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Abstract 
With the emergence of grid computing environment, 
performance measurement, analysis and prediction of 
non-dedicated distributed systems have become 
increasingly important. In this study, we put forward a 
novel performance model for non-dedicated network 
computing. Based on this model, a performance prediction 
and task scheduling system called Grid Harvest Service 
(GHS), has been designed and implemented. GHS consists 
of a performance measurement component, a prediction 
component and a scheduling component. Different 
scheduling algorithms are proposed for different 
situations. Experimental results show that the GHS system 
provides satisfactory solution for performance prediction 
and scheduling of large applications and that GHS has a 
real potential.  
 
Keywords: performance prediction and measurement, 
task scheduling, resources sharing, grid computing, 
performance modeling 
 
 
1. Introduction 
 

Performance evaluation has always been an important 
issue in computer science, especially in the field of high 
performance computing. Many factors, including 
computer architecture, network latency, compiler 
techniques and application algorithms, affect application 
performance in a high performance computing 
environment. In the early 1990’s, inspired by the success 
of Internet technology, a pervasive computational 
environment composed of a large number of 
heterogeneous and dynamic network resources was 
conceived and constructed. While this new complex 
environment provides the potential computing power, it 
also introduces a big challenge in task allocation and 
scheduling [1]. How to partition and where to allocate 
tasks in such a large, available but shared system still 
elude the researchers. The key to reach an optimal 

scheduling in such an environment is performance 
prediction.  

In this study, we present a performance prediction and 
task scheduling system, the Grid Harvest Service (GHS) 
system, which provides long-term application-level 
performance prediction based on a newly proposed 
performance model. Early work in performance modeling 
was mostly focused on dedicated systems. The study of 
usage patterns of non-dedicated workstations is relatively 
recent. Mutka and Livny [2] reported that the distribution 
of available time intervals on workstations could be 
characterized as combination of several hyper-exponential 
distributions. Harchol-Balter and Downey estimated the 
process execution time [3]. Based on their experimental 
observation, they claimed that the median remaining life 
of a process is equal to its current age. These work is 
observational in nature. Leutenegger and Sun [4] put 
forward an analytical performance model to investigate the 
effect of a remote task on the local jobs of the workstation 
owner and vice versa. An effective prediction formula was 
derived for homogeneous non-dedicated systems. Most 
recently, Gong, Sun, and Watson have introduced a more 
general model for heterogeneous non-dedicated network 
computing [5]. This model was derived from a 
combination of rigorous mathematical analysis and 
intensive simulation to make it generic and practically 
useful. The effects of machine utilization, computing 
power, local job service and task allocation on the 
completion time of remote task are individually identified. 
Formulas to distinguish the impact of different factors are 
derived in the model analysis, which provide us the 
guildline for performance optimization. 

There are several on-going projects on performance 
evaluation in parallel or distributed programming 
environment. However, there is still no adequate solution 
for general enterprise network environments. Paradyn 
Parallel Performance Tools [6] is a known performance 
evaluation system. The technical features of Paradyn are 
dynamic instrumentation, W3 (why, when, and where) 
search model and uniform data abstraction. Paradyn 
measures the performance of an application. But it does 
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not provide performance analysis and prediction based on 
resource usage pattern. TAU (Tuning and Analysis 
Utilities) [7] was developed at the University of Oregon. 
Its salient features are instrumentation at the source code 
level, message trace and visualization, standard format for 
performance files and further analysis based on the 
recompilation and rerun of the application with different 
profile statistics option of the library. It is a post-execution 
performance analysis system. These systems focus on 
application performance in a dedicated parallel system 
instead of a non-dedicated distributed environment. The 
Network Weather Service [8] monitors and forecasts 
resource performance on-line. It provides system 
performance sensors, various simple forecasting methods, 
dynamic predictor selection and web-based visualization 
interfaces. In RPS (Resource Prediction System) Toolkit 
[9], Dinda predicts the CPU availability of a Unix system 
over a small time range with the time series techniques. 
Their work is for non-dedicated environments. However, 
their work only predicts the availability of non-dedicated 
resources. There is no application-level performance 
analysis or prediction. Furthermore, their prediction 
focuses on short-term performance.  

