
Performance Evaluation 45 (2001) 1–18

Adaptive multivariate regression for advanced memory
system evaluation: application and experience

Xian-He Sun a,∗,1, Dongmei He a, Kirk W. Cameron b, Yong Luo b

a Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA
b Los Alamos National Laboratory, Mail Stop B256, Los Alamos, NM 87545, USA

Received 2 October 1998; received in revised form 24 October 2000

Abstract

Recent advances in latency hiding techniques have made performance evaluation of memory hierarchies a more difficult
task. Applications compiled for a particular architecture may be executed on vastly different memory hierarchy implemen-
tations. There is a need for performance analysis techniques that provide methods for understanding the interaction between
applications and a given memory hierarchy. In this paper, we present a statistical approach to performance analysis of ad-
vanced memory hierarchy implementations. The method involves the utilization of previously available statistical analysis
techniques coupled with scalability analysis. The result is a novel step-wise approach to understanding the hierarchical mem-
ory performance of scientific applications. We apply the method to several scientific applications of interest to the accelerated
strategic computing initiative (ASCI) over the SGI machines PowerChallenge and Origin 2000. Results indicate some codes
are statistically identical in memory performance, while others vary greatly. Furthermore, some codes do not take advantage
of the performance enhancements to the memory system found in the Origin 2000. © 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Performance evaluation; Advanced memory system; Computer architecture; Statistical method; Scalability;
Benchmarking

1. Introduction

Hierarchical memory systems are complex entities. Application developers typically create a single
code that will run on a single microprocessor platform, but many different implemented memory systems.
Cache sizes will vary, latencies will be different, and the ability to perform work while waiting on memory
access will quantifiably differ. For these reasons, it would be helpful if we could evaluate how well certain
codes take advantage of certain characteristics of the underlying design for a memory system. Some codes
may benefit from larger caches, others from lower latencies, and still others may not benefit from these

∗ Corresponding author. Tel.: +1-312-567-5260; fax: +1-312-567-5067.
E-mail addresses: sun@cs.iit.edu (X.-H. Sun), kirk@lanl.gov (K.W. Cameron), yongl@lanl.gov (Y. Luo).

1 This author was supported in part by NSF under grant ASC-9720215 and CCR-9972251, and by ONR under the PET program.

0166-5316/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0166-5316(00)00051-1

2 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

differences at all. It is also interesting to observe the scaled performance of such codes. From such studies
we can determine whether or not codes behave regularly or as expected as they scale computationally.

In this paper, we present a novel use of existing statistical methods coupled with scalability analysis
in the interest of classifying and analyzing application performance. We present a four-level statistical
analysis technique that allows both statistical classification and step-wise refinement of code analysis.
Results include the ability to gauge scaled performance and the isolation of performance impact due to
on-chip latency hiding techniques for the codes and platforms studied. The approach itself is somewhat
general in nature for statistical code classification and memory scalability analysis. Results show the
method is both feasible and useful for analyzing the performance of scientific codes generally across
different memory hierarchies.

This paper is organized as follows. We present related work followed by a limited discussion of the
statistical methods necessary for our model. Next, we present the model itself in the context of hierarchical
memory evaluation. Experimental results are provided by applying the statistical approach on the Origin
2000 and PowerChallenge systems from SGI. We close with overall conclusions of the paper and a
discussion of future directions for this research.

2. Related work

Complex superscalar microprocessors found in today’s marketplace provide special registers for mon-
itoring on-chip events without impacting the performance of the architecture or applications. These
performance monitors provide data previously not available to the general performance community with-
out the aid of simulators or special hardware. Results provided by these counters can be used successfully
in performance analysis provided techniques that take advantage of monitored events are identified and
utilized. Empirical and analytical models have been introduced that take advantage of these counts to
provide explanation of application performance. Empirical fitting can be used to infer the performance
attributable to latency overlap provided on-chip. Analytical models of on-chip performance provide in-
sight to architecturally constrained limitations at the instruction level [2].

