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Abstract—Two camps of file systems exist: parallel file systems
designed for conventional high performance computing (HPC)
and distributed file systems designed for newly emerged data-
intensive applications. Addressing the big data challenge requires
an approach that utilizes both high performance computing and
data-intensive computing power. Thus, HPC applications may
need to interact with distributed file systems, such as HDFS. The
N-1 (N-to-1) parallel file write is a critical technical challenge,
because it is very common for HPC applications but HDFS does
not allow it. This study introduces a system solution, named
SCALER, which allows MPI based applications to directly access
HDFS without extra data movement. SCALER supports N-1
file write at both the inter-block level and intra-block level.
Experimental results confirm that SCALER achieves the design
goal efficiently.

Keywords—Parallel I/O, Distributed file systems, Optimization,
HDFS

I. INTRODUCTION

A. Two Camps of Large-scale Parallel Processing Systems

Supercomputers (e.g. the IBM Blue Gene system) [1] and
MapReduce [2] based datacenters (e.g. Hadoop powered cloud
computing systems) represent two different camps in the
field of large-scale parallel processing. Many terms exist to
illustrate their differences, such as parallel computing system
versus distributed computing system, scale-up system versus
scale-out system, or HPC system versus datacenter or Cloud
computing system. In this paper, we use the terms HPC system
and datacenter, respectively, to represent these two types of
parallel processing architectures. These systems have evolved
from separate application domains, and have very different
strengths.

HPC systems are mainly used for large-scale computation-
intensive applications, such as scientific simulations. These
applications create many threads or processes to simulate
massive components or solve massive subtasks. As these
threads and processes frequently interact with each other,
an HPC system consists of many specially manufactured
processing cores that are tightly coupled with high-speed
multi-dimensional networks. The corresponding programming
models are based on message passing interface (MPI) [3]
or multithreading implementations (e.g. OpenMP) [4] for
efficient data sharing and interaction among processes/threads.
The underlying storage system supporting HPC application is
usually segregated from the computing cores. HPC storage
systems utilize parallel file systems (PFS), e.g. PVFS2 [5],
GPFS [6], and Lustre [7], to manage massive disks that are

remotely accessed through the network. HPC systems are
well-suited to computation-intensive workloads but often have
difficulties coping with data-intensive applications.

On the other hand, datacenters are designed for large-
scale data processing applications, such as the massive In-
ternet services and statistical data analysis. For these data
oriented applications, the subtask partitioning is based on data
partitioning. The subtasks are loosely coupled and relatively
independent of each other; thus, inter-subtask message passing
and synchronization are often not required. This programming
model is referred to as embarrassingly parallel programming
and is well supported by MapReduce frameworks like Hadoop.
To this end, a datacenter usually consists of many commodity
computer nodes that are connected with regular local area
networks. Each node has local disks that are utilized by the
cluster storage system; thus, the computing system is co-
located with the storage in the same cluster. These clusters are
managed by distributed file systems (DFS), e.g. GoogleFS [8]
and HDFS [9]. One major feature that DFS has but PFS
lacks is data locality — with data location information, the
scheduler is able to distribute tasks onto compute nodes where
the required data reside.

