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Abstract—Modern High Performance Computing (HPC) ap-
plications, such as Earth science simulations, produce large
amounts of data due to the surging of computing power, while
big data applications have become more compute-intensive due
to increasingly sophisticated analysis algorithms. The needs of
both HPC and big data technologies for advanced HPC and
big data applications create a demand for integrated system
support. In this study, we introduce Scientific Data Processing
(SciDP) to support both HPC and big data applications via
integrated scientific data processing. SciDP can directly process
scientific data stored on a Parallel File System (PFS), which
is typically deployed in an HPC environment, in a big data
programming environment running atop Hadoop Distributed File
System (HDFS). SciDP seamlessly integrates PFS, HDFS, and the
widely-used R data analysis system to support highly efficient
processing of scientific data. It utilizes the merits of both PFS
and HDFS for fast data transfer, overlaps computing with
data accessing, and integrates R into the data transfer process.
Experimental results show that SciDP accelerates analysis and
visualization of a production NASA Center for Climate Simulation
(NCCS) climate and weather application by 6x to 8x when
compared to existing solutions.

Index Terms—HPC, Big data, HPDA, Hadoop, R language

I. INTRODUCTION

As the HPC community moves toward exascale, its data
volume has increased dramatically [23]. Large scale scien-
tific simulations, usually running in HPC environments with
Message Passing Interface (MPI)-based computation and com-
munication, produce tremendous amount of data and put a
big burden on data analysis. In contrast, Big Data (BD)
applications, such as data analysis and information retrieval,
are usually carried out in distributed computing environments,
such as Hadoop [7] and Spark [35]. Those environments are
known for the usability, capability, and versatility in processing
large amount of data. Using BD analysis applications can
significantly enhance the data processing power, facilitate the
exploration of huge data sets and lead to scientific discovery
[11]. The combination of scientific computing, embodied in
HPC, and BD environments, represented by Apache Big Data
Stack (ABDS) [8], [31], for advanced data-intensive comput-
ing is impeccable. Therefore, there is an increasing demand
to gain scientific insights using both the computation power
of HPC environment and data analysis capabilities of the BD
ecosystem.

There are three challenges keeping us from reaching the in-
tegration of the two different computing ecosystems. The first
challenge is expensive data movement. The two computing

ecosystems are built on top of different storage infrastructures.
The conventional HPC systems use Parallel File System (PFS),
such as Lustre [25] and GPFS [24]. Meanwhile, BD applica-
tions use distributed storage systems, such as HBase [1] and
HDFS [28]. From an application'perspective, HPC and BD
applications access data from their native data storage, PFS
and HDFS, respectively, by default. However, the two kinds
of underlying file systems have different design philosophies,
deployment models and are specifically optimized for diverse
targeted applications. Data movement between them is unac-
ceptably expensive. The second challenge is mismatched data
models. Scientific data is typically well structured, such as
multi-dimensional arrays and stored in self-descriptive data
formats (e.g. HDF5 [14] and netCDF [19]) for portability
and extendibility. BD frameworks, on the other hand, excel in
unstructured or semi-structured data (e.g. CSV files) process-
ing, and do not natively support scientific data formats. The
final challenge is incompatible programming user interfaces.
Analysis performance optimization not only needs to consider
the application execution time, but also the application de-
velopment time, data movement time, data conversion, and
any other execution preparation time. User interface is a
significant factor of application development. Scientists prefer
user-friendly and application-oriented programming tools and
interfaces, such as MATLAB and R, over relatively new
and system-originated environments, such as MapReduce and
Spark. These traditional tool-based interfaces, however, are not
capable of analyzing large volumes of data in a distributed
environment. More importantly, they cannot be used to support
an integrated environment to include both HPC and ABDS
environments. Consequently, the unification at both the file
system and programming interface level is essential to support
an integrated environment.

Several works exist which tackle the above three technical
barriers. From the HPC side, PFS connectors are designed
to allow ABDS applications to access PFS without changing
any application source code [17], [18], [26]. These solutions
share the same design principle, which is to emulate HDFS
APIs on top of PFS. For example, IBM developed a connector
for GPFS, HDFS Transparency [17], suggesting a shared
unified storage system for both HPC and ABDS applications.
However, the shared PFS can only be configured and opti-
mized for either PFS or ABDS applications, but not both.
A compromised PFS with trade-off is therefore suboptimal.
From the big data side, multiple works have been developed



to support scientific data formats in ABDS frameworks. Sci-
Hadoop and SciSpark, for instance, add netCDF processing
support in Hadoop and Spark, respectively [9], [22]. However,
these solutions target processing scientific data particularly on
HDFS. The cost of slow data copy from PFS to HDFS is
paid before data analysis can be carried out. It only can be
used in off-line data analysis due to its slow data transfer,
which greatly limits the productivity of scientific researches.
PortHadoop [34] was proposed to enable direct data pro-
cessing of PFS data in Hadoop. It utilizes the performance
benefit and portability of MPI-IO to read data directly from
PFS. However, the lack of scientific data format support
requires unnecessary and time-consuming format conversion
from scientific data format to ABDS-friendly text format.
Additionally, the converted text file is typically much larger
than the original format. It significantly increases the data
movement across the network which could override the benefit
of a copy-free design. To address user interface issues, R has
been extended to support I/O libraries, such as RNetCDF and
rhdf5. R also has been extended to interface with ABDS,
such as RHadoop and SparkR, which enable the data access
and processing power by utilizing the underlying Hadoop
and Spark environment, respectively. Several works have been
done in the R community to utilize the HPC and big data
ecosystems, but not to integrate them.

