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Abstract—The predominant data model in cloud storage is
the object-based storage. Object stores follow a simpler API with
get() and put() operations to interact with the data. A wide variety
of data analysis software has been developed around objects
using their APIs. In fact, the evolution of Big Data analytics is a
major driver for highly optimized data-centric quality software.
However, organizations maintain file-based storage clusters and a
high volume of existing data are stored in files. This is specifically
true for the scientific communities. In this paper, we present the
key characteristics of object-based and file-based storage APIs,
we explore several object-to-file mappings aiming to bridge the
semantic gap between these data models. The evaluation of our
mapping algorithms exposes various strengths and weaknesses
of each strategy and frames the extended potential of a unified
data access system. Results show that our solution can offer more
than 3x higher performance for specific workloads while keeping
minimal overhead of our library.

Index Terms—Data Management, Data-Intensive Computing,
Convergence of HPC and Big Data, Object Stores, Parallel File
Systems, Semantic gap

I. INTRODUCTION

In the modern era of data explosion via Web services and
with the tremendous growth of Cloud environments, data are
stored, accessed, shared, and processed as objects [1]. The
need for extreme scales and programmatic ease of access-
ing data, gave birth to Object Storage. Popular examples
include Microsoft’s Azure DocumentDB [2], Google’s col-
lection of Cloud Storage (Cloud Storage [3], Datastore [4],
BigTable [5]), Amazon’s DynamoDB [6], Cassandra [7], Mon-
goDB [8] and others. Most of these services offer simplistic
APIs with basic get(), put(), and delete() operations. These
storage systems consist the NoSQL space and support REST
APIs [9], [10]. A wide variety of freely available data analysis
software has been built around Object Stores. Most notably
Apache BigTop collection [11] offers a comprehensive suite
of highly optimized and scalable software.

On the other hand, historically in traditional computing such
as cluster computing and high-performance computing [12]
and specifically in fields like science, finance, banking, stock
market and others, data are stored in files. File systems,
both local and distributed, have been developed and highly
optimized through the years. In large scale environments,
parallel file systems (PFS) such as Lustre [13], GPFS [14],
and PVFS [15] are in use. Distributed file systems are also in
large deployments most notably GoogleFS or HDFS [16]. All
of these systems use popular storage interfaces and standards

to interact with the files. POSIX-IO [17], MPI-IO [18] and
HDF5 [19] are some of the most widely used.

Files, objects, and the systems supporting them are not in
harmony. File systems and object stores are designed with
different end goals and therefore interfaces have drifted away
from a uniform data access. Applications are increasingly
dealing with high volume, velocity, and variety of data which
leads to an explosion of storage requirements and increased
data management complexity [20]. BigData analytics [21],
[22] software has been very successful in Cloud environ-
ments that run on top of some kind of an object store. We
understand the need to bridge the gap between file and object
semantics by a) exposing existing data repositories residing
in file systems to cloud data processing solutions without
the need of costly data movement and transformations, and
b) allowing the cloud software stack to operate on files and
thus, bringing powerful data processing capabilities to more
traditional computing sites without the cost of re-developing
software or entirely transitioning to a cloud environment (e.g.,
solutions on premises).

In this paper, we explore several ways to map objects to
files. More specifically, we designed and implemented four
new mapping strategies of a typical object (i.e., in the form
of a key-value pair regardless of the value type) to one or more
files. These mapping strategies cover a wide variety of input
workload characteristics and express several features such
as scalability, consistency and high performance. This work
paves the way towards a unified data access system and allows
a cross-platform data processing. We envision a data path
agnostic to the underlying data model and we aim to leverage
each storage solution’s strengths while complementing each
other for known limitations. With our mapping strategies
we strive for maximizing productivity and minimizing data
movement which leads to higher performance and resource
utilization. Our mapping strategies are transparent to the
application which simply needs to connect to our library (i.e.,
either by recompilation or preloading).