B. The N-1 Parallel File Write from MPI Applications to
HDFS

Many HPC applications are data-intensive, such as data
mining and checkpointing, or have data-intensive phases, such
as the database preparation phases before DNA sequence
searches [10] and the data dumping phases at the end of
scientific simulations. As mentioned above, HPC systems
lack a datacenter’s efficiency in handling data-intensive work-
loads [11]. Big data applications require the linkage of high
performance computing and data processing power. There-
fore, there is a desire to run data-intensive HPC applica-
tions on datacenters [12]. Thus, the paradigm “HPC in the
Cloud/datacenter” is getting more and more attention under
this context. YARN [13] and Mesos [14] represent this trend
of supporting various workloads including both MPI and
MapReduce on a shared cluster. However, the HPC-datacenter
merge has many difficulties, due to some semantic gaps.
One critical obstacle is that their underlying file systems
support different levels of parallelism for writing files. In
DFS and PFS, a common strategy is that large data files
are partitioned into fixed-size blocks and those blocks are
stored onto multiple storage nodes (e.g., Datanodes in HDFS
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and storage nodes in PVFS2). We categorize the data access
parallelism in such parallel I/O systems into three categories:
inter-file, inter-block, and intra-block parallelism, illustrated
in Fig. 1. Inter-file parallelism represents the N-N parallel file
access, where N processes access N files and each process
has one independent file for itself. Both inter-block and intra-
block parallelism are of N-1 parallel file access where N
processes share one file and read/write different parts of that
file concurrently.

In terms of data write, the problem is that all the three types
of parallelism are common for HPC applications but HDFS
only supports the first type — inter-file parallel write.

Due to this limit, the following performance characteristics
are observed. For N-N file writes, each process writes its
own file and there is no file-level lock contention. As the
number of processes or the number of Datanodes increases, the
aggregated bandwidth grows almost linearly. However for N-1
file writes, N processes share one file and compete for the file-
level lock. Thus for a given file in HDFS, only one process can
get the lock and successfully open the file in WRITE mode;
any other requests are rejected. In other words, parallel file
write is not supported. The HDFS N-1 write is sequential and
its performance does not increase with the system scale.

HPC relies on data sharing and communication extensively.
N-1 file writes are a must for HPC applications. The poor
performance of HDFS in N-1 file writes motivates this study.
We propose SCALER — a solution to enable and optimize
MPI based N-1 parallel file writes on HDFS (the word
SCALER is short for “SCalable pArallel fiLE wRite.”)

C. SCALER: Enabling and Optimizing Parallel File Write in
HDFS

As mentioned in the previous subsection, HDFS only sup-
ports inter-file parallel writes. SCALER improves upon this
by adding HDFS inter-block and intra-block parallel file write
support. To enable inter-block parallel write, where client
processes share files but not blocks, multiple processes must
be allowed to obtain the same write lock for a shared file. We
redesigned the lock control mechanism in HDFS to achieve
this. Also to ensure the correct logical order of blocks in a
file, we also designed a metadata management mechanism that
allows the scenarios where multiple processes commit multiple
block metadata entries concurrently. To enable intra-block
parallel write, where multiple processes concurrently write
a given block, we also need to handle the block-level write

contention, besides the above lock and metadata management.
We designed the block aggregation mechanism. It is similar
to the Collective I/O scheme in MPI-IO [15], but specially
adapted to HDFS architecture; the algorithm is aware of block
locality during aggregation.

The SCALER I/O scheme requires two major parts of
implementation — the client side in MPI-IO and the server
side in HDFS. The client implementation in MPI-IO is an
ADIO driver [15] that performs a selection algorithm that
assigns aggregators to target blocks and implements client-side
block aggregation. On the HDFS server, the above mentioned
lock control and metadata management are implemented.

SCALER provides two types of parallel file write functions:
synchronous and asynchronous. The basic synchronous func-
tion efficiently utilizes the parallel architecture and improves
the overall I/O bandwidth. To reduce the I/O response time,
an asynchronous parallel file write function is designed and
implemented which handles all data marshaling and parallel
writes in the background. In this paper, by response time, we
mean the time between client side’s I/O being issued and the
I/O function call being returned.

This implementation is evaluated with various experiments
to confirm our contributions in:

1) Scalable parallel file write performance. The overall
HDFS bandwidth of parallel N-1 file writes should
increase linearly with the number of Datanodes.

2) Reducing I/O response time. By moving inter-
Datanode data exchange to the background, our opti-
mized asynchronous parallel write function should re-
spond fast and works efficiently in HDFS.

3) Effective buffer for burst write workload. In the
asynchronous write mode, SCALER buffers data locally
in the requests’ hosting Datanodes. This mechanism
creates an effective burst write buffer for HDFS.