In this research, we present SciDP, a runtime system for
scientific data cross-system services. SciDP addresses the
aforementioned technical barriers and was tested on NASA
NCCS climate and weather applications for data analysis and
visualization. SciDP supports an integrated data service at
the file system level. It maintains the semantic data layout
in scientific data formats. Users can launch data analysis on
a Hadoop computing environment immediately after data is
generated in an HPC environment. Additional R interfaces
are developed to facilitate the data access and processing
in an integrated environment. With SciDP, scientific and big
data applications can directly access scientific data stored in
HPC environments and processed in ABDS environments with
the user-friendly R interface. The contributions of this paper
include:
• Efficient integration of HPC and BD at file system and user-

interface level.
• A general block mapping mechanism to support scientific

input file formats used by the HPC community and avoids
data conversion to shorten the workflow.

• Simplified direct processing of scientific data in BD envi-
ronments via R user interface.

• SciDP speeds up the data analysis and visualization work-
flow by 6x to 8x on NASA NASA-Unified Weather Research
and Forecasting (NU-WRF) application compared to exist-
ing state-of-the-art solutions.

II. BACKGROUND

In this section, we will discuss methodology and challenges
to data-intensive scientific research. Conventional solutions
and their limitations will be

A. Scientific Simulation and Analysis Workflow

In a typical scientific research workflow, the process can be
summarized into two computation phases: simulation/model-
ing, and data analysis/visualization. These phases usually form
a dependency loop where one phase relies on the completion
of the other phase to move forward. Additionally, results of
one phase might be required for the next phase. The itera-
tive workflow helps the scientists to gain potential scientific
insights and verify their hypotheses in following iterations.

In the simulation phase, MPI-based simulations are running
on an HPC cluster. The advance in mathematical models and
computing power makes the simulation more sophisticated
and represent the modeled physical world better in finer
granularity. More data is used to improve the simulation
accuracy. Thus, more data is generated and stored on PFS.
The data is typically accessed via high level I/O libraries
built on top of MPI-IO. These libraries provide user-friendly
interfaces to allow semantic and metadata information to be
stored along with the well-structured raw data. The data files
are self-descriptive, which guarantees portability when the
data is moved between different file systems in environments
with various architectures. Goddard Cumulus Ensemble (GCE)
[29], for instance, is a widely used Cloud Resolving Model
(CRM) developed by NASA in the area of earth sciences to
simulate the climate and weather system. These simulations
typically write a large amount of data on the PFS. GCE
takes 5 wall-clock days with 4096 computer processors at the
NCCS Discover supercomputer and generates single-precision
output data which is about 2.5TB in total with all the relevant
variables [29], [36].

To gain meaningful insights from the simulation results,
subsetting (e.g., selecting a part of the data) and in-depth data
processing (e.g., visualization and data analysis) need to be
performed upon the generated data. The targeted data will be
subset and further analyzed and visualized for understanding
and prediction. The subsetting, data analysis, visualization,
and animation process on large data sets are not adequate on
the MPI/PFS HPC cluster where the simulation is conducted.
Scientists are using Hadoop and Spark as the data analysis
framework to utilize their capabilities of scalable and powerful
data analysis. These data analysis and visualization applica-
tions expect the residence of data on HDFS. The emerging
machine learning techniques are also adopted to discover
hidden patterns in the huge amount of data, which makes the
learning curve of scientific data analysis steeper. Traditional
interfaces and languages, such as MATLAB, R and SQL,
minimize the learning cost and complexity for scientists, which
improves the productivity in return. Writing ABDS application
codes is a burden to scientists, which significantly lowers
productivity.

Real Scientific Workflow Example: Coupled Model In-
tercomparison Project Phase 5/6 (CMIP-5/6) is a typical
workload in NCCS. It compares netCDF outputs from different
MPI-based simulation models, whose size can be easily over
several terabytes [30]. The comparison could be in either math-
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Fig. 1: Existing architectures and conventional solutions. (a)
MPI-based; (b) Unified file system; (c) Separate file systems

ematical or visual form. Scientists can observe the differences
from the numerical comparison results when the data size
is small. In contrast, when data size is large, they have to
use powerful data analysis and visualization tools to visualize
the comparison outputs and reach meaningful conclusions of
differences between models. The visual outputs are usually an-
imations which consist of a series of images generated along a
specific dimension. The exploration becomes increasingly easy
as the animation granularity improves, either with prolonged
time duration with more image frames, or higher image reso-
lution of each frame. As the data size increases tremendously,
it becomes more challenging to maintain the efficiency of
such a workflow as before. Complicated user interfaces further
increase the learning cost to obtain meaningful analysis and
visualization results.

B. Conventional Solutions

MPI-based Solutions: Conventionally, data generated by
MPI simulations is analyzed and virtualized on HPC clusters
as depicted in Figure 1(a). MPI-based visualization tools (e.g.,
VisIt [5] and ParaView [3]) are used to perform the analysis.
These tools usually run on the same hardware along with the
simulation programs to reduce data movement. The hardware,
on the other hand, is designed to maximize MPI-based simula-
tions instead of data analysis and visualization workload. The
nodes running data analysis applications will have to compete
with simulation nodes for network bandwidth across nodes
and remote global PFS which lowers the performance of both
workloads.

Recently, ABDS frameworks, such as Hadoop and Spark,
process outputs of large-scale simulations and have grown in
popularity due to their capabilities in processing large amounts
of data. These BD frameworks typically run on a separate
cluster processing the data on a PFS shared with a larger
simulation cluster for scientific research. To solve the data
source problem, multiple solutions have been proposed.