Other models utilize information provided at the system level or via simple timings. These can provide
some information as to the performance of applications, but are limited by the information provided
to them. Multidimensional curve fitting provides methods for characterizing architectures generally in
the same fashion as empirical fitting [5,8]. An exhaustive mean value approach can be used provided
extensive measurements of the system can be obtained [1]. The problem here is that, at least for now,
only a simulator can provide such information.

The statistical method in this paper focuses primarily on analyzing the statistical characteristics of cpi
(cycles per instruction) for the codes measured. The approach is multileveled since we focus on different
averages and code–machine combinations in a certain order to focus on performance differences among the
platforms analyzed. We also incorporate memory scalability analysis to isolate performance differences
as problem sizes (computationally speaking) scale up. By focusing on cpi, we are actually measuring the
different levels of ILP (instruction-level parallelism) achieved by the architecture for each code. Different
memory hierarchies implemented for the same microprocessor will impact the achieved cpi. Hence, the
statistical method is presented to isolate the impact of such differences on average and as applications scale.

There have been many attempts to understand and model performance of code and machine com-
binations at the instruction level. Some of the earliest work was accomplished by Peuto and Shustek

X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18 3

[13]. These methods primarily use trace-driven simulation or direct timed measurements for model
input. Trace-driven simulation approaches are limited to analyzing generally smaller applications since
simulations are orders of magnitude slower than actual runs. Due to the large amount of informa-
tion provided from simulations, statistical reduction methods have been introduced to sift through the
enormous amount of data generated [4]. Methods such as micro-benchmarking [14] focus on mea-
suring performance of individual code segments while characterizing codes for the number of occur-
rences of each micro-code segment. Iterative performance bounding [11], isolates the performance of
singular contributions like compiler and scheduler on code. None of these approaches or others uti-
lize performance monitors, and most have been made obsolete by the inherent parallelism of current
microprocessors.

There also have been many attempts to understand and model performance at application and machine
levels [5,18]. Ein-Dor and Feldmesser [5] studied CPU performance based on the relative performance
metric, which is defined as a dimensionless number calibrated in terms of IBM 370/158 model on the
basis of vendor claims, user experience, and information supplied by independent consultants. They used
regression fitting to determine the coefficients of their hardware-parameter-based linear model and used
the model to predict the relative performance of new CPUs. Other non-statistical curve fitting approaches
have been successfully presented as well [8,13]. They differ from Ein-Dor and Feldmesser primarily in
derivation of the coefficients and the defined model parameters.

Our statistical approach consists of four levels of evaluation. The last two levels of evaluation are
designed for scalability study, which is measured in terms of cpi variations when problem size increases.
The comparison of relative cpi variation is not related to the term relative performance as used by Ein-Dor
and Feldmesser. There is no traditional “curve fitting for prediction” in our study. In fact, a wide cpi
variation indicates that none of the traditional prediction method can predict performance accurately for
the underlying code–machine combinations without considering the factor of problem size. An application
of the scalability study is to identify such “unpredictable” code–machine combinations.

More recently, researchers have been turning to statistical analysis for trace-reduction methods as
mentioned previously. Still others have begun using statistical sampling methods on trace-driven sim-
ulations to analyze performance directly rather than simply providing concise data [3]. Again, none of
these approaches utilize performance monitors nor the statistical approach of our model. To the best of
our knowledge, no current methods combine the use of performance counters with scalability, and the
two-factor factorial experiments and regression methods utilized in our framework.

3. Background and terminology

3.1. Memory scalability

A goal of high performance computing is to solve large problems fast. Considering both execution time
and problem size, what we seek from parallel processing is speed, which is defined as work divided by time.
The average unit speed is a good measure of parallel processing. It measures the computation performed
in each processor per second. Since our approach is in the context of single processor performance, we
wish to redefine our parallel processing concept of speed into the confines of a single processor in terms of
cpi. We begin with the parallel processing definitions. The result is a new definition of memory scalability
in terms of one processor scaled over varying computational problem sizes.

