
Data Access History Cache and Associated Data

Prefetching Mechanisms

Yong Chen 1

chenyon1@iit.edu

Surendra Byna 1

sbyna@iit.edu

Xian-He Sun 1, 2

sun@iit.edu
1 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA

2 Computing Division, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

ABSTRACT
Data prefetching is an effective way to bridge the increasing

performance gap between processor and memory. As computing

power is increasing much faster than memory performance, we

suggest that it is time to have a dedicated cache to store data access

histories and to serve prefetching to mask data access latency

effectively. We thus propose a new cache structure, named Data

Access History Cache (DAHC), and study its associated

prefetching mechanisms. The DAHC behaves as a cache for recent

reference information instead of as a traditional cache for

instructions or data. Theoretically, it is capable of supporting many

well known history-based prefetching algorithms, especially

adaptive and aggressive approaches. We have carried out

simulation experiments to validate DAHC design and

DAHC-based data prefetching methodologies and to demonstrate

performance gains. The DAHC provides a practical approach to

reaping data prefetching benefits and its associated prefetching

mechanisms are proven more effective than traditional approaches.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies

General Terms
Performance, Design, Verification

Keywords

Data access performance, Memory performance, Data prefetching,

Prefetching simulation, Cache memory

1. INTRODUCTION
While microprocessor performance improved by 52% a year until

2004 and has been increasing by 25% from then, memory speed is

only increasing by roughly 9% each year [9]. The performance

disparity between processor and memory keeps expanding. Deeper

memory hierarchies were introduced to bridge this gap [9]. Each

memory level closer to the processor is smaller and faster than the

next lower level. The rationale behind memory hierarchy design is

the principle of data locality, which states that programs tend to

reuse data and instructions which are accessed recently (temporal

locality) or to access those items whose addresses are close to one

another (spatial locality). However, when applications lack locality

due to a working set size larger than the cache and/or

non-contiguous memory accesses, cache memories are ineffective.

The data prefetching approach was thus proposed to reduce the

processor stall time when applications lack temporal or spatial

locality. As the name indicates, data prefetching is a technique to

fetch data in advance. The essential idea is to observe data

referencing patterns, then to speculate future references, and to

fetch the predicted reference data closer to the processor before the

processor demands them. Numerous studies have been conducted

and many strategies have been proposed for data prefetching [2-5][8]

[10-17][19][23]. These studies concluded that prefetching is a promising

solution to reducing access latency. The ultimate goal of data

prefetching is to reduce access delay. However, the performance

gain (how much we can reduce access delay) depends on many

factors, such as prefetch coverage and accuracy. While computing

(c) 2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SC07 November 10-16, 2007, Reno, Nevada, USA
(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

capability is still increasing with a much faster pace than memory

performance, more aggressive prefetching algorithms are desired,

which provide wider coverage and higher accuracy. In the

meantime, application features dominate referencing patterns.

There is no single universal prefetching algorithm suitable for all

applications. It is beneficial to support adaptive algorithms based

on data access histories.

As the processor-memory performance gap increases, application

features demand faster access to data, and hardware technologies

evolve, we argue that it is time to dedicate one cache for

prefetching to fully harvest benefits of aggressive, adaptive and

other data prefetching strategies. We thus propose a dedicated

prefetching cache structure, named Data Access History Cache

(DAHC), and present data prefetching mechanisms to address this

fundamental issue. The rest of this paper is organized as follows.

Section 2 introduces the proposed DAHC design and methodology

to serve multiple prefetching algorithms. Section 3 discusses our

simulation experiments and performance results in detail to verify

DAHC design and to demonstrate the potential performance

improvement brought by DAHC-based data prefetching. Section 4

reviews related works and compares them with our approaches.

Finally, we summarize our current work and discuss future work in

Section 5.

2. DATA ACCESS HISTORY CACHE
The main purpose of the proposed DAHC is to track recent data

access histories and maintain the correlations from different

perspectives. Those histories and correlations are valuable

information for data prefetching, especially for aggressive and

adaptive strategies. In existing work, only very limited correlations

are maintained, which limits the prefetching accuracy, coverage,

and aggressiveness. Moreover, they only target a specific

algorithm and have difficulty applying to diverse applications.

However, with advances of processor technologies and the rapidly

growing performance gap between processor unit and memory

unit, it would be beneficial to trade computing power for a

reduction in data access latency. With this idea, we propose to

dedicate a cache (DAHC) for tracking data accesses and letting the

processing unit perform comprehensive data prefetching.

Therefore, processor stall time due to data accesses could be

reduced and the overall system performance would be increased.

2.1 Design and Methodologies
The key idea of the DAHC is that history-based prefetching

algorithms must rely on correlations within either program counter

stream or data address stream, or both. Thus, the DAHC is

designed to have three tables: one data access history table (DAH)

and two index tables (PC index table and address index table). The

DAH table accommodates history details, while the PC index table

and the address index table maintain correlations from the PC and

data address stream viewpoints respectively. A prefetching

implementation can access these two tables to obtain the required

correlations as necessary. Figure 1 illustrates the general design of

DAHC and a high-level view of how it can be applied to support

various prefetching algorithms.