The contributions of this paper are:

• We present key characteristics of object-based and file-
based storage solutions.

• We design and implement a unified storage access system
that bridges the semantic gap between object-based and
file-based storage systems.

• We evaluated our solution and the results show that, in
addition to providing programming convenience and effi-



ciency, our library can grant higher performance avoiding
costly data movements between object-based and file-
based storage systems.

The rest of this paper is organized as follows. Section II
provides the motivation of this work. In Section III we
describe the background and the related work. In Section
IV we present the design and implementation details of our
mapping strategies. Results of our library’s evaluation are
presented and analyzed in Section V. Finally, conclusions and
future work are laid out in Section VI.

II. MOTIVATION

Performing data analysis using HPC resources can lead
to performance and energy inefficiencies [23]. In [24] the
authors point out that traditional offline analysis results in
excessive data movement which in turn causes unnecessary
energy costs. Alternatively, performing data analysis inside the
compute nodes can eliminate the above mentioned redundant
I/O, but can lead to wastage of expensive compute resources
and will slow down the simulation job due to interference.
Therefore, modern scientific workflows require both high-
performance computing and high-performance data processing
power. However, HPC and BigData analytics systems are dif-
ferent in design philosophies and target different applications.
D. Reed and J. Dongarra in [25] point out that the tools and
cultures of HPC and BigData analytics have diverged, to the
detriment of both; unification is essential to address a spectrum
of major research domains.

This divergence led HPC sites to employ separate com-
puting and data analysis clusters. For example, NASA’s
Goddard Space Flight Center uses one cluster to conduct
climate simulation, and another one for the data analysis
of the observation data [26]. Periodically, simulation data
are compared with observation data, and are used in data
analysis. Similarly, observation data and analysis results are
used in simulation to increase accuracy and efficiency. Due to
the data copying between the two clusters, the data analysis
is currently conducted off-line, not at runtime. However,
runtime simulation/analysis will lead to more accurate and
faster solutions. The data transfer between storage systems
along with any necessary data transformations are a serious
performance bottleneck and cripples the productivity of those
systems. Additionally, it increases the wastage of energy and
the complexity of the workflow. Another example is the
JASMIN platform [27] run by the Center of Environmental
Data Analysis (CEDA) in the UK. It is designed as a ”super-
data-cluster”, which supports the data analysis requirements
of the UK and European climate and earth system modeling
community. A major challenge they face is the variety of
different storage subsystems and the plethora of different
interfaces that their teams are using to access and process
data. They claim that PFSs alone cannot support their mission
as JASMINE needs to support a wide range of deployment
environments.

There is an increasingly important need of a unified storage
access system which will support complex applications in a

cost-effective way leading to the convergence of HPC and
BigData analytics. However, such unification is extremely
challenging with a wide range of issues [25]:

1) gap between traditional storage solutions with semantics-
rich data formats and high-level specifications, and mod-
ern scalable data frameworks with simple abstractions
such as key-value stores and MapReduce,

2) difference in architecture of programming models and
tools,

3) management of heterogeneous resources and,
4) management of diverse global namespaces stemming

from different data pools.

A radical departure from the existing software stack for both
communities is not realistic. Instead, future software design
and architectures will have to raise the abstraction level, and
therefore, bridge the semantic and architectural gaps.

III. BACKGROUND AND RELATED WORK

A. What is a file-based storage

A file system stores data in a hierarchical structure. Data
are saved in files and directories and presented in the same
format. Data can be accessed via the Network File System
(NFS) or the Server Message Block (SMB) protocols. Files are
basically a stream of bytes and they are part of a namespace
that describes the entire collection in a certain file system.
The file system maintains certain attributes for each file such
as its owner, who can access the file, its size, the last time it
was modified and others. All this information follows the file
and it is called metadata.