Unified File System Solutions: HDFS connectors, such
as IBMs HDFS Transparency [17], avoid the data copy by
providing HDFS API and use PFS as the unified backend
file system as shown in Figure 1(b), However, reading from
PFS is not optimal since the PFS is optimized in favor of
HPC workloads instead of BD analysis side. Figure 2 shows
the performance comparison between Hadoop Terasort, Grep
and TestDFSIO on native HDFS and Lustre laying underneath
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Fig. 2: Performance comparison between Lustre and HDFS.

Seagates Lustre HDFS connector [26]. We use eight OSTs and
eight Hadoop nodes. The stripe count for Lustre is configured
to eight. We change the replication factor to one to force the
same number of data copies for both solutions. We also con-
figure Lustre to use large stripe size as the block size in HDFS
to favor these workloads. It can be observed that native HDFS
outperforms Lustre by 221% on average. We believe it can be
attributed to the difference in access pattern preference of two
file systems. PFS provides high bandwidth by aggregating data
from multiple servers over network. HDFS minimizes latency
and interference by maximizing local access. They emphasize
on distinct characteristics to favor the native workloads in their
environments. Therefore, unifying file systems using built-in
connectors suffers in I/O performance. Additionally, the design
does not support the merging in programming model level.
Only file accessibility is enabled.

Separate File Systems Solutions: The architecture of two
separate storage clusters can be used to provide better overall
performance. Thus, multiple solutions have been developed
to enable scientific data analysis and visualization in ABDS
frameworks with the assumption of residence of data on
HDFS. When data is copied from PFS to HDFS, users
can select between default ABDS frameworks and enhanced
ones for scientific research as illustrated in Figure 1(c). The
vanilla ABDS frameworks do not natively support scientific
data format. The typical preprocessing includes data format
conversion. Scientific data files are converted to text files (e.g.
CSV files) to enable processing in ABDS frameworks. Such
process can be extremely slow and the converted data files
are orders of magnitude larger than the original files, which
significantly increases the data access time. The enhanced
ABDS frameworks, such as SciHadoop and SciSpark, support
direct processing of data in scientific format. New APIs are
introduced to access, partition and process the scientific data
on HDFS. The data copy, nevertheless, cannot be avoided.
SciDP also targets the separate file system architecture with a
novel software design.

PortHadoop: Lastly, PortHadoop is a dynamic PFS reader
implemented in [34]. PortHadoop fetches data on-demand
from PFS and stores the data in the memory of Hadoop
nodes. PortHadoop adopts several design concepts and opti-
mization techniques. 1) Instead of copying data between two
file systems, only metadata information is saved on HDFS in
PortHadoop when the input directory points to PFS. Virtual
blocks are created in NameNode accordingly to map HDFS
file blocks to the names and offsets of the source files on the
PFS. 2) In each Map task, PortHadoop translates the metadata
information in the virtual block into the corresponding file seg-
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ment on the PFS. It fetches the data via the standard MPI-IO
interface. As a result, multiple file readers are spawned on
multiple nodes to fetch the data in parallel. 3) PortHadoop
inherits the portability from the standard interfaces. Thus,
PortHadoop can access as many PFS (e.g., GPFS, Lustre,
PVFS [10] and Ceph [33]) as the MPI-IO implementations
deployed in the system support.

C. Limitations of Existing Solutions

There are several drawbacks of the existing solutions.
Offline scientific data processing. In existing MPI-based

and separate file system solutions, scientific data is processed
offline. A time consuming process, data copy or format
conversion, has to be carried out before data is processed.

Unnecessary data transfer and format conversion. Un-
modified ABDS frameworks and PortHadoop do not support
direct processing of scientific data on PFS. Data copy in en-
hanced ABDS frameworks, such as SciHadoop and SciSpark,
and data conversion in unmodified ABDS introduce significant
unnecessary overhead to the workflow.

Inefficient support of merging two environments. Cur-
rently, the only attempt to merge HPC and BD environments
is the HDFS connector solutions. However, those solutions
suffer in performance.

III. SCIDP DESIGN

SciDP borrows the virtual mapping idea from PortHadoop,
creates mirrored PFS input files on HDFS transparently. It is
re-designed with considerations of general input file format
support. SciDP minimizes the data path of typical scientific
workflows with the direct processing power of scientific data
on PFS in ABDS frameworks. The R interface is developed to
facilitate using of SciDP and demonstrated using the analysis
and visualization of a production simulation in Section IV.

A. SciDP Architecture

Three main components, File Explorer, Data Mapper and
PFS Reader, are developed to enable direct scientific data
processing in ABDS frameworks, as shown in Figure 3.

1) File Explorer: File Explorer is created to recognize
the structure of the input data. For example, a path on the
PFS with one netCDF output file and one CSV output file,
plot 18 00 00.nc and plot 19 00 00.csv, is specified as the
input path on the PFS. The netCDF output file contains two
variables, var A and var B, for one simulated timestamp. The

Path Reader in File Explorer searches the input path, and the
Sci-format Head Reader examines the format of each file in
the directory. Files are sorted into two different categories
based on the decision of Sci-format Head Reader. Different
mapping mechanisms will be used respectively in Data Map-
per. Files are marked as flat (e.g., plot 19 00 00.csv) if they
cannot be recognized by the Sci-format Head Reader using
any supported scientific data format library, such as HDF5
and netCDF. A corresponding virtual file will be created on
HDFS and the metadata of the source file is saved and sent
to Data Mapper. If a scientific data file is detected (e.g.,
plot 18 00 00.nc), the metadata of this file will be extracted
using the scientific I/O libraries (e.g., netCDF) and sent to Data
Mapper as well. Since scientific data formats typically contain
data variables organized as groups in a tree structure, similar
directory structures are used to map to corresponding groups.
A root directory is firstly created on the HDFS with the same
name as the input files on the PFS (e.g., plot 18 00 00.nc).
Virtual HDFS files are created to correspond to data variables
(e.g., var A and var B). The path from the root directory to the
files is created to mirror the group structures in the scientific
input files. If the input files are in the data formats which
support hierarchical structure, such as HDF5, deeper directory
structures will be created correspondingly.