Figure 1. DAHC general design and high-level view

The detailed design of the DAHC is shown in Figure 2 through an

example. The DAH table consists of PC, PC_Pointer, Addr,

Addr_Pointer and State fields. PC and Addr fields store the

instruction address and data address separately. The PC_Pointer

and Addr_Pointer point to an entry where the last access from the

same instruction or the last access of the same address is located.

Therefore, PC_Pointer and Addr_Pointer link all accesses from the

instruction stream and data stream perspectives. This design offers

the fundamental mechanism to detect potential correlations and

access patterns. The State field maintains state machine status used

in prefetching algorithms. Various algorithms could occupy

different bits of this field for maintaining their own states. The

length of this field is implementation dependent, and the usage is

decided by prefetching strategies.

The PC index table has two fields, PC and Index. The PC field

represents the instruction address, which is a unique index in this

table. The Index field records the entry of the latest data access in

the DAH table from the instruction stored in the correspondent PC

field. It is the connection between the PC index table and the DAH

table. The address index table is similarly defined. For instance, in

Figure 2, the DAH table captured four data accesses, three of them

issued by instruction 403C20 (stored in the PC field) and one by

instruction 4010D8. The instruction 403C20 accessed data at

address 7FFF8000, 7FFF8004 and 7FFF800C in sequence, which

is shown through the Addr and PC_Pointer fields. The instruction

403C20 and 4010D8 are also stored in the PC index table, and the

corresponding Index field tracks the latest access from the DAH

table, which are entry 3 and 1 respectively. The address index table

keeps each accessed address and the latest entry, as shown in the

bottom left of the figure, thus connecting all the data accesses on

the basis of the address stream. Both PC index table and address

index table can be implemented in a variety of ways including a

fully associative structure and a set-associative structure. Notice

that DAHC design is general and it does not imply any restriction

to the system environment. It works in CMP or SMT environment,

as well as in multiple applications environment.

Figure 2. DAHC blueprint: PC index table, address index table

and DAH table

Figure 3 shows a snapshot of the DAHC after capturing more data

accesses. The PC index table, address index table and DAH table

are updated. The latest access entries for instruction 403C20 and

4010D8 become index 9 and 8, respectively. The address accessed

and the corresponding entry are updated in the address index table.

In this case, a complex structured stride pattern of (4, 8, 4, 8) is

detected for instruction 403C20 after examining address

7FFF8000, 7FFF8004, 7FFF800C, 7FFF8010 and 7FFF8018;

therefore, data at address 7FFF801C and 7FFF8024 could be

prefetched to memory in advance to avoid cache misses when

7FFF801C and 7FFF8024 are accessed as predicted. Such a

complex structured pattern is a general case of stride pattern.

However, the conventional stride prefetching approach [3] is unable

to detect it without the DAHC support. This example also shows

an address correlation between 100003F8 and 100003FA, which is

often observed and utilized for prediction in the Markov

prefetching algorithm [10] . The following section discusses data

prefetching methodologies based on the proposed DAHC.

Figure 3. DAHC snapshot

2.2 DAHC-based Data Prefetching
Mechanisms

2.2.1 Stride Prefetching
Stride prefetching predicts future references based on strides of

recent references. This approach monitors data accesses and detects

constant stride access patterns. Stride prefetching is usually

implemented with a Reference Prediction Table (RPT) [3][7] as

shown in Figure 4. RPT acts like a separate cache and holds data

reference information of recent memory instructions. Since stride

prefetching involves tracking the difference between two

consecutive accesses and predicting the next access based on the

stride, it is straightforward to design such an RPT table for stride

prefetching implementation. Each entry in RPT is the instruction

address, and it contains the last access address, the stride and the

state transition information to predict future accesses. The right part

of Figure 4 shows the state transitions. Once a pattern enters steady

state or remains at steady state, which means a constant stride is

found, a prefetch is triggered. The prefetched data address is simply

calculated by adding the stride to the previous address.

Although RPT is effective for capturing constant stride of data

accesses, it has several limitations. The first limitation is that RPT

only calculates the stride between two consecutive accesses. It is

hard to detect variable strides and impossible to find complex

patterns, such as a repeating pattern of length n (e.g., 2, 4, 8, 2, 4,

8, …). Those complex patterns are common in user-defined data

types. The second limitation is that RPT only tracks the last two

accesses and omits many useful history references; thus, the

accuracy in detecting patterns is relatively low. Those issues are

addressed well in our proposed DAHC structure. Since DAHC

tracks a large set of working histories, it is capable of detecting

variable strides. Those detailed histories can also be used to

improve the accuracy of stride detection. Moreover, DAHC makes

detection of complex structure patterns possible, as discussed in

previous examples.

Figure 4. Reference prediction table and state transition

diagram

Stride prefetching can be implemented with the DAHC as follows.