B. What is an object-based storage

An object store manipulates data as discrete units called
objects. These objects are kept inside a single expandable
pool of data (e.g. repository) and are not nested as files inside
folders and directories. The object store keeps the blocks of
data that make up an object together. It also adds extended
metadata to the object which eliminates the hierarchical struc-
ture used in a file storage, placing everything into a flat address
space, called a storage pool, or key space, or object space. A
unique identifier is assigned to each object and is used by the
application to retrieve this object.

C. Object vs file storage

Object stores overcome many of the limitations that file
systems face (especially in scale), sometimes with a hit in
performance. As more and more data is generated, storage
systems have to grow at the same pace. As file systems
grow we may run into durability issues, hardware limitations
and management overheads. The flat name space organization
of the data, in combination with its expandable metadata
functionality, make object store a better choice for the Big
Data era. However, object storage is not the answer to all
storage-related problems. File systems provide guarantees for



TABLE I: Object vs File Storage

Category Object Storage File Storage
Data unit Objects Files
Update Create new object In-place updates
Protocols REST and SOAP NSF with POSIX
Metadata Custom Fixed attributes
Strengths Scalability Simplified access
Limitations Frequent updates Heavy metadata
Performance High throughput Streaming of data

strong consistency which object stores cannot (most of the im-
plementations offer eventual consistency). Strong consistency
is needed for real-time systems where data are frequently
being mutated. Finally, parallel file systems exploit high
degree of parallelism to offer high bandwidth which makes
them great for streaming data. Table I summarizes some of
the key differences.

Another critical characteristic to understanding the nature
of our mapping strategies is that data analysis software relies
on existing storage interfaces. Our solution does not require
any changes to the application code but instead intercepts all
storage calls (e.g. CRUD operations) and redirects them to the
file system.

D. Related work

Ceph [28] is a new type of distributed file system that can
write in both objects and files since it’s underlying storage
is based on object store devices. With this design, they
created APIs that can support both file operations and object
operations. However, to use their system, one needs to switch
the entire storage installation to a Ceph deployment, and appli-
cations need to be rewritten using the specific Ceph API to be
able to use it. PanasasFS [29], [30] and OBFS [31] similarly
utilize OSDs. Their design offloads some administrative tasks
on the disk itself making it run faster for specific workloads.
Our solution does not require any change to the application
code and it can bridge the semantic gap between objects and
files regardless the underlying storage system.

Intel’s DAOS [32] has explored a unification of multiple
namespaces into a global one where applications can access
data from multiple underlying storage solutions such as simple
POSIX, HDF5 or ADIOS [33]. That is a step towards a
unification of interfaces and storage subsystems.

Major cloud providers have built file connectors to their ob-
ject storage infrastructure. Amazon’s Elastic File System [34]
provides a standard file system interface and file system access
semantics for data that reside in Amazon cloud storage. Even
though this helps accessing data in the cloud using a file
interface, it is tightly coupled with Amazon Web Services and
it is not a general solution like ours. Microsoft’s Azure File
Storage [35] makes data migration easy. They urge users to
move their data in this service in order to access and process
data by utilizing the same code. Our solution can skip the
moving of data and can operate even on premises. User’s can

Fig. 1: Virtual Object - Container

simply use powerful cloud software to analyze existing data
on their file-based clusters.

IV. DESIGN AND IMPLEMENTATION

A. Library implementation details

Our library is implemented in the middleware layer. A
prototype version can be found online. 1 We carefully op-
timized the code to run as fast as possible and minimize the
overhead of the library. The code is optimized with state-of-
the-art helper libraries. A few examples include the following.
For memory management we chose Google’s tcmalloc library
[36] that performs 20% faster than the standard malloc and
has a smaller memory footprint. For hashing, we selected the
CityHash functions by Google [37], the fastest collection of
hashing algorithms at this moment. We specifically used the
64-bit version of the hashing functions. For containers such as
maps and sets, we used Google’s BTree library [38] which is
faster than the STL equivalent containers and reduces memory
usage by 50-80%.