2) Data Mapper: When the virtual HDFS files are created,
the mapping of the file content will be done by Data Mapper.
Data Mapper utilizes the metadata obtained by File Explorer
to calculate the virtual mapping between the HDFS blocks and
file segments on the PFS. The HDFS blocks are dummies since
no actual data is transferred and stored in HDFS. The dummy
HDFS block works as a placeholder. This technique makes
data accesses to scientific data on remote PFS transparent
to ABDS applications. ABDS frameworks can obtain the
file sizes and number of blocks through the native APIs to
schedule the tasks. There is no location information in the
dummy blocks as the native HDFS blocks. The data will be
fetched from the PFS by the PFS Reader inside each task. Flat
data files and scientific data files are mapped in two different
ways due to the differences of internal structure, which will
be discussed in Section III-B.

This process is similar to PortHadoop. However, the lack
of scientific data format support in PortHadoop forces the
conversion and leads to the loss of the semantic information
of the original data. Manual data partition and indexing need
to be done to use PortHadoop before any processing can be
carried out. SciDP, on the other hand, inherits the metadata
information in scientific data and brings it to the HDFS using
the Data Mapper. With this information, SciDP can calculate
the partition without any indexing beforehand.

3) PFS Reader: Compared with the conventional solutions,
SciDP introduces the PFS Reader to read data directly into the
memory of each Hadoop node without involving the master
Hadoop node. PFS Reader requests the information about
the source files on the PFS from the Data Mapper in the
NameNode running on the master node. The actual I/O access
happens independently in each task. SciDP follows the Hadoop
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design and processes data by block. The original Hadoop reads
64KB data at a time until the end of the split. SciDP, on the
other hand, reads the entire block in a single I/O request to
maximize the bandwidth. The block size of mapped flat files
is 128 MB by default for our implementation in Cloudera
Hadoop [12]. The mapping of the scientific data will be
discussed in Section III-B. Each task spawns a PFS reader
to fetch data from the PFS. With multiple tasks running on
multiple nodes at the same time, multiple PFS readers read the
data in parallel. With the help of the high bandwidth provided
by PFS, the data access can be done with high efficiency. Note
that the physical memory capacity will not be a limitation for
SciDP since the CPU cores are typically not over-subscribed
in Hadoop environment [16]. Thus, it avoids extra memory
consumption compared with the vanilla Hadoop.

Notice that SciDP does not affect how Hadoop processes
data on HDFS but introduces an additional data source to
the Hadoop framework. Data residing on HDFS is accessed
and processed as default workloads. SciDP fully exploits the
concurrency of the PFS since the PFS readers are spawned on
multiple nodes to read data at the same time. Also, the data
access in one task can be overlapped with data processing in
other concurrently running tasks. SciDP is currently imple-
mented based on Hadoop. However, the design of SciDP is
general and can be applied to any ABDS framework.

B. Data Mapping in SciDP

Figure 4 illustrates the two different data mappings in
SciDP. Firstly, Path Reader starts to scan the input path on
PFS, count the input files and Sci-format Head Reader detects
file formats. When flat files, such as file f in Figure 4, are
detected, file blocks are mapped as they are on the PFS. The
generated dummy blocks work as a mirror of the input flat
files on the PFS. Each 128MB dummy block is mapped to
a 128MB file segment on PFS. In this case, the boundaries
between logical data blocks misalign with the boundaries
between HDFS blocks. PortHadoop addresses this issue by
reading extra data across the boundaries until the end of
the record is found or by a scan-based indexing to align
data records. Neither sequence files nor typical scientific data
models, such as netCDF, is supported in PortHadoop. Analysis
of scientific data, however, is typically carried out in a coarser
granularity. The record will be much larger than one word or
line of text which is commonly used in traditional big data
analysis in ABDS frameworks. In such a workload, reading
extra data bytes would significantly hurt the performance.
SciDP avoids this problem by supporting analyzing scientific
data files directly.

When the Sci-format Head Reader recognizes that the input
files are in scientific data format, in contrast, the metadata in
the input files will be utilized to build the mapping between
two file systems. Dummy blocks will be created to map the
internal structure of each file. Directories will be created to
mirror the input files. Files will be created virtually following
the variables in each input file. For the example in Figure 4,
file var is created on HDFS according to the variable var
in the input file. The file and variable header information
is extracted by the Sci-format Head Reader and stored in
the Virtual Mapping Table using APIs from scientific data
format libraries, such as nc inq, nc inq var for netCDF files.
These headers contain information such as variable names,
dimensions, data types, offsets and sizes.