4 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

The isospeed scalability has been formally defined in [18] as the ability to maintain the average speed
in parallel processing when the number of processors increases, where average speed is defined as the
achieved speed of the given computing system divided by p, the number of processors.

Definition 1 (Isospeed scalability). A code–machine combination is scalable if the achieved average
speed of the code on the given machine can remain constant with increasing numbers of processors,
provided the problem size can be increased with the system size.

By Definition 1, isospeed scalability maintains average speed via increases in problem size. Intuitively,
a more parallelizable code should lead to a better scalability on a give machine and vice versa. This
intuition may not be generally true due to memory or other hardware limitations. Following the same
concept, Definition 2 gives a definition of data scalable for memory systems of single node sequential
computing in terms of cpi [17].

Definition 2 (Data scalable for single system). We say code–memory combination 1 is better (data)
scalable than code–memory combination 2, if code–memory combination 1 has a better initial cpi than
that of code–memory combination 2 and their cpi difference increases when problem size scales up, or
if code–memory combination 2 has a better initial speed than that of code–memory combination 1 and
their cpi difference decreases when problem size scales up.

Data scalable for a single system (or processor) is a complement to isospeed scalability for parallel pro-
cessing. It measures the hardware/software constraints of serial computing when problem size scales up,
where the most likely constraint of sequential computing is the limitation of memory capacity. Evaluating
and characterizing the performance of a single memory system is the focus of this study.

3.2. The two-factor experiment

In our methodology, we use cpi as a gauge of performance. From our previous discussion related
to speed, we claim cpi is the inverse of speed and an appropriate measurement in memory hierarchy
analysis since effects on memory access times (in cycles) will cause changes in measured cpi values. In
our two-factor factorial experiments, code is one factor and machine is another. Code has five factor levels
(HEAT, HYDRO, SWEEP, DSWEEP, HYDROT), machine has two factor levels (PowerChallenge, Origin
2000), and problem size has a factor level for each different size, seen later. This forms the following
linear model for the corresponding two-factor factorial experiment:

yijk = µ + αi + γj + (α · γ)ij + εijk, (1)

where yijk, k = 1, 2, . . . , n, are the kth observed value of cpi, µ the reference value, which is usually called
the “grand” or overall mean, αi, i = 1, 2, . . . , a, the main effects of factor code, γj , j = 1, 2, . . . , c, the
main effects of factor machine, (α ·γ)ij, i = 1, 2, . . . , a, j = 1, 2, . . . , c, the interaction effects of factors
code and machine, and εijk, i = 1, 2, . . . , a, j = 1, 2, . . . , c, k = 1, 2, . . . , n, are the random errors.

The hypotheses of interesting effects are established as: H0 : αi = 0 (assume main effect A does not
exist), H0 : γj = 0 (assume main effect C does not exist), and H0 : (αγ)ij = 0 (assume no interaction
effect exist). The probabilities of correctness of the null hypotheses are calculated by the F distribution
function [6,7]. In statistical analysis, a significance level of 5% is usually used to test a null hypotheses.

X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18 5

The analysis of a factorial experiment is called the analysis of variance (ANOVA). A simple example is
given in [17] to illustrate this analysis process.

3.3. Contrast and post hoc comparisons

Many statistical methods exist for classification and grouping. We use two well-known classification
methods in our study to show corroborating results, namely contrast and post hoc comparisons. A contrast
is a linear function of means whose coefficients add to zero. In the contrast method, a t-test is used to
judge the null hypotheses [6]. An example is given to explain the contrast method in [17]. The evaluation
of the t-test is similar to that of the F -test in judging null hypotheses. If the probability of the t-value is
less than 0.05, then the null hypothesis is rejected; otherwise the null hypothesis cannot be rejected.

When the factors and their levels are not defined in a manner that allows the use of preplanned compar-
isons, a post hoc comparison procedure would be more appropriate. The post hoc comparisons, namely
the LSD, Tukey, Duncans, and Scheffe comparison [6], are similar to the above t-test contrast method.
The differences are that these methods have their own criteria to determine the “significant difference”
for the t-test.