First, when a data access happens at monitoring level and is tracked

by added DAHC component and related logic (see Section 3.1 for

more details), the instruction address is searched for in the PC index

table. If the instruction address does not match any entry in the PC

index table, which means it is the first time that we see this

instruction address in current working window, no prefetching

action is triggered. If the instruction address matches one entry (it

will match only one entry because the entries in index tables are

unique), we follow the index pointer to traverse previous access

addresses and detect whether a strided pattern or a structured

pattern is present. If a pattern is detected, one or more data blocks

are prefetched to data cache or a separate prefetch cache. The

prefetching degree and prefetching distance can vary depending on

the actual implementation. Finally, a new entry with this data access

is created and inserted into the DAH table. The PC index table and

address index table are updated correspondingly. Notice that the

approach described above is enhanced stride prefetching with

detection of variable and complex stride patterns. The conventional

stride prefetching [3][7] can be implemented by detecting constant

strides only.

2.2.2 Markov Prefetching

Markov prefetching is another classical prefetching strategy. The

Markov prefetching algorithm builds a state transition diagram

through past data accesses. The probability of each transition from

one state to another state is calculated and updated dynamically.

The algorithm assumes the future data accesses might repeat the

histories. Therefore, once a new data access is captured, the future

references predicted from the state transition diagram are

prefetched in advance. For instance, Figure 5 shows the correlation

table and state transition diagram for the data access stream

7FFF8000, 1010FF00, 10B0C600, 7FFF8000, 7FF3CA00,

7FFF8000, 10B0C600 and 7FF3CA00.

Figure 5. Markov prefetching correlation table and state

transition diagram

The conventional Markov prefetching strategy treats all history

accesses with the same weight. In practice, we usually give the

highest weight to the latest access. This approach is essentially a

combination of Markov model and LAST model [6]. The rationale

is that the next data access is most probably the one that had

followed the current access in the nearest past. For example, if we

have a sequence of accesses to address A, B, A, C, D, A, then it is

likely that the next access is C. With DAHC support, Markov

prefetching can be implemented as follows. First, the data reference

address is searched for within the address index table. If the newly

accessed address does not match any existing entries, it is simply

inserted into the DAH table. The PC index and address index table

are also updated. If it matches an entry in the address index table,

then we insert it to the DAH table and walk through the DAH table

following the index and address pointer as shown in Figure 6. Each

address next to these entries we visit is a prefetching candidate

because each of this address was immediately accessed following

the present access address in histories. Similar as in stride

prefetching, different prefetching degree and prefetching distance

can be supported depending on the actual implementation. If the

prefetching degree is greater than one, we fetch multiple continuous

data addresses following these entries we visit. We can also increase

prefetching distance to initiate multiple visits. Continuing with the

previous example and as shown in Figure 6, if a new data access

address is 10B0C600, then a new entry is inserted into the DAH

table at index 7, and the address index table is updated. After we

walk through the DAH table following index 7, pointer 5 and

pointer 2, data at address 7FF3CA00 and 7FFF8000 are prefetch

candidates if we set prefetching degree as one and prefetching

distance as two. Notice that Markov prefetching builds state

transition based on data addresses. It does not need to use the state

field.

Figure 6. Markov prefetching with DAHC

2.2.3 Aggressive Prefetching Strategies
Since the DAHC maintains recent accesses in detail and the

correlation among them, it is more powerful than supporting

traditional prefetching approaches such as stride prefetching and

Markov prefetching. It can support many other history-based

prefetching strategies like more aggressive prefetching algorithms.

It is an easy task to implement aggressive strategies with the DAHC

because the DAHC is designed to support aggressive strategies

naturally. The Multi-Level Difference Table (MLDT) prediction

algorithm is such a representative aggressive strategy [21]. This

prediction strategy forms a difference table of depth d of recent data

accesses. Figure 7 demonstrates an example of the difference table.

If a constant difference can be found in the first depth, which means

a constant stride is found among data access histories, then the kth
future access from access Ar is predicted as *A A k Br k r= ++ ,

where B is the constant difference among accesses. Some

polynomial formula is used to predict the future access for general

cases. For example, if a constant difference is found in the third

depth, the future access is predicted as

* (1)* *1 22
k kA A k B C M Dr k r r r k

+
= + + ++ − − .