In Figure 4, the data of variable var is partitioned into
two compressed chunks. The first dummy block is created
with the same size as the original chunk size instead of the
default 128MB HDFS block size since the scientific data are
typically processed following the structure of the variables.
Unaligned data access will have a much higher overhead, due
to reading extra compressed chunks, and, therefore, hurt the
performance. User can also change the block size to tune the
partition. Take the second chunk in Figure 4 for instance, it
is mapped to two dummy blocks to split the workloads into
two tasks. For the target application in this paper, NCCS Earth
scientists may want to process the data in a finer granularity.
Then the dummy block size can be adjusted to the actual size
of one data grid. With this data mapping mechanism, SciDP
also supports subsetting at the variable level. The user can
specify a list of variables they want to analyze. SciDP will
ignore the unrelated variables and attributes in the netCDF
input files and minimize the time to build the mapping table.

SciDP's data mapping is universal. It does not only support
netCDF. A similar procedure can be applied for other scientific
data formats, such as HDF5. Ultimately, the input file format
support is designed to be modular. Users only need to provide
a file structure explorer and a corresponding reader to add
support of arbitrary file formats.

C. Data Path of SciDP

TABLE I: Data Path of Existing Solutions and SciDP

Data Path
Solution Conversion Data Copy Processing

Naive Yes Sequential Sequential
Vanilla Hadoop Yes Parallel Parallel

PortHadoop Yes No Parallel
SciHadoop No Parallel Parallel

SciDP No No Parallel

As discussed in Section II, existing solutions have a wide
variety of data paths. Table I lists the comparison of data
paths of existing representative solutions and SciDP when they
are used for analysis of scientific data. The naive solution
does not take any merits of either system to parallelize any
operation. The vanilla Hadoop solution utilizes the parallelism
of the Hadoop cluster and parallelizes the data copy and
processing. PortHadoop eliminates the data copy and improves



the performance. However, both solutions require conversion
before starting copying or processing data. The misaligned
boundaries caused by the loss of metadata information further
degrade the performance. SciHadoop avoids the conversion
by supporting scientific data format. The data copy of vanilla
Hadoop and SciHadoop could be either sequential or parallel
depending on user preference. It is listed as parallel in Table I
to represent the fully optimized implementations of existing
solutions. Compared with all existing solutions, SciDP max-
imizes the performance by avoiding both the conversion and
the data copy. Parallel processing can start immediately when
the data is generated. SciDP has the shortest data path and
fully utilizes the parallelism of both two clusters to provide
better support for the merging of the two environments.

IV. NU-WRF CASE STUDY

In this section, we use the data analysis and visualization
of NU-WRF simulation outputs as a use case to demonstrate
how SciDP accelerates scientific data processing in Hadoop
environment. For NU-WRF, NCCS scientists decide to deploy
two separate clusters (as shown in Figure 1(c)), to carry out
their scientific research as discussed in Section II-A. Recall
the NU-WRF simulation runs on an HPC cluster and writes
output in netCDF format onto PFS. The output is processed
on an ABDS cluster. With SciDP, the workflow is completed
with highly efficient data access, analysis and visualization.

A. Data Model

The simulation resolution of NU-WRF is represented in the
format of time × altitude × longitude × latitude. NU-WRF
uses 23 single-precision floating-point variables in the sim-
ulation. The output data of NU-WRF is in netCDF format.
Each output file contains data of one timestamp. The spatial
resolution can be configured to be high (i.e., 50x2,500x2,500)
or low (i.e., 50x1,250x1,250). In this work, we use the data
from a 48-hour low-resolution run and we use the variable
rainfall (QR) as an example to demonstrate the proposed
SciDP framework. Other variables can be analyzed and vi-
sualized in a similar way. Each variable is about 298MB
in raw binary format. NU-WRF utilizes the chunking and
compression feature introduced in the latest netCDF (i.e.
netCDF-4) to reduce the size to around 91MB for each variable
on average. In total, about 98GB of data is generated by the
example NU-WRF run.

B. Optimized Data Access

As mentioned in Section II-B, data format conversion is
required if vanilla ABDS frameworks or PortHadoop is used.
The data size increases dramatically after the conversion. For
the example NU-WRF run used in this study, the converted text
data is ˜33x larger than the compressed binary data. Enhanced
ABDS frameworks, such as SciHadoop, avoid the conversion.
However, the inescapable data copy is still required to move
the data between two clusters. Moreover, typically not all
variables are accessed for data analysis. Since the netCDF
file is not dividable in the variable level, the whole file has to

be moved, which introduces redundant I/O. In contrast, SciDP
only reads the variables that users select to the big data cluster.

C. Parallel Image Plotting in R

The extensive graphical abilities make R very popular in
data analysis and visualization. RHadoop is a series of R
packages for Hadoop. We choose R over the conventional
Interactive Data Language (IDL) for more flexibility in image
plotting and unification of programming interface with data
analysis. The unified R interface certainly is a natural choice
for system simplicity. Our focus, then, can be concentrated on
integrating R with data transfer. In SciDP, the visualization is
carried out using users’ Map and Reduce function written in R.
Multiple Map tasks are spawned to plot images in parallel to
utilize the parallelism of the Hadoop cluster. The data access
in each task is also performed in parallel and overlaps with
each other across all nodes.

D. Parallel Data Analysis in R

Since we use R for visualization, we can also analyze the
data along with the visualization. Users can manipulate the
data as in a typical R application since the data has been
converted into native R data structures by SciDP. Moreover,
the data analysis is carried out in parallel as the visualization
since multiple Map and Reduce tasks are running at the
same time across multiple nodes. Users can develop task-
independent data analysis in each Map function and perform
cross-task analysis in each Reduce function.

E. Implementation

Our prototype proof-of-concept SciDP1 is implemented in
Hadoop and supports netCDF format. The design of SciDP
is general and not bound to R interface and netCDF format.
Support of other interfaces (e.g., Python) and scientific formats
(e.g., HDF5) can be implemented on top of SciDP as well.