The experience in the development of the GrADS 
project and other grid projects has demonstrated that the 
integration of performance evaluation mechanism with 
application is pivotal to the success of grid environments 
[10]. Currently, the scheduling algorithm in the APPLES 
[11] project is supported by the short-term system 
prediction provided by NWS services. In this study, we 
present the prototype development of the GHS system for 
long-term application-level performance prediction and 
task scheduling. We discuss the modeling foundations, 
introduce the measurement mechanisms, derive scheduling 
schemes, and present initial experimental testing results. 
Analytical and empirical results show that the prototype 
GHS system provides satisfactory solution for 
performance prediction and task scheduling of grid 
computing and that it has real potential. 
 
2. Performance modeling and analysis 
 

Our system is based on the modeling results derived in 
[5]. The model assumes that the local tasks have high 
priorities. For the development of GHS, we have extended 
the results for equal priority competition. That is the 
distributed task has priority equal to local tasks in 
competing for resources. This extension is appropriate for 
a grid environment where different remote users may 
compete for resources under the same priority. The 
analysis of equal priority competition shows for large 
remote tasks, competing for resources gives a little gain 
for the remote task but leads to a noticeable impact on the 
local jobs. 

To distinguish the grid task under scheduling with other 
user’s competing jobs, we call the grid task the remote 
task and the other competing jobs the local (sequential) 
jobs. We assume that a grid task can be divided into 
independent sub-tasks for parallel processing and the 
arrival of the local jobs at machine k follows a Poisson 
distribution with 

kλ . The service time of local jobs at 

machine k follows a general distribution with mean 
kµ/1  

and standard deviation 
kσ . Based on our assumption, the 

owner job process is a M/G/1 queuing system. These 
assumptions are used in [5] and are based on the 
observations of machine usage patterns reported by 
researchers in Wisconsin-Madison, Berkeley, Maryland 
and et al [12]. We assume that the remote task is 
composed of one single parallel phase and a final 
synchronization phase.  
 
2.1. Completion time of a remote task  
 

The remote task is given a lower priority than the local 
job so that the remote task is less intrusive. The total work 
demand of the remote task is W. Each machine k  

( mk ≤≤1 ) has a sub-task work 
kw  and speed kτ . The 

completion time of the sub-task on machine k can be 
expressed as: 

kkSkkkkk YYYwT ++++= .../ 21τ  (1) 

)1( kki SiY ≤≤  is the computing time consumed by 

sequential jobs and 
kS  is the number of interruption due to 

local job arrivals on machine k.  By defining 
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If the distribution of )0|)(Pr( >≤ kk SuSU  can be 

identified, we can calculate the distribution of sub-task 
completion time. Using the well-known result in queuing 
theory, we can get the mean and variance of sub-task 
completion time [5]. The mean and variance of )( kSU  
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where
kkk µλρ /=  is the machine utilization and 

kkk µσθ =  is the coefficient of variation of service. 
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The completion time of a remote task is the maximum 
of each sub-task completion time. After the distribution of 
the completion time of sub-task 

kw  is identified, the 

cumulative distribution function of the remote parallel task 
completion time can be calculated as: 
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where )/{max kkwMaxw τ= . 

Simulation results indicate that Gamma, Lognormal or 
Weibull are among the best-fit distributions to describe the 

)0|)(Pr( >≤ kk SuSU . When the machine utilization is 

less than 15%, the Gamma distribution is the best. The 
Weibull distribution favors )0|)(Pr( >≤ kk SuSU  when 

machine utilization is medium. If the utilization is higher 
than 50%, the Lognormal distribution may be the best 
choice. In general, the Gamma distribution is appropriate 
for the calculation of )0|)(Pr( >≤ kk SuSU . 

By evaluating the mean and coefficient of the task 
completion time on a group of available machines, the task 
can be assigned to the most appropriate resources. How to 
define selection criteria with the mean and coefficient of 
variation is determined by application requirements. In 
GHS, we choose the machine set with the smallest 

)).(1)(( TCoeTE + . 
 
2.2. Remote task partition and allocation  
 

If the sub-task demand kw  is given to machine k, we 

can calculate the mean and variance of the parallel 
completion time using formula (6). The question here is 
how to partition a task and allocate sub-tasks to machines 
so that we can achieve an optimal performance for a given 
number of machines. A natural strategy is that machine k 
will be assigned a sub-task 

kw  so that the mean sub-task 

completion time is the same at different machines. 
Suppose the mean sub-task completion time is α , we get 
the sub-task demand 
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By comparing the remote task completion times on 
different sets of machines with formula (6), we can 
identify the best set of machines for running the remote 
task. 