Here Mk = 2* (1) * (2)
6
k k k k− − + , where k = 1, 2…

Figure 7. Example of difference table

MLDT strategy is similar to existing stride prefetching but is more

aggressive since it searches references up to depth d. The stride

prefetching is the special case where depth equals one. In addition,

this method finds sets of repeating differences and ultimately finds

the actual pattern in the accessing structures with variable stride

data access patterns. For variable stride patterns, MLDT searches

for regularity among data references by finding a deeper difference

table. It can also be extended to find repeating sets of strides (e.g. 4,

8, 4, 4, 8, 4, 4, 8, 4…) at each level of difference table. Our

proposed DAHC provides an implementation approach for the

MLDT prefetching algorithm. First, when we see a data access at

monitoring level, we check this access’s instruction address with

the PC index table. We update the DAH, PC index and address

index tables as necessary. Second, we follow the index pointer and

walk through the DAH table to find out previous accesses. These

operations are similar as in stride prefetching case. The difference

between MLDT prefetching and stride prefetching is that multiple

level differences are calculated to detect if any constant stride,

variable stride or complex structure pattern exists in each level,

which means we perform a stride prefetching at each stride

difference level. If a pattern is detected at some level, we stop

going to further levels. If we continue to the further level, we

calculate the strides of next level and they become the strides we

deal with. Therefore, we always work with one level of stride

similarly as in the conventional stride prefetching case. Figure 3

shows an example where a complex structure pattern (4, 8, 4, 8) is

detected when we perform the MLDT prefetching with the DAHC.

2.3 Implementation Issues
The DAHC is straightforward and an effective prototype design of

a prefetching-dedicated structure. It is a cache for data access

information compared with conventional cache for instructions or

data. The proposed DAHC can be placed at different levels for

various desired data prefetching. For instance, it can be used to

track all accesses to first level cache and to serve as a L1 cache

prefetcher. It can also be placed at the second level cache and

serves as a L2 cache prefetcher only. The straightforward design

makes the implementation uncomplicated. The hardware

implementation of the DAHC should be a specialized physical

cache, like victim cache or trace cache. The PC index table and the

address index table can be implemented with any associativity

such as 2-way or 4-way. Since the index tables usually have less

valid entries than the DAH table, it is unlikely that some entry is

replaced due to a conflict miss. Even if a conflict miss occurs, it

does not affect the correctness except discarding some access

history. The DAH table can be implemented with a special

structure where history information can be stored row by row and

each row can be located by using its index. The logic to fill/update

the DAHC comes from the cache controller. The cache controller

traps data accesses at the monitored level and keeps a copy of the

access information in the DAHC. If the DAH table is full, a victim

entry will be selected and evicted out. The PC index table and the

address index table are updated as well for consistency. The

required DAHC size for normal applications’ working set is trivial.

For instance, if we suppose a DAHC with 1024 entries is

implemented, which is a reasonable window size for a regular

working set, then the required DAHC size is about 22KB. Our

experiments simulated DAHC functionalities, and the conclusion

is that DAHC is feasible in terms of hardware implementation.

3. SIMULATION AND PERFORMANCE
ANALYSIS
We have conducted simulation experiments to study the feasibility

of our proposed generic prefetching-dedicated cache, DAHC, for

various prefetching strategies. Stride prefetching, Markov

prefetching and MLDT aggressive prefetching algorithms were

selected for simulation. This section discusses simulation details of

DAHC-based data prefetching and presents the analysis results.

3.1 Simulation Methodology
The SimpleScalar simulator [1] was enhanced with data prefetching

functionality to demonstrate how different prefetching algorithms

can be implemented with the DAHC. The SimpleScalar tool set

provides a detailed and high-performance simulation of modern

processors. It takes binaries compiled for SimpleScalar architecture

as input and simulates their execution on provided processor

simulators. It has several different execution-driven processor

simulators, ranging from extremely fast functional simulator to a

detailed and out-of-order issue simulator, called the sim-outorder

simulator.

We chose the sim-outorder simulator for our experiments. Figure 8

shows our modified SimpleScalar simulator architecture. We

introduced two new modules: DAHC module and Prefetcher

module. The DAHC module simulated the functionality of the

proposed DAHC. Monitored data accesses were stored in the

DAHC. The DAHC cache controller is responsible for updating all

three tables. The Prefetcher module implemented the prefetching

logic and different prefetching algorithms. In this module, a

prefetch queue, similar to the ready queue of the original

sim-outorder simulator, was created to store prefetch instructions.

Prefetch instructions are similar to load instructions with a few

exceptions. The first exception is that the effective address of each

prefetch instruction is computed based on a data access pattern and

prefetching strategy instead of computing the address using an

integer-add functional unit. Another exception is that when prefetch

instructions proceed through the pipeline, it is not necessary to walk

through writeback and commit stages, and prefetch instructions do

not cause any exceptions (prefetch instructions are silent). These

similarities and differences provide us the guidelines to handle

prefetch instructions. The implementation of prefetching strategies

based on the DAHC follows the discussion given in Section 2.2.

Figure 8. Enhanced SimpleScalar simulator

In addition to these two new modules, several existing modules

were enhanced to incorporate the DAHC and data prefetching

functionality. First, the simulator core module was revised to

support the DAHC and Prefetcher modules. The pipeline was

modified to have prefetching logic. The first improvement is each

ready-to-issue load instruction is tracked to DAHC after the

memory scheduler checks data dependencies. The prefetcher

performs access pattern detection based on prefetching algorithms

and makes prediction for future data accesses once a pattern is

detected. Prefetch instructions are thus enqueued to prefetch queue.