The rest of this paper is organized as follows. In Section II,
we first discuss the key design considerations, design de-
tails, and implementation of SCALER, including lock sharing
mechanism, synchronous and asynchronous data write, and
metadata management. Section III presents the evaluation
results to confirm the effectiveness of our design. Section IV
presents the related work. Finally, Section V concludes this
paper.
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II. DESIGN AND IMPLEMENTATION

Subsection II-A introduces the essential design consider-
ations; then Subsection II-B introduces the redesign of the
file lock control that enables lock sharing among multiple
client processes. The synchronous and asynchronous parallel
file write are introduced in Subsection II-C. Subsection II-D
describes the metadata management and Subsection II-E dis-
cusses some important notes on the implementation.

A. Design Considerations

Before presenting the details of the design and implemen-
tations, we discuss some important considerations that led to
this design. MapReduce is known as an effective batch data
processing system. It transparently supports embarrassingly
parallel processing, where there is no dependency among
peer subtasks. The parallel file write functionalities provided
by popular distributed file systems are also “embarrassingly”
simplistic. In HDFS, parallel write to a shared “HDFS file” is
simply not allowed. For parallel write, multiple tasks of the
same MapReduce job must write into multiple subfiles of a
directory. A task needs to obtain the write lock of a file in order
to write onto it and only one task can hold the lock at any given
time. While a file is being written, other attempts to write or
to update the file will be rejected immediately. As a result,
to support parallel write on a shared file, including inter-block
and intra-block writes, the default HDFS must be modified. As
mentioned briefly in Section I, inter-block parallelism requires
the modified lock control and metadata management. Besides
these modifications, the intra-block writes also require extra
block aggregation techniques.

In HDFS deployments, HDDs are the dominant storage
devices. HDDs perform well for contiguous data accesses but
poorly for non-contiguous ones. To avoid non-contiguous data
writes, HDFS utilizes streaming write for all data writes and
disables the “offset seek” function for files opened in WRITE
mode. With a streaming write method, the bytes are written in

sequence. Because multiple streaming writes on the same file
are not allowed in Java or HDFS, SCALER must transparently
aggregate a data block into to an assigned aggregator, which
will then save the block onto HDFS.

Furthermore, the SCALER design adopts a client-side col-
lective I/O approach that is similar to the Collective I/O
scheme in MPI-IO. Since the underlying I/O modules do not
allow parallel write to HDFS blocks, the aggregation methods
need to be aware of an HDFS file’s block partition scheme. In
other words, the data partitioning among aggregators should
be aligned with the target file’s block partition on HDFS.

HDFS provides a block location retrieval service. This is
because MapReduce’s task scheduling is data locality aware
and always tries to schedule a task on the Datanode where
the target data reside. However, in HPC systems, parallel file
systems provide a simple file interface to the applications and
hide all the details of underlying nodes and disks management.
As a result, the default Collective I/O implementation does
not pay attention to the locality of the aggregator processes
because the storage server nodes are considered remote. Our
previous work [16] has recognized this problem. To further
efficiently support parallel write in HDFS, SCALER’s I/O ag-
gregation algorithm takes the block location into consideration
and selects the aggregation destination properly to achieve
system load balance and minimize the amount of cross-node
data migration.

B. The Lock Sharing Mechanism Redesign

To allow multiple client processes to open and write a shared
file, the system needs to allow multiple processes to acquire
the write lock to a single file at the same time. Thus, the
first step of our work is to add a new write lock management
mechanism for MPI based applications.

When multiple MPI processes open a shared HDFS file in
WRITE mode, HDFS receives multiple requests to acquire
the write lock of that file. For the first request that arrives,



the Namenode initializes the write lock token, performs the
open operations, and returns the lock to the process. After that,
requests from consequent processes receive a response which
contains the same write lock that it sent to the first process.
For each file that is being opened for write, Namenode also
keeps a counter. Every time a new process requests to open
the file in WRITE mode, the counter will increase by one. On
the other hand, whenever a process closes a file, Namenode
decreases the corresponding counter by one and checks the
counter’s value. If it is zero, which means, no process is still
using the file, Namenode closes it; otherwise, Namenode keeps
the file open.