1) Main Components: We modify the addInputPath func-
tion in FileInputFormat class in Hadoop to implement the
File Explorer. During the input path parsing, the input path
will be compared with the predefined PFS prefix (e.g., gpfs://
or lustre://). The prefix can be added as an option when the
job is submitted. If a match cannot be found, SciDP will
behave as the original Hadoop and read data from HDFS.
If the predefined prefix is matched, dummy blocks will be
created as described in Section III-A. The Sci-format Head
Reader detects the format of each file in the input path by
attempting to open it using the open or the format checking
function provided by scientific data format libraries, such as
nc open and H5Fis hdf5. A boolean value will be returned to
indicate the format of the input files.

The Data Mapper is also implemented in FileInputFormat
class. Once the File Explorer returns a list of input files with
their formats, Data Mapper will create files and directories
following the design in Section III-A. A DFSClient instance is
created to talk with NameNode for file and directory creation.
The block size is determined using the default or customized
1Source code available at: https://bitbucket.org/fkengun/scidp



size given by the user. The metadata of each block is enriched
with information of the mapped file segment or hyperslab.

We also modify the MapTask class in Hadoop to enable
the PFS reader. The PFS reader accesses the file segments
from the PFS using MPI-IO functions (e.g. MPI File open,
MPI File read at, MPI File close). NetCDF APIs (e.g.
nc open, nc get vara, nc close) will be used to access hy-
perslabs of variables when netCDF files are detected.

2) API: We implemented an R interface to enable an easy-
to-use access to SciDP. Users need to specify the format of
input files. For instance, the NU-WRF simulation data used
in this study is in netCDF format and consists of multiple
variables with 3D single-precision floating-point array. Multi-
dimensional array will be prepared as R data frame. Thus,
users can manipulate the simulation data as they want.

3) Parallel Processing: For the NU-WRF case study, we
conduct both image plotting and data analysis in R. The
dimension information in the block mapping table will be used
to generate the coordinate. The rainfall value is used to plot
the image using the image2D function provided by plot3D
package on the graphical device created by CairoPNG function
in the Cairo package. All the intermediate outputs in Map tasks
are indexed by the key which is generated from coordinate
attributes in input files. The data is reused for local analysis
without extra data read. SQL queries are supported by the sqldf
package. It converts the SQL queries into operations upon R
data frames since R data frames are similar as tables. The
images and the analysis results will be aggregated according
to the key. The results will be combined and stored into HDFS
using the rhdfs package in Reduce task. rmr2 provides the
fundamental API support to communicate with underlying
Hadoop. Notice that SciDP only requires the rhdfs and rmr2
package to work. Cairo, plot3D and sqldf packages are only
used for the visualization and analysis of the NU-WRF data.
They are not required for the key function of SciDP.

V. EVALUATION

A. Setup

Testbed: We have implemented and evaluated SciDP on the
Chameleon cluster available at the Texas Advanced Computing
Center (TACC) [2]. Each compute node in Chameleon is
equipped with two 12-core Intel Xeon E5-2670 v3 CPU, 128
GB memory, and a 250 GB 7200 RPM SATA hard drive. All
nodes are connected via a 10 Gigabit Ethernet. On the other
hand, each storage node has 64GB memory and 16 2TB 7200
RPM SAS hard drives. Eight compute nodes are configured
as Hadoop slaves by default. Three storage nodes are used as
MGS, MDS and OSS in Lustre. 24 OSTs are managed by two
OSS nodes. The replication factor of HDFS is set to one.

Software: We implemented SciDP based on Cloudera
Hadoop 5.3.3 [12]. We obtained from NCCS the output from a
48-hour simulation of the NU-WRF model with a resolution of
50x1,250x1,250. Data of 48 timestamps is saved in 48 files.
However, the data set is not large enough for our test. We
developed a synthetic data generator to produce a much larger
data set. We increased the input data to 96, 192, 384 and 768
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Fig. 5: SciDP and existing solutions’ total execution time.2, 3

2 Serial copy and naive solution are too slow to fit in. They are
presented with 1/8 of their actual execution time. 3 The conversion
time required by these solutions is too long and not presented here.

timestamps, respectively. Notice that the synthetic data sets
follow the same dimensions, chunking and compression ratio
as the real data set. It can evaluate the existing solutions and
SciDP more comprehensively. The data sets are in the netCDF
format. For SciDP, we process the original netCDF files on the
PFS directly. The default resolution of images is 1,200x1,200.
For other solutions, copy and conversion are carried out as
necessary to meet the preconditions of different solutions.

TABLE II: Representative Workloads

Workload Image Plotting Animation Analysis
Img-only Yes No No

Anlys Yes Yes Yes

Workloads: Table II shows the workloads we use to test
SciDP. Img-only workload includes only the image plotting
phase which can be fully parallelized. The Anlys (short for
Analysis) workload covers all three phases. The analysis phase
could be conducted via SQL query or R-based statistical
analysis. We compare SciDP with the conventional solutions
using Img-only workloads. Additionally, Anlys workload is
added to evaluate SciDP in a more sophisticated scenario.

Considerations: In this section, we compare SciDP with
those four solutions listed in Table I, which represent all
existing solutions discussed in Section II. We implement all
solutions in R except SciHadoop since it does not have
R interface support. We do not compare with unified file
system solutions, since the PFS connectors have very poor
performance as shown in Figure 2. Notice that the conversion
time is not presented in this paper because it is known to
be extremely slow. We convert the 14GB NU-WRF outputs. It
finishes in more than one hour. Therefore, we do not count the
conversion time into the total time in any tests of this paper.
The data copy step is individually measured and explicitly
presented in this paper since there is no overlap between
data transfer and the processing for naive, vanilla Hadoop and
SciHadoop. The processing time of each solution is added on
top of the data copy time if it is required.