Another improvement is in instruction issue phase. During this

phase, when we have available issue bandwidth, i.e. if there is idle

bandwidth after issuing normal instructions, the prefetch queue is

walked through and prefetch instructions are allocated with

functional units to fetch the predicted data to data cache. Second,

the memory module was modified to introduce a prefetch command

to the memory component in addition to a load and a store

command. The cache module was augmented with prefetch access

handlers. Prefetch accesses can be handled similarly to load

instructions except prefetch accesses do not cause any exceptions.

Some additional statistics counters were added for measuring the

effectiveness of prefetching.

Table 1. Simulator configuration

Issue width 4 way

Load store queue 64 entries

RUU size 256 entries

L1 D-cache 32KB, 2-way set associative, 64 byte

line, 2 cycle hit time

L1 I-cache 32KB, 2-way set associative, 64 byte

line, 1 cycle hit time

L2 Unified-cache 1MB, 4-way set associative, 64 byte

line, 12 cycle hit time

Memory latency 120 cycles

DAHC 1024 entries

Prefetch queue 512 entries

3.2 Experimental Setup
We use the Alpha-ISA and configure the simulator as a 4-way issue

and 256-entry RUU processor. The level one instruction cache and

data cache are split. We configure L1 data cache as 32KB, 2-way

with 64B cache line size. The latency is 2 cycles. L2 unified cache

is configured as 1MB, 4-way with 64B cache line size. The latency

of L2 cache is 12 CPU cycles. The DAHC is set as 1024 entries, and

the replacement algorithm is FIFO. Both index tables are simulated

with 4-way associative structures. We assume each DAHC access,

such as a lookup within index tables, costs one CPU cycle. This

should be a reasonable assumption for a small 4-way cache. We also

assume a traversal within DAH table costs one cycle. If a

prefetching algorithm needs to traverse multiple locations to make

predictions, it consumes multiple cycles. The prefetch queue is set

as 512 entries. Table 1 shows the configuration of our simulator.

3.3 Experimental Results

3.3.1 Matrix Multiplication Simulation
We first set up experiments to test the enhanced SimpleScalar

simulator with DAHC-based data prefetching functionality. The

prefetching strategy was set as the MLDT algorithm. Matrix

multiplication was selected as the application because it is widely

used in scientific computing and the correctness of its output results

is easy to verify. The size of matrices was set as 200 200× . We

randomly generated the input, conducted simulation and then

compared the output result with standard output to verify the

correctness of the enhanced simulator. The correctness was also

validated through checking the number of instructions (normal

instructions) issued by the original and the enhanced version. The

simulation results are shown in Table 2. The simulation time is the

elapsed time for simulation (how much time the simulator spent in

simulating). The results confirm that the enhanced SimpleScalar

simulator worked correctly, and cache misses were reduced

significantly through DAHC-based data prefetching.

Table 2. Simulation results for matrix multiplication

of

instructions

Simulation

Time

L1 cache

misses

L1

replacements

Original 622140213 12633 1031047 1030023

Enhanced 622140213 13469 28772 1084326

3.3.2 SPEC CPU2000 Benchmark Simulation
We conducted several sets of SPEC CPU2000 benchmark [24]

simulation for performance evaluation. Twenty-one of the total

twenty-six benchmarks were tested successfully in our

experiments. The other five benchmarks (apsi, facerec, fma3d,

perlbmk and wupwise) had problems working under the

SimpleScalar simulator (even in the original simulator) and did not

finish the test.

The target of the first set of experiments was to compare the

performance gain of traditional RPT-based stride prefetching

approach and enhanced DAHC-based stride prefetching approach.

Figure 9 shows the experimental results. The first bar in each test

represents the level-one cache miss rate of the base case in which

no prefetching was performed. The second and the third bar

represent the miss rate in the case of RPT-based conventional

stride prefetching and enhanced DAHC-based stride prefetching,

respectively. As shown in Figure 9, the traditional approach

reduced miss rates, and the enhanced approach reduced miss rates

further. The rationale comes from that, with DAHC support,

enhanced stride prefetching is able to detect complex structured

patterns, and in addition, the prediction accuracy was improved

through observing more histories. In contrast, many important and

helpful histories were not considered and not fully utilized in

traditional stride prefetching based on RPT.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

ammp applu art bzip2 crafty eon equake galgel gap gcc

L1
 C

ac
he

 M
is

s
R

at
e

Base Case Strided w ith RPT Strided w ith DAHC

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

gzip lucas mcf mesa mgrid parser sixtrack sw im tw olf vortex vpr

L1
 C

ac
he

 M
is

s
R

at
e

Base Case Strided w ith RPT Strided w ith DAHC

Figure 9. Stride prefetching with RPT vs. stride prefetching

with DAHC

Figure 10 compares L1 cache miss rates of all tested SPEC

CPU2000 benchmarks for the base case and three prefetching

cases. This set of experiments showed that DAHC-based data

prefetching worked well and the cache miss rates were reduced

obviously in most cases. Among the three prefetching strategies,

both stride and aggressive MLDT algorithms reduced a large ratio

of miss rates. The MLDT algorithm was slightly better than stride

prefetching because it searches more levels to find patterns among

accesses. The Markov prefetching performed worse than stride and

MLDT algorithms in most cases. One possible reason is that

Markov prefetching requires a large set of states to characterize

the probability of transition among accesses well. If the state

diagram space is limited, it is hard for the Markov prefetching to

guarantee the accuracy and coverage. Figure 11 illustrates L1

cache replacement rate in these tests. Cache pollution is

considered a side effect of prefetching. An incorrect prediction

brings a useless data block to cache and might replace useful data.