C. Synchronous and Asynchronous Write Functions

Typical I/O systems like POSIX, MPI-IO, etc., support two
types of I/O operations: synchronous and asynchronous I/O
operations, which are also called blocking and non-blocking
I/O. Under synchronous I/O, the requesting process will be
blocked until the completion of the I/O function call that
means the completion of the actual I/O operation. Asyn-
chronous I/O allows the requesting process to continue after
submitting the request, and after that the actual I/O operation
can be conducted at a later time and possibly overlap with the
computation.

These two different I/O functions can satisfy different user
needs. When the synchronous write function returns, the data
are in the right place in HDFS and can be safely read out
by other processes. Thus, synchronous I/O is well-suited
to scenarios that require real-time data consistency where
the consequence reads will arrive immediately or very soon
after the writes on the same data finish. When there is no
requirement of real-time data read back, programmers could
choose to use asynchronous I/O to get optimal response time
for their data writes. The actual data writes and reorganization
can be done later. To fully satisfy HPC application usage,
we implemented both of these two types of I/O operations
to bridge MPI-IO and HDFS.

1) Synchronous Data Write: For synchronous I/O, a two-
phase I/O technique is adopted and illustrated in Fig. 2. The
basic idea is to reorganize data among processes so that each
data block only has one process writing it and the block-
level contention is eliminated. For each conflict block to be
written, the system selects a process as its aggregator (Phase
1.1) before any data movement. Then, all the small data pieces
written to that block will be sent to an aggregator (shown as
Phase 1.2). After the aggregator finishes gathering all the data
for that block, it enters Phase 2 where it will save the block
onto HDFS. Each of writers in Phase 2 conducts independent
block writing. Therefore, the key design element is Phase 1
that decides the target aggregator for each written data pieces
and requires a carefully designed algorithm.

Aggregator Selection Algorithm. The aggregator selection
algorithm balances block distribution among nodes and min-
imizes the amount of data movement. Due to the nature of
parallel task execution, the slowest task usually determines

Algorithm 1 Block Aggregation Selection
Terminology
A(i, j) is size of inter-node data exchanged if node i is
selected as the aggregator for block j.
Threshold q is the maximum number of allocated blocks on
each node.
B is number of blocks.
N is number of nodes.
M(i) is number of allocated blocks on node i.
S(j) is the assigned node id for block j.
Algorithm
Calculate A(i, j) based on access pattern, partition matrix
A by rows:

∑
V (i) =

∑∑
A(i, j)

q ← dB/Ne
M(i)← 0, 1 ≤ i ≤ N
S(j)← −1, 1 ≤ j ≤ B
for i = 1→ B do

(n, b)← {(x, y)|minA(x, y)}
S(b)← n
M(n)←M(n) + 1
if M(n) = q then

V (n)← +∞
end if

end for

the completion time of the whole job. Algorithm 1 prioritizes
workload balance as its first priority.

This algorithm first initializes a matrix A where A(i, j)
records the amount of transferred data if node i is selected
as host for block j. It also calculates the maximum number of
blocks that each node can accept, which is the total number
of blocks divided by the total number of Datanodes. The
algorithm also maintains a list of the numbers of allocated
blocks for each node. Then, the algorithm starts to select the
destination Datanode for each block. It always selects the cell
with the minimum value from the entire matrix A(x, y). Then,
node x will be selected as the host of block y. When a node is
selected, its allocated number increases by one. Once the node
reaches a threshold of allocated blocks, it sets its associated
row of matrix A to +∞ , which indicates that such node will
not participate in further aggregator selection. The algorithm
repeats this procedure for all target blocks and the result is
saved into a list indicating the destination Datanode of each
block.