 
3. The design of the Grid Harvest Service 

system 
 

The general performance model has been verified via 
intensive simulation testing. The next question is how to 
apply the model in a general grid environment, how to 
measure the needed parameters in a general grid 
environment, how to measure them in a least intrusive 
way, and how to use the prediction for performance 
optimization. The measurement methodology and task 
allocation issues are discussed in this section. 
 
3.1. Measurement methodology 
 

According to the model, parameters 
kλ , 

kρ , 
kσ  and 

kτ  

should be measured in order to calculate the mean and 
coefficient of variance of the remote task completion time, 
where 

kλ  is the local job arrival rate on machine k, 
kρ  is 

the machine utilization, 
kσ  is the standard deviation of 

service time and 
kτ  is the computing capacity of machine 

k . 
kτ  can be obtained by running computation intensive 

benchmarks. We focus on the measurement of 
kλ , 

kρ  and 

kσ .  

Suppose parameter x  has a population with a mean 
and a standard deviation and we have a sample 

},...,,{ 21 nxxx , the smallest sample size with a desired 

confidence interval and a required accuracy r is given by 
22/1 )

100
(
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dz
n α−=  [13]. The desired accuracy of r 

percent means that the confidence interval is 
))100/1(,100/1(( rxrx +− . If the confidence interval is 95% 

and accuracy is 5, then we get  
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In our experiment, we assume that parameter x  is a 
random variable with a fixed mean and a fixed standard 
deviation during a continuous 24-hour period on each 

machine. Parameter x  is measured in sn  time intervals 

during 24 hours. The average of x  is viewed as a sample 
of x  over 24 hours. A prediction of x  for the next 24 
hours is based on the history of sample x . Here we use a 
dynamic method to adjust the number of time intervals. x  

and s  over the previous 24 hours are used to calculate sn  
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with formula (8) at the end of each hour to adapt the 

possible variance of x .  A number (
24

sn ) of ix  will be 

measured for the next hour. The average of x  taken at 
time t  over previous 24 hours is calculated with the 
following formula: 
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where 
iΧ  means the set of ijx  measured in the ith  hour. 

Now the problem is how to measure parameter x  over a 
time interval 

ervalTint
. 

The Unix utility vmstat is used to measure 
kρ . It 

accesses performance statistical data, which is collected 
and maintained by the kernel system. The system 
resources occupied by vmstat are negligible. In our 
experiment, we take each process as a job. The Unix 
utilities ps and lastcomm are used to obtain process 
execution information at the beginning and the ending of 

ervalTint
 to calculate 

kρ . ps shows the active processes 

information while lastcomm presents the previous 
executed processes information. We define 

1tJ  as 

processes existing in the beginning of 
ervalTint

, 
betweenJ  as 

processes started and finished in 
ervalTint

, 
arrivalJ  as 

processes started but not finished in 
ervalTint

 and 
2tJ  as 

processes existing in the end of 
ervalTint

. So we get: 

erval

startbetween

erval

arrival
i T

JJ

T

J

intint

+
==λ    

betweenJ  will be given by comparing the output of lastcomm 

utility in the beginning with that at the end of 
ervalTint

. 

Since }|{ 12 titiistart JJbutJJJJ ∉∈= , we can identify 
startJ  by 

looking into 
1tJ  and 

2tJ . 

To get 
iσ , the standard deviation of service time, we 

need to measure each service time. During each time 
interval, we use lastcomm utility to get the executed 
processes service time and then calculate the average as a 
sample of service rate. 

In our experiment, we calculate the number of 
measurements for the next hour according to the system 
history over the previous 24 hours. This method can 
dynamically adjust the measurement number to reduce the 
measurement cost. The GHS measurement system 
consumes very little CPU resource (less than 1%). 
 
3.2. System integration and task scheduling 
 

After parameters 
kλ , 

kρ , 
kσ  and 

kτ of each machine 

are measured and estimated, the completion time of a 
remote task can be predicted by using formula (6). The 
relation between the major components of the GHS system 
(shaded areas) and other grid services is shown in Figure 
1. The task manager, which is responsible for task 
management, is located in the Application layer. It sends a 
request to the Scheduling component in the Collective 
layer for resource allocation. The Scheduling component 
contacts the Directory Service (DS) to locate the potential 
available resources. It then executes the task scheduling 
algorithm to identify the best set of resources by sending 
possible choices to the Prediction component and 
collecting the evaluation results. The Prediction 
component can also serve the grid-enabled programming 
systems and workload management systems in a grid 
runtime system. The Prediction component accesses the 
performance data to estimate the task completion time. 
The Performance Communication Manager (PCM) 
component is used to collect performance data, which is 
exchanged through the proposed performance data 
protocol (PDP) based on the communication mechanism 
provided by the GSI service in the Connectivity layer. The 
Performance Data Manager (PDM) component on each 
resource is responsible for measuring system and 
application information by using various sensors. 