With DAHC support, the prefetching accuracy increases by taking

advantage of all available history information. As we can see from

Figure 11, the replacement rate only increased slightly in

DAHC-supported data prefetching.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

ammp applu art bzip2 crafty eon equake galgel gap gcc

L1
 C

ac
he

 M
is

s
R

at
e

Base Case Strided w ith DAHC Markov w ith DAHC MLDT w ith DAHC

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

gzip lucas mcf mesa mgrid parser sixtrack sw im tw olf vortex vpr

L1
 C

ac
he

 M
is

s
R

at
e

Base Case Strided w ith DAHC Markov w ith DAHC MLDT w ith DAHC

Figure 10. L1 cache miss rate of SPEC2000 benchmarks

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

am
mp

ap
plu art

bz
ip2

cra
fty eo

n

eq
ua

ke
ga

lge
l

ga
p

gc
c

gz
ip

luca
s

mcf
mes

a
mgri

d

pa
rse

r

six
t ra

ck
sw

im
tw

olf

vo
rte

x vp
r

L1
 R

ep
la

ce
m

en
t R

at
e

Base Case Strided w ith DAHC Markov w ith DAHC MLDT w ith DAHC

Figure 11. L1 cache replacement rate of SPEC CPU2000

benchmarks

Figure 12 shows the overall IPC (Instructions Per Cycle)

improvement brought by three prefetching strategies: stride,

Markov and MLDT prefetching based on DAHC. The

experimental results demonstrated that the IPC value was

improved considerably in most cases. The figure also reveals that

even though MLDT achieved the best cache miss rate reduction in

almost all cases, the IPC improvement was not always best. The

stride prefetching outperformed the MLDT in the applu, crafty,

gcc, gzip, lucas, mcf, parser, swim, twolf and vpr benchmarks.

This is because MLDT involves more prefetching overhead for its

aggressiveness due to more DAHC accesses. When we measured

the overall system performance gain in IPC value, it paid for its

additional overhead compared to stride prefetching. Another

interesting fact shown in Figure 12 is that Markov strategy

outperformed the other two in the bzip2, eon and vortex

benchmarks. These facts confirmed that different strategies are

desired for different applications to obtain the best prefetching

benefits. It is necessary to support diverse algorithms and adapt to

them dynamically based on distinct application features, and our

proposed DAHC provides the essential structure support for

adaptive strategies. Algorithm designers can utilize DAHC

functionalities to come up with and implement adaptive

algorithms.

0

0.5

1

1.5

2

2.5

3

3.5

4

ammp applu art bzip2 crafty eon equake galgel gap gcc

IP
C

Base Case Strided with DAHC Markov with DAHC MLDT with DAHC

0

0.5

1

1.5

2

2.5

3

3.5

4

gzip lucas mcf mesa mgrid parser sixtrack swim twolf vortex vpr

IP
C

Base Case Strided with DAHC Markov with DAHC MLDT with DAHC

Figure 12. IPC value of SPEC CPU2000 benchmarks

simulation

4. RELATED WORK
There are extensive research efforts in data prefetching area. Data

prefetching is frequently classified as software prefetching and

hardware prefetching [22]. Software prefetching instruments

prefetch instructions to the source code either by a programmer or

by a complier during the optimization phase. Recent work in helper

threads [19], software-based speculative precomputation [12] [17] and

data-driven multithreading [18] are such examples. The techniques

include simple prefetching, unrolling the loop and software

pipelining [22]. Software prefetching is usually used for large

amount of loops. Such loops are very common in scientific

computation, and these loops often exhibit poor cache utilization

but have predictable memory-referencing patterns, and thus provide

excellent prefetching opportunities.

Hardware-based prefetching does not require modifications to

binary or source code and can benefit directly existing binary code.

There is no need for programmer or compiler’s intervention.

Commonly used hardware prefetching techniques include

sequential prefetching, stride prefetching and Markov prefetching.