B. Performance Speedup for Img-only

Figure 5 shows the performance comparison between exist-
ing solutions and SciDP. The naive solution is the slowest. It
takes orders of magnitude longer time than other solutions to



TABLE III: Speedup of SciDP Over Existing Solutions

Number
of Files Naive Vanilla

Hadoop Porthadoop SciHadoop

48 187.65 22.16 16.80 6.58
96 220.63 20.93 13.49 7.86

192 254.78 20.79 12.60 8.74
384 284.63 21.04 11.88 8.22
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Fig. 6: I/O bandwidth of SciDP and other I/O methods.

plot images for all grids (too long to fit in, plotted using 1/8
of total execution time). In addition to that, the sequential
copy makes it slower (plotted similarly to image plotting
time). The vanilla Hadoop does both copying and plotting in
parallel, which increases the overall performance. PortHadoop
saves more time by getting rid of the data copy. However, all
these three solutions require format conversion which cannot
be presented in the figure as mentioned in Section V-A.
SciHadoop, in contrast, removes the requirement of conversion
and processes the data after they are moved from the PFS
to the HDFS. The data copy time, although accelerated by
the parallel copy in distcp, is significantly longer than the
processing time. It slows down SciHadoop dramatically. Such
an unbalanced data access time and processing time can be
attributed to the redundant I/O of copying the whole dataset
while only several variables are typically needed for the
processing. SciDP outperforms all the existing solutions by
6.58x to 284.63x according to Table III. In our previous
work [4], a 15x speedup over native solution was achieved to
process CSV input files. SciDP processes netCDF files directly
without the conversion and improves the speedup to 284.63x
compared with native solution. It shortens the data path by
avoiding the conversion and the data copy. The data access
in Img-only workload is also minimized by only fetching the
required variables from the PFS. More importantly, the data
transfer between two clusters is overlapped with the image
plotting, which further boosts the performance. SciDP utilizes
the parallelism of both systems and overlaps the data access
with data processing to generate the best performance.

C. I/O Efficiency

SciDP targets to solve the data access problem between two
systems. Figure 6 demonstrates the I/O efficiency of SciDP
compared with the typical HPC I/O mechanisms. Two netCDF
methods (NC Ind I/O and NC Coll I/O) read data via netCDF
library APIs (e.g. nc get var) using different I/O modes (i.e.
independent and collective), respectively. MPI Coll I/O shows
the maximal bandwidth we can reach by ignoring the netCDF
structure and reading the input as a flat file. It is only used
to illustrate the upper limit of the ideal performance. The
measured I/O bandwidth of SciDP is presented as SciDP and
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Fig. 7: SciDP and existing solutions’ task time decomposition.

SciDP Equal. They are calculated by dividing the compressed
data size and raw data size over I/O time, respectively. The
I/O time includes both the actual data access time and the
decompression time. Thus, SciDP Equal is more practical to
evaluate the I/O efficiency of SciDP as it is calculated using
the actual processed data size. It can be observed that SciDP is
very efficient in I/O. The equivalent bandwidth (SciDP Equal)
is closer to the pure MPI collective I/O method (MPI Coll I/O)
when the number of readers/processes increases. The parallel
I/O design of SciDP is the source of the highly efficient I/O.
In SciDP, the reader in each task works similar with a single
rank MPI application. All readers work together to fetch data
in parallel to guarantee the high I/O efficiency.

D. SciDP Task Time Decomposition

As discussed in Section IV-E2, SciDP reads data from PFS
first and consequently converts into R data format before plot-
ting. Read, Convert and Plot are three sub-phases in the image
plotting phase. Figure 7 presents the decomposed execution
time of three sub-phases in one run of Img-only workload
when processing 384 data files. It shows that Convert takes the
longest time for naive, vanilla Hadoop and PortHadoop. That
is because they use the read.table function which sequentially
converts data from raw format (i.e. text) into correct data
types. In contrast, SciDP does not need this text-to-binary
conversion. The binary data fetched from the PFS can be
converted to R structure in a very short time. The I/O cost,
the Read time, takes about 2 seconds in each task for three
existing solutions. SciDP takes about 1.75 seconds to read a
variable with 50 levels, which is equal to 0.035 seconds per
one level data shown in Figure 7. Vanilla Hadoop, PortHadoop
and SciDP have nearly the same Plot time since we implement
the image plotting in the same way for these three solutions
after the data is converted to R structure. Naive takes less
time to plot a level of data compared with other solutions.
That is because it processes data in a sequential fashion
without resource contention in memory and disk bandwidth.
The benefit of the parallelism in the other three solutions
overrides the performance gain of contention-free sequential
code. With improvement and optimizations in both I/O and
parallel processing, SciDP outperforms the exiting solutions
in average task time.

E. Scalability Evaluation of SciDP

The scale-out evaluation of SciDP for Img-only workload is
shown in Figure 8. 4, 8 and 16 compute nodes are deployed
with SciDP to evaluate SciDP’s performance as the system
scales out. In this test, 8 tasks are run on each node which leads
to 32, 64 and 128 possible parallel tasks for four test cases,



respectively. SciDP shows good scale-out performance. The
image plotting time reduces nearly in half when the number
of nodes doubles which leads to a near-optimal speedup. This
can be attributed to the nature of the workload. Image plotting
in each task is completely independent. There is no inter-task
communication and data dependency across tasks. Scale-up
evaluation shows similar performance as scale-out results. Due
to the page limit, we do not include them here.
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Fig. 8: Scale-out evaluation of SciDP.