As shown in Figure 1, in addition to prediction, 
scheduling is also a primary component of GHS.  A 
partition schema, called “equal-mean” partition, is given in 
equation (7). A set of scheduling algorithms have been 
derived and used in GHS. Figure 2 gives the scheduling 
algorithm for optimal parallel processing. If we have m 
idle machines, for the optimal algorithm, we need to check 

m2  possible solutions. This is too costly when m is large. . 
A heuristic task scheduling algorithm is given in Figure 3 
to find an acceptable solution with a reasonable cost. The 
basic idea is that machines with higher 

kk τρ )1( −  are 

selected with higher priority. In Figure 3, w  is the grid 
task demand, µ′  is the average of the mean demand of 
local machines’ tasks. Leutenegger and Sun [4] show that 
the task ratio, the ratio of the remote task demand to the 
mean demand of machine’s local tasks, should be large 
enough to achieve acceptable efficiency. Here we choose 
it to be at least 4. 

Figure 2 is a scheduling algorithm for parallel 
processing. Scheduling of parallel task is considered more 
challenging in a grid environment. Current scheduling 
algorithms used in grid environment are min-min [11] 
based algorithms for multiple independent remote tasks. 
Though not listed here, with )).(1)(( kk TCoeTE +  as the 

evaluation criteria, the optimal parallel processing 
scheduling algorithm can be extended for multi-
independent task scheduling. 
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4. Experimental results 
 

We have developed a prototype GHS system and 
conducted experimental testing on machines at the 
Argonne and Oak Ridge national laboratories, as well as at 
IIT. The prediction precision of our analytical model is 
examined in both a simulation environment and an actual 
grid environment to verify the accuracy and feasibility of 
the GHS system. We have evaluated three allocation 
methods on a network of machines to examine our task 
partition strategy. The completion time of a remote task 
over different number of machines with different 
scheduling methods are compared. Finally, we investigate 
the relationship between the number of intervals measured 
in each hour and the variance of system utilization to test 
the efficiency of our dynamic measuring methodology in 
reducing the measurement cost. In our experiment, we 
choose NAS Serial Benchmarks (BT, CG, LU, MG, IS and 
SP) as the remote task. The class type of these benchmarks 
is “A” or “W”. 
 
4.1. Prediction error 
 

Assumption: a grid task can be partitioned into any 
number of sub-tasks. Each sub-task will be assigned to a 
machine respectively. 
Objective: Scheduling a grid task with an optimal 
partition and allocation 
Begin 
List a set of idle machines that are lightly loaded over an 
observed time period, },,,{ 21 qmmmM h= ; 

1=′p , 1=′k ; 

1=p ; 

While qp <  

List all the possible sets of machines, 
},...,,{ 21

p
z

ppp SSSS = , MS p
i ⊂  and pS p

i =|| ; 

For each machine set p
kS )1( zk ≤≤ , 

Use the formula (4) to partition sub-tasks to 
each machine in p

kS ; 

Use the formula (3) to calculate 
)).(1)(( p

k
p

k SS
TCoeTE + .  

If   )).(1)(( p
k

p
k SS

TCoeTE ′
′

′
′

+  > 

)).(1)(( p
k

p
k SS

TCoeTE +  

then pp =′ ; kk =′ ; 

 End If 
      End For 
      1+= pp ; 

End While 
Assign parallel task to the machine set p

kS ′
′ ; 

End 

Figure 2. Optimal task scheduling algorithm

Assumption: a grid task can be partitioned into any size 
of sub-tasks. Each sub-task will be assigned to a machine 
respectively. 
Objective: Scheduling a grid task heuristically to reach a 
semi-optimal performance 
Begin 
List a set of idle machines that are lightly loaded over an 
observed time period, },...,,{ 21 qmmmM = ; 

Sort the list of idle machines in a decreasing order with 

kk τρ )1( − , },...,,{' 21 qcccM = ; 