Time complexity of initialization is B×N+B+N , where B
is total number of blocks and N is total number of Datanodes.
Finding the minimum cell of matrix A takes at most B ×N
of time. Assigning +∞ to a vector takes constant B units of
time. This procedure inside the for loop runs in time O(NB).
Hence, the time complexity of this algorithm is O(NB2).

2) Asynchronous Data Write: To make the best use of the
Hadoop architecture, an asynchronous file write mechanism is
implemented. Synchronous write has to perform the online
block aggregation before saving blocks onto HDFS. Com-
paring with that, asynchronous write can further improve the
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I/O performance by making the block aggregation operations
offline. Therefore, it can fully exploit the benefits of data
locality; as confirmed by the results in Subsection III-D.

As illustrated in Fig 3, we adopt a three-phase design to
support asynchronous data write. In Phase 1, all the write
requests dump their data onto their hosting Datanodes. These
data are saved contiguously and the writing logs are kept
in metadata for future data reorganization. The log metadata
keeps the mapping between the local data pieces and their
location in the destination HDFS files. Once the local dumping
is done, the asynchronous function call returns. To maintain
the same level of fault tolerance as the default HDFS, the local
dumped data will be erased only after the reorganization has
been successfully performed.

As mentioned above, for asynchronous operations, the data
are just dumped locally with metadata recorded (as shown in
Fig. 3’s Phase 1), after the write requests return.

Once the data reorganization is started, on each Datanode,
a data reorganizer process runs as a daemon, which is respon-
sible for the block aggregation (Phase 2 in Fig. 3). Similar
to the case of synchronous write and using the same block
aggregation selection algorithm, the customized HDFS data
placement policy selects a destination Datanode for each target
block. The algorithm attempts to balance the I/O workload and
minimizes the inter-Datanode data movement. Once the block
locations are decided, each data reorganizer will fetch all the
blocks of its charge (Phase 3 in Fig. 3).

D. Metadata Management

A large HDFS file is partitioned into multiple HDFS blocks
with a fixed size (default 64MB), and the Namenode manages
the blocks’ locations and the order of blocks in that file. The
order of blocks stands for the logical sequence indices of
blocks. For example, the first block includes the bytes that
offset from 0 to (64 × 220 − 1) and the second block’s data
bytes offset from (64× 220) to (2× 64× 220− 1). Since the
default HDFS does not allow parallel data writes or updates,

the block sequence is the same as the blocks’ write completion
order. In other words, after Namenode receives a metadata-
committing message saying that nth block is completed, the
next write request naturally means that the requesting process
wants to write data to the (n+ 1)th block.

With parallel file write enabled, multiple processes and
threads can request to write different blocks in a shared file.
Their requests may arrive at Namenode at different times in
a random order. Hence, there can be a mismatch between the
correct logical block order and the allocation request order. To
solve this problem, we let each client process or thread pass
the block number as a hint along with the block requests to
Namenode. After all the blocks get to their final destinations,
Namenode reorders the metadata entries according to these
hints and commits the correct information to persistent storage.

E. SCALER Implementation

A prototype SCALER system is implemented under
MPICH2 (version 1.4.1p1) and Hadoop (version 1.0.0).

1) Client-Side Implementation in MPICH2: The client-
side implementation is in the form of an ADIO driver [17]
added into the ROMIO module of MPICH2. Listed below are
the tasks and related descriptions of SCALER’s client-side
implementation.

• MPI programs in C communicating with HDFS
Clients in Java. To allow MPI programs written in C
language to access HDFS-Client’s Java I/O interfaces the
libhdfs [18], a JNI (Java Native Interface) based C API for
HDFS, is utilized. The Hadoop library libhdfs provides a
simple subset of C APIs to manipulate Hadoop files.