Sequential prefetching [4][5] fetches consecutive cache blocks by

taking advantage of locality. The one-block-lookahead (OBL)

approach automatically prefetches the next block when an access of

a block is initiated. However, the limitation of this approach is that

the prefetch may not be initiated early enough prior to processor’s

demand for the data to avoid a processor stall. To solve this issue, a

variation of OBL prefetching, which fetches k blocks (called

prefetching degree) instead of one block, is proposed. Another

variation is called adaptive sequential prefetching, which varies

prefetching degree k based on the prefetching efficiency. The

prefetching efficiency is a metric defined to characterize a

program’s spatial locality at runtime. The stride prefetching

approach [3] observes the pattern among strides of past accesses and

thus predicts future accesses. Various strategies have been proposed

based on stride prefetching, and these strategies maintain a

reference prediction table (RPT) to keep track of recent data

accesses. RPT provides a practical approach to implement stride

prefetching, but the limitation is that only constant strides are

recognizable. To capture repetitiveness in data reference addresses,

Markov prefetching [10] was proposed. This strategy assumes the

history might repeat itself among data accesses and build a state

transition diagram with states denoting an accessed data block. The

probability of each state transition is maintained so that the most

probable predicted data are prefetched in advance and the least

probable predicted data references can be dropped from prefetching.

Other recent efforts in hardware prefetching include Zhou’s

dual-core execution (DCE) approach [23], Ganusov et al’s future

execution (FE) approach [8], Sun et al’s data push server

architecture [21] and Solihin et al.’s memory-side prefetching [20].

DCE and FE were proposed specifically for multi-core architecture.

They use idle cores to pre-execute future loop iterations to warm up

cache (bring data to cache in advance). The data push server

architecture utilizes a separate processing unit such as a separate

core to conduct heuristic prefetching. The memory-side

prefetching approach uses a memory processor residing within

main memory to observe data access histories and prefetch data

proactively upon prediction. It is usually distinguished as push

based prefetching from traditional pull based prefetching.

Without the benefit of programmer or compiler hints, the

effectiveness of hardware prefetching largely relies on the accuracy

of prediction strategies. Incorrect prediction brings useless blocks

into cache, consumes memory bandwidth and might cause cache

pollution. To increase prefetching accuracy and coverage, hardware

prefetching strategies should be more aggressive. On the other hand,

it is desired that data prefetching could support various algorithms

and make dynamic selections because patterns are decided by

application features and different prefetching algorithms are

required for assorted applications. Our proposed generic and

prefetching-dedicated DAHC cache was designed to resolve these

issues. There are a few recent efforts in this area. Nesbit and Smith

proposed a global history buffer for data prefetching in [14] and

[15]. The similarity between their work and our work is that both

attempt to facilitate data prefetching with a single structure. Their

approach has demonstrated the feasibility of supporting different

prefetching algorithms and achieved considerable performance

gains. However, our work has substantial differences with theirs.

First of all, we focus on providing a generic and dedicated cache for

prefetching purposes and we argue that such a generic cache is a

must to fully achieve prefetching benefits that hide access delay.

Second, the global history buffer scheme is unable to support

various algorithms simultaneously at runtime, and therefore,

switching to different algorithms adaptively is impossible. Our

work fully supports many history-based algorithms, as well as

adaptive approaches, because we maintain two stream viewpoints

concurrently. Third, we focus on supporting both algorithms’

adaptability and aggressiveness. We believe that this strategy will

help researchers fully utilize prefetching advantages. To our best

knowledge, there is no other work targeting these directions.

Another work closely related to this study is the instruction pointer

based prefetcher developed by Intel [7]. The IP prefetcher is a

RPT-like prefetcher; thus, it suffers the limitation that it only works

for constant stride prefetching. Nevertheless, the Intel IP prefetcher

provides us helpful guidelines in implementing the DAHC in

hardware.

5. CONCLUSIONS AND FUTURE WORK
As memory performance lags far behind processor speed, data

access delay has a severe impact on overall system performance.

This study targeted to resolve this issue through fully exploiting

data prefetching benefits with a generic and prefetching-dedicated

cache. Our main contributions in this study include: 1) introducing

a novel concept of a prefetching-dedicated cache considering both

hardware technologies and application feature trends; 2) providing

the design of a prefetching cache structure DAHC, and simulating

its functionalities with an enhanced SimpleScalar simulator; and 3)

presenting DAHC-associated data prefetching methodologies and

demonstrating its support for prefetching algorithms with three

representative examples, stride prefetching, Markov prefetching

and an aggressive prefetching algorithm, MLDT algorithm. Our

simulation experiments showed that the DAHC is feasible and that

DAHC-based data prefetching achieved considerable cache miss

rate reductions and IPC improvements.

We have demonstrated the power of the DAHC in supporting

diverse prefetching algorithms in this study. In our future research,

we plan to extend this work in various aspects. One of them is

adapting to different prediction algorithms based on the data

requirements of applications and making such decisions

dynamically at runtime. We plan to define efficiency criteria for

prefetching algorithms and to provide feedback for different

algorithms and then to choose the best algorithm at runtime.

Another of our future works will be to devise even more

comprehensive prefetching strategies to further explore the

DAHC’s potentials.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their helpful

comments and the shepherd for providing detailed and valuable

suggestions. This research was supported in part by National

Science Foundation under NSF grant EIA-0224377, CNS0509118,

and CCF-0621435. Fermi National Laboratory is operated by Fermi

Research Alliance, LLC under Contract No.