}
/1*4

|,min{|,1
µ′

′== w
Mba ; 

Repeat 
       2/)( bac +=  

      /* )(xf  denotes )).(1)(( )()( xCxC TCoeTE +  

where },...,,{)( 21 xcccxC =  */ 

      If )}(),(),(min{)( cfbfafaf =  then b=c 

      Else If )}(),(),(min{)( cfbfafbf =  then a=c

      Else If )1()( +< cfcf  then b=c 

      Else a=c 
Until (a+1=b) 
If  )()( bfaf <  then 

     Assign parallel task to the machine set )(aC ; 

Else Assign parallel task to the machine set )(bC ; 

End 

Figure 3. Heuristic task scheduling algorithm

Figure.1 Integration of GHS components 
with other grid services 
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To evaluate the accuracy of our prediction model, we 
define our prediction error as 

|
Pr

|
tMeasuremen

tMeasuremenediction period − . Figure 4 shows the 

expectation and variance of the prediction error of the 
remote task completion time with different job lengths 
(from 0.5 to 8 hours) on a Sun workstation. The workload 
is simulated based on observations from the SDSC 
Paragon logs and the CTC SP2 logs [14]. We can see that 
with increase in job length, the expectation and variance of 
the prediction error get smaller. When a remote task’s 
workload is more than 8 hours, the expectation of the 
predication error of the task run time is less than 10%. We 
also investigated the prediction error for completion time 
of remote parallel task.  

We conducted our experiment six times in a Sun 
ComputFarm cluster, named Sunwulf, at IIT. The 
expectation and variance of the prediction error on the 
parallel task completion time with different task demands 
(from 4 to 256 hours sequential processing time) on 32 
nodes of the Sunwulf are given in Figure 5.  We find that 
the prediction error reduces more quickly than that on a 
single workstation. This is due to the property of 
probability modeling: with more processors and more 
samples, the predicted results are more accurate. 

We have evaluated our prediction model on an actual 
grid environment with a practical workload. Figure 5 
shows the expectation and variance of the prediction error 
of a remote parallel task completion time on pitcairn, a 
productive machine at Argonne National Laboratory. 
Pitcairn is a multiprocessor with 8 250MHz UltrasparcII 
processors and 1GB of shared memory. It is a grid node 
shared by many users. The result again shows that the 
expectation and variance of the prediction error get 
smaller as the demand of remote task increases. When the 
demand of remote parallel task is 16 hours, i.e. average 
two hours workload is for each processor. The expectation 
of the prediction error is about 4.18%. The prediction error 

with 8 hours remote task demand is about 9.31%. Also we 
find that the prediction error reduces more quickly than 
that on a single workstation. Our experiment shows that 
our method can work even better on a virtual organization, 
which has its own local schedulers.  
 

4.2. Task partition and scheduling 
 

In our experiment, we compared the performance of 
mean-time partition with two other partition approaches. 
One is the equal-load partition, where the remote task 
workload is divided into equal sub-workloads and then 
assigned to each machine. Another is the heterogeneous 
equal-load partition, which allocates among each machine 
the sub-workload matching its theoretical computing 
power. 

We tested the efficiency of these partition approaches 
in two workstations. Workstation A has an average 
utilization of 50% while workstation B has an average 
utilization of 20%. The local jobs arrive with a Poisson 
distribution and are served with a Log-uniform 
distribution. The machines are with a speed ratio of 1.33:1. 
Figure 7 shows the remote task completion time with these 

Figure 4. Expectation and variance of 
prediction error of remote task 
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three partition approaches on two machines. The parallel 
workload is increased from 1 hour to 8 hours. Result 
shows that the mean-time partition is the best. The time 
saved by the mean-time allocation algorithm is 20%-25% 
for large jobs. The difference is significant. The detailed 
completion time of the parallel sub-task on machine A and 
machine B respectively show that the difference between 
the parallel sub-task completion time on machine A and 
machine B is the least with mean-time partition method. 
So the remote task completion time, the maximum of each 
sub-task completion time, is the least for mean-time 
allocation. 

The task partition algorithm is used to identify how 
much workload of a grid task is assigned to each machine 
in a given set of machines while the task scheduling 
algorithm aims to find the best set of machines from a list 
of available machines. Task partition is another factor 
distinguishing GHS from other existing grid scheduling 
systems where partition is either not considered or equal-
load partition is used. In section 3.2, we have discussed 
various scheduling algorithms. The heuristic task 
scheduling is proposed because of the high computing cost 
of the optimal task scheduling algorithms.  

