essential to the performance
optimization of the overall parallel I/O systems and should
be standardized as much as possible. A standardized API
can also make these optimizations apply to non-proprietary
or vertically integrated systems.

In the near future, we plan to further explore the poten-
tial of layout awareness optimization in parallel I/O. For
instance, the layout aware strategy can rearrange accesses
and align them to locking boundary, which has been demon-
strated beneficial in [24]. We plan to continue exploring
the optimization opportunity in reducing both access and
locking contention to further improve parallel I/O system
performance.
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