Upon initialization of the library, a namespace crawler
scans the underlying file system to create the initial metadata
information. Additionally, if the user provides access to a key-
value store, the crawler will scan the key space and will create
a unified single namespace for the user. All these metadata
information are stored in a special file in the file system.
The library also loads this metadata file in memory for faster
queries. Deletion operations are handled by invalidation and
namespace garbage collection on application exit.

B. Mapping Strategies

We designed and implemented four new strategies to map
user’s objects to underlying files. Relative to object-to-file
mapping those are: 1-to-1, N-to-1, N-to-M simple, and N-to-M
optimized. Each of these mappings demonstrate strengths and
weaknesses and were designed to offer greater flexibility to
various input workloads. To achieve those mapping strategies
we introduce two new terms. Virtual Object, which encap-
sulates the application’s object along with other metadata
information necessary to our library. Virtual objects are the
unit of mapping to the underlying file system. Container,
which represents a file in the file system that holds virtual
objects and other metadata information useful to our library
such as indexing and update logs. Containers may exist either
in memory or on disk. The data consistency is guaranteed
by the POSIX-compliant file system. Figure 1 shows their
respective classes and their public members.

1Code will become available upon acceptance of this paper.



Fig. 2: Mapping strategy: 1-to-1

1) One object to one file (1-1)

Description: In this mapping strategy, each application’s
object is mapped to a unique container (i.e., file). The goal
is to enable processing of existing collections of files. For
example, assuming there is a collection of pictures stored in
a file system, this strategy will map each file to an object.
Therefore, one can access and process this dataset by simply
using a get() and put() interface. This strategy is also quite fast
for a relative small number of objects. Figure 2 demonstrates
this strategy.
Challenges: Since each object is mapped to a unique con-
tainer, the underlying file system needs to manage many, often
small, files. This is a known performance bottleneck of file
systems because of excessive metadata operations. Every time
a file is accessed, the file system needs to check permissions,
update the timestamps (i.e., time accessed, time modified) and
other related structures. This excessive metadata operations is
also the main reason of scalability issues with file systems.
Benefits: The benefits of using such mapping strategy are sev-
eral. The mapping semantics are the simplest. The overhead of
this mapping and the memory footprint are kept at minimum.
Update operations simply mutate the respective file. Finally,
for existing data residing in a file system, this is the only
strategy that could allow such access to the data. In order
to achieve this, there needs to be a bootstrapping sequence
where the entire file system namespace is subscribed into a
key space.
Limitations: The maximum number of files in a file system
has a limit (e.g, for NTFS and ext4 this limit is 4 billion).
Also, the number of concurrently opened files is limited (e.g.,
default in ext4 is 64K). Therefore, first the I/O performance
with large number of objects will be low due to increased
metadata operations, and second the scalability suffers from
the limitations a file system tree hierarchy imposes.

2) Multiple objects to one file (N-1)

Description: In this mapping strategy, the entire keyspace
of application’s objects is mapped to one container. Fig-
ure 3 demonstrates the details of this strategy. The goal is
to maintain the simplicity of the mapping while attacking
the limitations of the previous strategy. Virtual objects are
written sequentially in the container. Any updates are simply
appended at the end of the file. This strategy is good for
smaller dataset sizes.
Challenges: Since each object resides in one big container,
indexing is very important to facilitate faster get() operations.

Fig. 3: Mapping strategy: N-to-1

For this reason each virtual object maintains the container
offset where the actual object resides. The container also
maintains a map of existing virtual objects. Update operations
need to update all of these memory structures before data are
written in the disk.
Benefits: The benefits of using this strategy are extracted
mostly by solving the inefficiencies of the 1-to-1 mapping.
Only one file is created and maintained in the underlying
file system which makes the metadata operations lightweight.
Searching is offloaded from the file system to our library
and structures are kept in memory for faster operations.
Mapping cost is relatively low. This strategy works well in
a multi-application environment as well. Data consistency is
guaranteed by the file system. Concurrent reads are allowed.
Limitations: The limitation of this strategy is that the con-
tainer size can and will grow arbitrarily large. Most of the file
systems impose a limit to the maximum file size (i.e., ext4 is
32TB, XFS is 8EB). While this may seem a difficult number
to reach, moving forward to exascale, this strategy will be
limited by this.