DE-AC02-07CH11359 with the United States Department of

Energy.

7. REFERENCES
[1] D.C. Burger, T.M. Austin and S. Bennett. Evaluating Future

Microprocessors: the SimpleScalar Tool Set. University of

Wisconsin-Madison Computer Sciences Technical Report

1308, July, 1996.

[2] J.B. Carter and et. al. Impulse: Building a Smarter Memory

Controller. In Proc. of the 5th International Symposium on

High Performance Computer Architecture, 1999.

[3] T.F. Chen and J.L. Baer. Effective Hardware-Based Data

Prefetching for High Performance Processors. IEEE Trans.

Computers, pp. 609-623, 1995.

[4] F. Dahlgren, M. Dubois, and P. Stenström. Fixed and Adaptive

Sequential Prefetching in Shared-memory Multiprocessors. In

Proc. 1993 International Conference on Parallel Processing,

pp. I56-I63, 1993.

[5] F. Dahlgren, M. Dubois, and P. Stenström. Sequential

Hardware Prefetching in Shared-Memory Multiprocessors.

IEEE Trans. on Parallel and Distributed Systems, Volume 6,

Issue 7, pp.733-746, 1995.

[6] P. Dinda, D. O'Hallaron. Host Load Prediction Using Linear

Models. Cluster Computing, Volume 3, Number 4, 2000.

[7] J. Doweck. Inside Intel Core Microarchitecture and Smart

Memory Access. Intel White Paper, 2006.

[8] I. Ganusov and M. Burtscher. Future Execution: A Hardware

Prefetching Technique for Chip Multiprocessors. In Proc. of

the 14th Annual International Conference on Parallel

Architectures and Compilation Techniques, 2005.

[9] J. Hennessy and D. Patterson. Computer Architecture: A

Quantitative Approach. The 4th edition, Morgan Kaufmann,

2006.

[10] D. Joseph and D. Grunwald. Prefetching Using Markov

Predictors. In Proceedings of the 24th Annual Symposium on

Computer Architecture, Denver-Colorado, pp 252-263, June

2-4 1997.

[11] A. C. Klaiber and H.M. Levy. An architecture for

software-controlled data prefetching. SIGARCH Comput.

Arch. News 19, 3 (May), 43-53, 1991.

[12] S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and J.

Shen. Post-Pass Binary Adaptation Tool for Software-Based

Speculative Precomputation. In Proceedings of ACM

SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’02), 2002.

[13] W.-F. Lin, S. K. Reinhardt and D. Burger. Reducing DRAM

latencies with an integrated memory hierarchy design. In

Proc. of the 7th International Symposium on High

Performance Computer Architecture, pages 301.312, Jan

2001.

[14] K. J. Nesbit and J. E. Smith. Prefetching Using a Global

History Buffer. In Proc. of the 10th Annual International

Symposium on High Performance Computer Architecture

(HPCA-10), Madrid, Spain, Feb. 2004: pages 96-106.

[15] K. J. Nesbit and J. E. Smith. Prefetching Using a Global

History Buffer. IEEE Micro, 25(1), pp90-97, 2005.

[16] D.G. Perez, G. Mouchard and O. Temam. MicroLab: A Case

for the Quantitative Comparison of Micro-Architecture

mechanisms. In Proc. of the 37th International Symposium on

Microarchitecture, 2004.

[17] M. Rodric and et. al. Compiler Orchestrated Pre-fetching via

Speculation and Predication. In Proc. of the 11th International

Conference on Architectural Support for Programming

Languages and Operating Systems, 2004.

[18] A. Roth and G. S. Sohi. Speculative data-driven

multithreading. In Proc. of the 7th International Symposium

on High Performance Computer Architecture, 2001.

[19] Y. Song, S. Kalogeropulos and P. Tirumalai. Design and

Implementation of A Compiler Framework for Helper

Threading on Multi-Core Processors. In Proc. of 14th

International Conference on Parallel Architectures and

Compilation Techniques, 2005.

[20] Y.Solihin, J.Lee and J.Torrellas. Using a User-Level Memory

Thread for Correlation Prefetching. In Proceedings of 8th

International Symposium on Computer Architecture, 2002.

[21] X.H. Sun, S. Byna and Y. Chen. Improving Data Access

Performance with Server Push Architecture. In Proc. of the

NSF Next Generation Software Program Workshop in

IPDPS’07, 2007.

[22] S. P. VanderWiel and D. J. Lilja. When caches aren't enough:

Data prefetching techniques. IEEE Computer, 30(7):23--30,

Jul 1997.

[23] H. Zhou. Dual-Core Execution: Building a Highly Scalable

Single-Thread Instruction Window. In Proc. of the 14th

International Conference on Parallel Architectures and

Compilation Techniques, 2005.

[24] Standard Performance Evaluation Corporation, SPEC

Benchmarks, http://www.spec.org/