F. Parallel Data Analysis Using SQL Query
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Fig. 9: Data analysis performance of SciDP.

To demonstrate the integrated analysis performance of
SciDP, we use two typical analysis in the Anlys workload
and run them after image plotting in the same Map task. In
Figure 9, SQL queries are used for the analysis. no analysis
represents the Img-only workload as the base line. The top 10
data points are highlighted in the highlight case. Top 1% data
is selected and stored in HDFS in top 1% case, respectively.
In Figure 9, we can observe that the highlight case takes
almost the same time as the no analysis case. It indicates that
the analysis takes very short time. The reason is threefold.
Firstly, it is because the computation of highlight is relatively
small and negligible. Secondly, the extra data gathered from
each Map task is also small (the difference in image size is
very small after highlighting). Thirdly and most importantly,
it is because no extra data read is required as described in
Section IV. Thus, simple data analysis does not take extra
execution time and performs really well.

On the other hand, the data processing time of more com-
plex SQL queries is much larger than that of the simple data
analysis. Data size generated in each Map task is proportional
to the total input data size. In this evaluation, the size of the
query result for top 1% case is about 596 MB for one variable.
Since the SQL query results are stored on HDFS after partial
results are collected from each task, more data are written into
HDFS in top 1% case. More network data transfer and more
disk writes lead to an increase in the execution time.

VI. RELATED WORK

There are several works to enable data access and pro-
cessing of HPC data in Hadoop. MRAP [27] extended the
MapReduce paradigm to support HPC data (e.g., netCDF)

semantic description in Hadoop. Similarly, SciHadoop [9] was
proposed to facilitate scientific data processing in Hadoop by
maintaining the physical-to-logical mapping. SIA [20] was
designed to build spatiotemporal index for big array-based
climate data. A table was created and stored for each grid in
the climate data to allow indexed data access in Hadoop. IBM
builds a Hadoop connector to allow Hadoop to communicate
with GPFS directly [17]. Multiple HDFS connectors were
developed for Lustre as well [18], [26]. Ceph [33] provided
three sets of APIs to support both HPC and BD workloads.
Cephs file system (CephFS) can be mounted as a POSIX-
compatible file system using Ceph client in Linux kernel since
2.6.34. The block storage system of Ceph can be used for
ABDS frameworks. All these works either require an explicit
data copy to transfer data from PFS to Hadoop or are designed
for a specific PFS. In contrast, SciDP is designed for the
environments with two separate clusters and prepares the data
in memory from any PFS which MPI-I/O and POSIX I/O
support. SciSpark [22] and H5Spark [21] extend Spark to
support netCDF and HDF5, respectively. However, SciSpark
does I/O in sequential for a single input file [21]. H5Spark has
a similar design with SciDP for Spark while SciDP is based
on Hadoop.

Researchers in HPC also manage to enable MapReduce-like
data processing on HPC platforms. Smart [32] is a framework
to allow HPC users to analyze the generated data in an in-
situ and MapReduce-like way. ArrayUDF [13] allows users to
define custom function to apply over the data. However, users
have to learn the new API instead of utilizing the mature and
powerful existing works in Hadoop to accomplish the analysis.
In contrast, SciDP can exploit all the merits of Hadoop to meet
users various requirements.

R is a popular and powerful programming language for
data analysis and visualization. To our best knowledge, SciDP
is the first framework to enable direct analysis of HPC data
in R environment. RHIPE builds an integrated programming
environment for R and Hadoop to support processing large
complex data [15]. RHadoop [6] is a collection of five R pack-
ages to enable R data analysis under Hadoop environments.
However, they do not support any scientific data format and
expect data stored on HDFS. On the contrary, SciDP enables
R to directly process remote scientific data stored on PFS.

VII. CONCLUSIONS

Data-intensive HPC, High Performance Data Analytics
(HPDA), and other newly emerged HPC and big data appli-
cations demand both high-performance computing power and
high-performance data processing power. There is a need to
utilize the currently separated HPC and big data ecosystems to
support both computing and data processing. However, how to
support this integrated requirements effectively is still a subject
of research. In this study, we introduced the SciDP system to
support the demand of integration. SciDP supports processing
data in scientific formats, such as netCDF and HDF5, under
a Hadoop environment using an R-based interface. SciDP
reaches a 6x to 8x speedup on a typical Earth science



application in MPI-Hadoop cross-platform data analysis, in
comparison with the state-of-the-art solutions which support
scientific data format in Hadoop. SciDP illustrates the vital
important issue of supporting the merging of HPC and big
data: maintaining, utilizing, connecting, and integrating the
potential of existing HPC and big data technologies into an
integrated environment. SciDP provides a successful example
and feasible solution for utilizing the potential of PFS and
Hadoop, and for supporting the merging of computing and
data analysis. Because of the general representativeness of the
NASA Earth science application, the results presented in this
study are general and can be extended to other applications.

Integrating HPC and big data ecosystems is a long-term
goal. The ecosystem integration can be achieved at various
levels. SciDP supports the integration at file system level. It is
the first step of supporting the merging requirements of HPC
and big data systems. SciDP can be extended to support other
BD frameworks, such as Spark and Impala, and the general
integration of computing and data analysis. In the future, we
plan to extend SciDP to more ABDS frameworks to enable
more users with the direct processing power of PFS data.
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