3) Multiple objects to multiple files simple (N-M [S])

Description: In this mapping strategy, a collection of appli-
cation’s objects is mapped to a collection of containers. The
constraint for the creation of new containers is the container
size. After each container reaches the maximum container
size (i.e., default in our solution is about 128MB) it will
trigger the creation of the next container. This strategy tries
to overcome the previous strategies’ limitations. The number
of files is controllable by the strategy and containers’ size
is predefined (i.e., user can tune this). Update operations
mutate the virtual object that resides in the container. If the
updated object’s data is larger, then a special update-container
linked with the original container is created to hold the extra
data. A background compaction thread crawls the file system
periodically or by demand to concatenate container’s with
their respective update-container. Figure 4 demonstrates this
mapping strategy.
Challenges: While this mapping strategy overcomes many of
the scalability limitations of the previous strategies, searching
for an object is quite challenging. Each container maintains a
map of existing objects and each object is linked to possible
updated objects in the update-container. However, searching
the entire key space is burdensome since one must query all
the containers. A possible fix for this is to apply bloom filters
on the containers much like Google’s LevelDB [39]. This filter



Fig. 4: Mapping strategy: N-to-M simple

will reduce the number of unnecessary disk reads needed for
a get() call by a factor of approximately a 100 according to
the documentation of LevelDB.
Benefits: By controlling the number and the size of created
containers the mapping algorithm creates data access patterns
to the underlying file system that are favorable to its I/O
performance. Our library performs fwrite()s and fread()s to
the file system in chunks which significantly helps the per-
formance specifically write operations. We also implemented
caching in memory for hot keys in a separate container to
facilitate faster get()s. Finally, the scalability of this strategy
is definitely higher than the previous two mappings.
Limitations: There is no apparent scalability limitation. How-
ever, as discussed above, for workloads with heavy object
mutations, the performance of this mapping can be limited
when compared with the previous two strategies. Additionally,
the mapping cost is higher than before and the overheads
from compactions can be considerable even though it happens
asynchronously.

4) Multiple objects to multiple files optimized (N-M [O])

Description: In the optimized version of N-to-M objects to
files mapping strategy, application’s objects are first hashed
into a key space and then mapped to the container responsible
for that range of hash values. For hashing we used Google’s
CityHash [37] collection that is proven to be very fast (i.e.,
in the order of few nanoseconds). Figure 5 shows how this
strategy works. Specifically, keys go through the hashing
function and get a 128 bit hash value. Containers are created
according to a range of hash values. This strategy is extremely
scalable since containers represent a range of keys regardless
of their size. The container size is relative to the overall size
of the keys it holds. Update operations simply write at the
end of the container while invalidating the previous object. A
background thread periodically performs defragmentation of
the containers to save storage space. Searching is performed
in constant time. To achieve this, we associated a truth array
with each container. If an object exists in the container then
the index of that object’s hash will be true. We implemented
a similar logic to quickly check if a container already exists.
The goal of this strategy is to be able to scale and to
support fast writes, reads and updates. To further optimize the
performance, we perform all I/O operations in a non-blocking
fashion. Virtual objects are first put in memory in a MemTable
whose size is configurable. Once the memtable is filled, a
backup memtable becomes active in order to accept incoming