• Online block aggregation. In MPICH2’s original collec-
tive I/O and ADIO implementations, there are two key
functions used to specify the aggregation policy: file do-
main calculator (ADIOI_Calc_file_domains) and
aggregator calculator (ADIOI_Calc_aggragator).
We customize these two functions in our ADIO driver
for HDFS using SCALER’s aggregation policy shown in



Algorithm 1.
• Local buffering and the metadata. In the asynchronous

write mode, SCALER buffers data locally in the requests’
hosting Datanodes, as shown in Fig. 3’s Phase 1. This
mechanism creates an effective burst write buffer for
HDFS. To ensure the data integrity, metadata is needed
to keep records on which files and what offsets the
locally buffered data belong. We utilize a B+ tree data
structure to keep the metadata information. Each request
(file domain for Collective I/O) is represented by one
leaf node via marking it with the start and end offsets.
Each leaf node further points to a specific file name and
its corresponding local offset that match the correspond-
ing request. Such design guarantees the simplicity of
metadata management and ensures high efficiency when
locating a request.

2) Server-Side Implementation in HDFS: In HDFS Namen-
ode, we add one set of RPC calls that conducts the lock control
and metadata management for parallel write. While performing
parallel writes, the SCALER’s client-side MPI-IO driver will
invoke these new calls. The original RPC calls in HDFS stay
unchanged, so the SCALER implementation will not affect the
execution of MapReduce applications.

III. PERFORMANCE EVALUATION

SCALER’s prototype implementation is evaluated on a 65-
node Sun Fire Linux based cluster, including one head node
and 64 computing nodes. The head node served as Master
and Namenode, and the remaining nodes served as Slaves and
Datanodes. The Namenode is a Sun Fire X4240, equipped with
dual 2.7GHz Opteron quad-core processors, 8GB memory, and
12 500GB 7200RPM SATA-II drives configured in RAID5
array. Each Datanode has two Opteron quad-core processors,
8GB memory and a 250GB 7200RPM SATA-II disk (HDD).
All the 64 nodes are connected by gigabit Ethernet. The N-1
file writes performed in all the following evaluations are intra-
block parallel writes and each HDFS block is shared by all
client processes. We also did experiments on the Longhorn
cluster [19] as described in Subsection III-G.

A. The Scalability of the Lock Control and Metadata Man-
agement

In our implementation, two simple mechanisms are added to
the Namenode: the lock sharing mechanism, and the metadata
reordering and committing mechanism for concurrent write.
Our first experiment is to show the scalability of these add-ons.
A synthetic parallel write benchmark is created which creates
a task on each Datanode. All these tasks write to one shared
HDFS file but different blocks. In other words, there is no
sharing of HDFS blocks and collective data exchange among
processes is not possible (as shown in Fig. 2 and Fig. 3). All
processes write the blocks to their hosting Datanodes, which
means there would be no remote data access and the workloads
on all Datanodes are balanced. The number of Datanodes,
number of tasks, and workload amount for each process for
different numbers of metadata entries are varied. Fig. 4 shows
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the experimental results. The different legends represent the
data write amounts per task. This confirms that the per-node
average bandwidth does not show any degradation while the
system scale grows. Therefore, the added lock and metadata
management does not affect HDFS’s scalability.

B. Scalability of Synchronous Write

To further validate the system scalability, the IOR parallel
I/O benchmark [20] was used to evaluate synchronous write
performance at various system scales. The request size was
varied from 2KB to 512KB, the numbers of nodes was varied
from 4 to 64, and each task writes 128MB of data. Fig. 5
shows that the synchronous write mechanism gained scalabil-
ity. It can be observed by the bandwidth increases linearly
as system scale increases. Compared with the default HDFS,
our synchronous file write improves bandwidth noticeably.
Secondly, the bandwidth is stable among different request
sizes for a given number of Datanodes. This shows the ability
of SCALER to handle small requests efficiently. This is due
to the block-level Collective I/O approach that aggregates
small requests to larger ones before writing them onto the
file system.