We conducted experiments to compare the performance 
of the two scheduling algorithms, optimal and heuristic 
task scheduling discussed in Section 3.2 in Sunwulf. The 
workload is simulated based on tracefiles from the SDSC 
Paragon logs and the CTC SP2 log [14]. The system 
parameters such as utilization, job arrival rate and service 
rate were varied at each node. The experiment was 
executed 10 times over different number of nodes, 10, 15 
and 20. In each case, besides the optimal and heuristic task 
scheduling methods, we also selected a subset of machines 
for task allocation in random. The average run times of a 
remote task with different scheduling algorithms were 
compared. Our results demonstrate that the run time of the 
remote task and the number of utilized machines of 
heuristic task scheduling are close to those of optimal task 
scheduling. When scheduling task among 20 available 
machines, 14 machines were identified for optimal 
scheduling and 13 machines were used for heuristic 
scheduling. The average run time is 464.9 seconds for 
optimal scheduling and 486.4 seconds for heuristic 
scheduling. However, the computing cost of optimal task 
scheduling is increased from 3.16 seconds to 6558.75 
seconds while the computing cost of heuristic task 
scheduling increased from 0.07 seconds to 0.25 seconds. 
When the number of available machines was 15, 11 and 9 
machines were used for optimal scheduling and heuristic 
scheduling respectively. The same set of 8 machines was 
identified by optimal scheduling algorithm and heuristic 
algorithm when 10 machines were available. Table 1 
shows the average run time of remote task with different 
scheduling strategies. 

nR  means a number of n  machines 

are randomly selected for task allocation and scheduling 

and 
m20  means that all of 20 machines are used in task 

scheduling. 

 
Table 1. Average execution time of remote task 

with different scheduling strategies 

NM  
5R  

10R  
15R  

m20  Optimal Heuristic 

10 1587.9 901.2   792.4 792.4 
15 1421.9 855.1 631.3  523.5 548.4 
20 1329.5 798.4 619.2 600.4 464.9 486.1 

 
4.3. Run-time cost 
 

In our experiment, we calculate the number of 
measurement for the next hour according to the system 
history over the previous 24 hours. Our program can 
dynamically adjust the number of measurements to reduce 
the measurement cost. Figure 8 shows an example of the 
fluctuation of the number of intervals measured during 
each hour when the machines are becoming steady. It 
indicates that the number of measurements decreases when 
the machine utilization remains at a certain level. We also 
measured the execution time of our prediction program. 
The experimental results show that the run-time cost of 
our prediction component is 0.66 seconds when the 
number of machines is 1024. Compared to the potential 
gain from task scheduling, the run-time cost is negligible. 

 
5. Conclusion and future work 
 

In this paper, performance prediction and task 
scheduling of large parallel or sequential tasks in a grid 
environment are studied. First, a new modeling result is 
identified and enhanced. Next, measurement methods and 
mechanisms are developed to measure the needed system 
parameters, and task partition and scheduling algorithms 
are introduced. A performance measurement and 
prediction system, the Grid Harvest Service (GHS) 
system, is then developed for grid computing. Finally, 
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initial experimental testing was conducted. Experimental 
results show that GHS adequately captures the dynamic 
nature of grid computing. For large jobs (eight hours 
sequential runtime or more), its prediction error is less 
than 10%. Its mean-time partition approach can reduce the 
computation time by 20% to 30% compared to partition 
without considering resource sharing. In addition, GHS is 
both non-intrusive and efficient. Its run-time cost is always 
less than 1%. Though our current experimental testing is 
preliminary, every indication shows GHS has a real 
potential in grid computing. 

GHS is a long-term, application-level performance 
prediction and task scheduling tool for non-dedicated grid 
computing. It is a complement of existing performance 
tools. It can be integrated into existing toolkits for better 
service. For instance, NWS or RPS toolkits can be used to 
provide the performance measurement for GHS, or they 
can be combined with GHS to provide both short-term and 
long-term prediction. GHS can be combined with 
APPLES for general application-level scheduling. Like 
most existing performance systems, the current 
implementation of GHS has its limitations. For instance, 
GHS only considers the workload in distributed systems 
but not the communication and synchronization costs. The 
current prototype implementation only demonstrates the 
feasibility and potential of the GHS approach. More work 
is needed to integrate GHS seamlessly into the grid 
system. 
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