Fig. 5: Mapping strategy: N-to-M optimized

objects. The virtual objects in the filled memtable are then
written in their respective container on disk. A separate thread
is spawned in the background to perform the file system call.
With this asynchronism, we managed to overlap I/O calls
with computation and boost the performance of the overall
mapping. A blocking version of this mapping strategy is also
available, but we highly recommend users to use the non-
blocking.
Challenges: Frequent updates could create fragmented con-
tainers. We solved this with a background defragmentation
thread. Another challenge comes from the mapping based on
the hash value. Containers responsible for a range of keys
could end up with only few keys stored in them resulting
to a lot of file system calls. Therefore, for small number of
objects this mapping strategy could be overwhelming. In this
case, we recommend using a 32bit or 64bit hashing to limit
the number of containers (i.e., configurable withing our library
through Google’s CityHash algorithms).
Benefits: This strategy is the most scalable. It is the best
for large number of objects. Writes and updates are fast.
Reads and searches are also very fast using the indexing we
implemented. We also kept the mapping cost at its minimum.
Limitations: The only limitation of this strategy is the higher
memory usage with memtables consuming space otherwise
allocated to the application. If memory space is of importance,
users can use the blocking version of this strategy and set the
memtable size to few MBs.

V. EVALUATION RESULTS

A. Experimental Setup

Testbed: All experiments were conducted on the Chameleon
testbed [40]. More specifically, we used the bare metal con-
figuration offered by the system. Our node has a dual Intel(R)
Xeon(R) CPU E5-2670 v3 @ 2.30GHz, 128 GB RAM, 10Gbit
Ethernet, and a local 240GB SSD drive. The performance of
the disk drive is about 520MB/s read and 350MB/s write.
Software and applications: The operating system of the
cluster is CentOS 7.0 and the PFS we used is OrangeFS
2.9.6 [41] (formerly known as PVFS2 [15]). As a key-value
store (KVS) we used Redis 4.0.1 [42]. We used our own
synthetic workload generator that given an I/O trace file it
can ”replay” all I/O operations. As an input, we used multiple
workload characteristics such as only-get, only-put, mixed,
and get - put with fixed or variable request size. All test
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results are the average of ten repetitions. For real application
workloads, we used Yahoo Cloud Serving Benchmark [43], a
widely used framework with variety of workloads for evaluat-
ing the performance of different key-value and cloud serving
stores. We also used a K-means clustering application [44] to
further examine our solution.

B. Experimental Results

1) Mapping cost

Figure 6 shows the average mapping cost expressed in time
(ns). In this test, the input is 128K objects (i.e., 131072) of
64KB size with mixed get-put calls. We report the average
time spend in mapping. As it can be seen, the 1-to-1 strategy
has the smallest cost since it naturally maps each object to
a file. Our N-to-M simple has the highest since each object
mapping involves more tasks such as checking the container’s
size (i.e., create a new container if needed).

2) How the object size affects the I/O performance

The object size is very important in terms of performance
of the underlying storage system. In this test we change the
object size from 32KB to 2MB and measure the overall time
to perform the I/O over the parallel file system. In Figure 7
(a), the input data size is 1.2GB which means that the number
of objects to map is changing. For instance, for 32KB object
size the total number of objects are roughly 40000 whereas
for 2MB object size the number drops to 600. The best
performance is coming from the N-to-M optimized strategy
which is 3.5x faster than 1-to-1 for small objects and 1.2x
faster for large ones. The N-to-1 and N-to-M simple perform
almost the same. In Figure 7 (b) we keep the number of
objects the same while we change the object size. Specifically,
the total number of objects to be mapped is 40000 which
gives a total data size of 1.2GB for the 32KB object size
and roughly 80GB for the 2MB object size. We can observe
that all mapping strategies scale well for variable object size
with the N-to-M optimized being the best. It is clear that with
larger object size the file system grants higher performance in
all mapping strategies.
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3) Library mapping and I/O performance