C. Scalability of Asynchronous Write

The time required for an asynchronous write function is
from the beginning of the call to the time that the data have
been dumped onto the hosting Datanodes. Fig. 6 shows that
asynchronous write mechanism also achieves excellent system
scalability. Doubling the number of Datanodes simply doubles
the aggregated bandwidth. Additionally within the same sys-
tem scale, different request sizes result in approximately the
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same bandwidth. This shows that the system is able to handle
both large and small requests efficiently.

D. Performance Comparison with the Baseline

In this test, SCALER’s N-1 parallel write performance is
compared with that of the default HDFS. Fig. 7 shows that
HDFS’s default N-1 write performance is fixed and equal to
the write performance of a single Datanode independent of
scale. SCALER performance, in contrast, scales linearly with
the number of Datanodes.

E. Performance Comparison with the Upper Limit

For comparison, N-N file write performance is assumed
to be the upper limit of HDFS’s performance. Then, the
performance of the two proposed parallel file write mecha-
nisms are compared with this upper limit. The experimental
setup is the same as the ones used in last subsection. In
Fig. 8, the percentage values are calculated as SCALER’s write
performance divided by the upper-limit performance of HDFS.
As expected, the N-1 asynchronous data write further improves
the aggregated HDFS bandwidth, bringing the performance
closer to that of the best scenario. The synchronous write
performance ranges mostly between 70% and 85% of the
upper-limit performance, although it can reach as high as
98% in some cases. For asynchronous parallel write, the
performance is stable and around 95% of the HDFS’s ideal
N-N write performance. Through this comparison it was found
that SCALER’s N-1 file write is able to exploit HDFS’s
potentials on scalability and performance for N-1 parallel file
write.
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Fig. 9. Results on system scalability with HPIO.

F. Results with HPIO Benchmark

In this test, we evaluated the proposed SCALER write
functions with a different parallel I/O benchmark HPIO [21]
under the same system configuration. Fig. 9 shows that
both synchronous and asynchronous approaches gained good
scalability with HPIO: for almost all cases, doubling the
system scale brings doubled overall system performance.
Asynchronous writes outperformed synchronous ones in terms
of aggregated bandwidths.

G. Performance Comparison with Different Number of Repli-
cas

We also conducted our experiments on the Longhorn clus-
ter [19] at Texas Advanced Computing Center (TACC). Each
node we used is a Dell PowerEdge R610 machine that
equipped with 48GB of RAM, 8 Intel Nehalem cores. A
15K RPM SAS drive is used as the local storage of HDFS.
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We run IOR benchmark to evaluate the performance. Each
node writes 128MB with various request sizes, from 2KB to
2MB. In Fig. 10, SCALER shows the consistent performance
scalability on Longhorn platform. The bandwidth with one
replica is slightly higher than that with three replicas. Because
SCALER only handles the data writes on the first replica, the
other replicas are handled by HDFS’s default pipelining writes,
thus SCALER does not affect the default HDFS’s system
scalability.

IV. RELATED WORK

Yarn [13], the new generation of Hadoop system, is featured
with the capability of resource sharing, which supports various
workloads including both MPI and MapReduce. Mesos [14] is
a resource-sharing platform that efficiently schedules MPI and
Hadoop jobs and guarantees performance isolation for these
two parallel execution frameworks. Yarn and Mesos allow MPI
and MapReduce to share computing resources in datacenters.
SCALER allows them to share HDFS storage system.

The Chunk Aware I/O (CHAIO) [16] in our previous work
proposed to reorganize I/O requests and eliminate chunk-level
contentions in order to efficiently improve N-1 distributed file
access on data-intensive file systems. It selects the aggregator
using a greedy algorithm to assign destination Datanodes for
the blocks accessed by more than one processes. CHAIO is a
preliminary study of SCALER and the algorithm is designed
to minimize data exchange and to achieve workload balance.