Synthetic benchmark: In this test, we created a synthetic
workload that consists of 4GB total size of I/O. The object size
is kept at 64KB. For the mixed case in figure 8, the benchmark
first writes 1GB, reads the data back, then it updates the 1GB
and reads it again. The put and get cases are simply writing
and reading the entire 4GB respectively. The 1-to-1 mapping
suffers from the excessive number of files created (i.e, about
65536). The N-to-M optimized performed the best since it
takes advantage of the memtables and writes to the disk with
better granularity (i.e., relative to the memtable size and not
the 64KB objects). It completed the test in 11 seconds for the
mixed case, 13 seconds for the put and 8.5 for the get case.
Note the difference in read and write performance because of
the specifications of our drive.
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Real applications: To test our mappings under real workloads
we used 2 applications: Yahoo Cloud Serving Benchmark
(YCSB) and K-means clustering. We used all 24 cores on
our testbed and all storage systems used are deployed locally.
We also preloaded data (i.e., offline preparation) that will be
used as inputs to the applications. We tested the following
workloads from YCSB: a) Balanced: 50% reads and 50%
writes. b) Read-mostly: 90% read and 10% writes c) Read-
only: 100% read d) Read-modify-write: the client will read a
record, modify it, and write back the changes. The total I/O in
this test is 64 GB. It is performed with a 64 KB object size in
the form of records (i.e., 64 fields, 1000 bytes each including
the key). For the K-means clustering algorithm aims to find
the evenly spaced sets of points in subsets of euclidean space
and partition these subsets into well-shaped and uniformly
sized convex cells. The algorithm starts with initial placement
of some number k of points in each cell. It then repeatedly
computes the centroid for each cell and moves the k points till
it converges. This algorithm is a mixture of computation and
I/O intensive phases. It reads points from the disk, performs
the k-means algorithm and write back the final output. We
use four point data sets with 8, 16, 32, and 64 GB total size
respectively to test the scaling. Under these tests, all get()
and put() operations are mapped via our library to a PFS and
we measure the overall time to execute the workload and the
achieved throughput in operations per second.

In figure 9, we compare our N-to-M optimized mapping
strategy (i.e., the fastest from the previous test) to the baseline
which consists of first copying and transforming the data to
an Object Store and then perform the computations using
native I/O calls (i.e., in this case over Redis). Finally, as a
reference we include the time to run the application on top
of the native storage system (i.e., blue bar in the figure). As
it can be seen, our solution provides more than a 2x boost
in performance since it avoids the costly data movement and
allows the application to utilize the object store APIs over a
PFS. As it is expected, the copying dominates the overall time.
However, even without the copying, our solution provides
competitive performance when compared to the native I/O
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calls over the KVS. Especially in the read-only test case, our
mapping strategy creates a sequential access pattern which
favors PFSs and provides higher performance due to read-
ahead and prefetching.

Figure 10 shows the results for K-means clustering ap-
plication. In this test, baseline consists of first copying the
input data from PFS to the KVS and then executing the
computations. Since this application is more computation-
intensive than the pure I/O of YCSB, we can observe that
copying data is a smaller fraction of the overall execution
time. Even so, our solution offers more than 40% performance
improvement. When compared to the native calls over the
KVS, our mapping only adds 9% overhead to perform all
necessary operations. Specifically, for the 8 GB input our
solution took 57 seconds to complete whereas the baseline
needed 80 and the native calls over KVS 52 seconds.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we designed and implemented several object-
to-file mapping strategies. We evaluate all mapping strategies
and we report strengths and weaknesses of each one of them.
Our evaluation shows that with better design of the mapping
algorithm we can get almost 4x higher performance compared
to a naive mapping of objects to files. Our N-to-M objects-
to-files mapping strategy demonstrated higher performance for
get(), put(), and update() operations consistently. Additionally,
we showed that our library can perform more than 2x faster
than existing solutions for specific workloads.

As a future step we plan to incorporate these mapping
strategies into a bigger I/O framework that integrates different
storage subsystems and thus, come closer to a true conver-
gence of parallel and distributed architectures. We believe
these mappings are a fundamental step towards this goal. We
envision a system that offers universal data access regardless
of the storage interface and our mappings are a fundamental
step towards this goal.
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