MRAP [22] is a MapReduce based framework that provides
customized data access patterns to assist MapReduce applica-
tions to migrate data from HPC storage, and efficiently reduces
preprocessing overhead of MapReduce applications. It tries
to bridge the semantic gap between HPC storage and data-
intensive systems. Alternatively, SCALER provides a copy-
free approach that enables MPI applications to perform N-1
parallel file writes directly onto a data-intensive file system.

Parallel Log-based File System (PLFS) [23] is a log-based
middle-ware, which accelerates checkpoint applications by
rearranging N-1 file writes to achieve a bandwidth as good
as that of N-N write on an underlying parallel file system;
however during read back, the online reconstruction of the
log-formatted data to original data may cause performance
degradation. This work is extended by [24] to enable HPC
applications to use HDFS as storage system, and to provide
semantic translation that supports concurrent writes to HDFS.
While reading files, the system launches the processes at the
same locations as their subfiles. Our approach strives to pro-
vide a general interface for concurrent write to HDFS via MPI-
IO. SCALER synchronous write function and the reorganized
data need no additional metadata operation involved for future
read. The data are organized in the same format as that of
HDFS.

BlobSeer [25] is a scalable distributed storage system that
supports high throughput concurrent file access from MapRe-
duce applications using advanced versioning control. SCALER
is able to serve concurrent file access for both MPI based HPC

applications and MapReduce applications. Both of them can
benefit from our N-1 parallel file write mechanism.

VisIO [26] is an I/O library that utilizes HDFS as the
storage for large-scale interactive visualization applications.
The applications that VisIO targets perform N-N file read,
which is inherently supported by data-intensive distributed file
systems. SCALER focuses on providing the N-1 file write
feature in HDFS.

In [27], researchers evaluated HPC and Internet service
workloads on top of two representative file systems, PVFS2
and CloudStore file system. They revealed the same prob-
lem and confirmed performance degradation of CloudStore
file system for N-1 workload. SCALER’s synchronous and
asynchronous I/O mechanisms improve HDFS’s poor N-1 file
write performance.

Some researchers extended existing parallel file systems,
including PVFS2, GPFS, and Lustre, to allow them to support
MapReduce applications, such as in [28], [29], and [30].
Researchers compared PVFS and HDFS in [28], proposed
an enhanced PVFS with customized data layout, and relaxed
consistency in order to provide competitive I/O performance
to unmodified Hadoop applications. IBM GPFS-SNC [29]
delivered an enterprise alternative of HDFS implementation
to achieve better performance and security, with full POSIX
compliance. To let HDFS support data access from MPI
applications, SCALER adds some important missing features
to HDFS. This allows SCALER to successfully exploit the I/O
potential of HDFS in terms of N-1 file write.

V. CONCLUSION

While cloud computing is increasingly becoming a fun-
damental computing infrastructure, merging the computing
power of high performance computers with the data processing
capabilities of datacenters becomes more and more in demand.
To satisfy the storage requirements of this demand, we have
designed and implemented SCALER — a parallel I/O mecha-
nism to allow MPI applications to perform N-1 concurrent file
write onto HDFS. The contributions of this study are twofold:
the improvement of I/O functionality and I/O optimization.

On I/O functionality: We successfully enabled the missing
N-1 parallel file write functionality in HDFS, which allows
MPI applications and HDFS to share the same copy of data.
This I/O functionality provides the fundamental building block
required to merge MPI based HPC computing power with
MapReduce data processing power.

On I/O optimization: SCALER supports both synchronous
and asynchronous parallel write. A local data buffer mecha-
nism is introduced for asynchronous file writes. This allows
better I/O scalability and better utilization of the distributed
architecture while maintaining the fault tolerance nature of
HDFS. This can significantly benefit HPC applications which
have heavy data writing phases.

We have developed the prototype SCALER system. Exper-
imental results prove that the SCALER approach is able to
handle various HPC data requirements efficiently. We plan to
continue improving the system in the future; through adopting



more optimization techniques at the intra-file level and at the
intra-block level.
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