3.4. Regression method for scalability testing

A regression method has been used by Lyon et al. [10] to evaluate the scalability of parallel processing.
With some modification, we extend the regression method to data scalability of memory systems. We use a
simple example to illustrate the regression method. In a scalability study, the two factors are problem size
and machine, and the experiment is for a given code on different machines. Assuming we are interested
in testing the scalability of code HEAT which has a (problem) size level 1 and 2 with problem size 25
and 50, respectively, we set the PowerChallenge as machine level 1 and Origin 2000 as machine level
2. Following the regression method, we need to assign a value to each of the code and machine levels.
Denoting code level 1 by −1 and level 2 by 1 for both size and machine level accordingly, we have the
index table, Table 1.

In Table 1, Xc is the indicator variable for code, Xm the indicator variable for machine, Ic,m the indicator
variable for interaction. If µ is a constant term, then we have the following regression model:

cpi = µ + βcXc + βmXm + βc,mIc,m + ε. (2)

The term βc,m is the interaction effect. It is tested by a t-test to see whether the interaction effect is
significant. The null hypothesis tested here is H0 : βc,m = 0. If the probability of the resulting t-value is
less than 0.05, then βc,m < 0 leads to the conclusion that the code is more scalable on the level 2 machine

Table 1
The index table of a regression experiment

Xc Xm Ic,m cpi cpi actual

−1 −1 +1 a 1.233678
+1 −1 −1 b 0.900876
−1 +1 −1 c 1.112349
+1 +1 +1 d 1.387690

6 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

than on the level 1 machine; βc,m = 0 leads to the conclusion that the code has the same scalability
on the level 1 and level 2 machines; otherwise, βc,m > 0 leads to the conclusion that the code is more
scalable on the level 1 machine than on the level 2 machine. Comparing the data scalable concept given
in Section 3, we can see that the regression method provides a relative scalability comparison of a code
on two different machines. As shown in the example, the relative comparison is in terms of the size level
used in the problem size factor. In general, the relative scalability is a function of the size and the number
of size levels of the problem size factor. For an appropriate experimental design, the problem sizes tested
should be chosen from an appropriate range which represents the actual usage.

For simplicity, we have used a two-level experiment to illustrate the regression method for scalability
evaluation. However, the regression method is general. It can be applied to any number of levels greater
than one for each of the factors as will be shown in our experimental results.

4. Evaluation of hierarchical memory systems

We propose an adaptive evaluation method for advanced memory systems based on the standard statis-
tical methodology summarized in Section 3. This method consists of four levels of evaluation. While the
first two levels of the methodology focus on the mean performance over problem sizes, the last two level
evaluations show the performance variation when problem size increases. The combination of these four
levels of evaluations provides a feasible solution for suggesting performance when problem size scales
up and for further memory system improvements.

4.1. Level 1 evaluation: main effect

Level 1 evaluation uses the two-factor factorial experiment (see Section 3.2) to find the effects of code
and machine. Using these factors, it detects the overall effect of code, machine, and their interaction on
the final performance. The dependent variable for the design is cpi. The random samples for each of the
code–machine level combinations are chosen from different problem sizes within the range of interest.
So, the effective comparison is based on the mean performance over different problem sizes. If a code
effect exists, we conclude that the codes have different memory reference patterns which diverge memory
access time. When a machine effect exists, the memory system difference on the machines does make
a difference in performance. Finally, when code–machine interaction effects exist, the memory system
difference has a different impact on different memory reference patterns. Notice that all these effects are
overall effects of codes and machines. Any significant effect deserves further investigation to identify the
source or sources.

4.2. Level 2 evaluation: code/machine classification

Level 1 evaluation detects the overall effects of code, machine, and their interaction on performance.
When these effects exist, we would like to know the contribution of each code/machine toward the effects,
and to identify the outstanding code/machine for more detailed study. Statistical classification methods
provide a means to group code/machine based on their performance. We no longer use overall means for
code and machine, we look at mean performance on a code by code basis.

X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18 7

The contrast method and post hoc comparisons introduced in Section 3.3 are used in our study. These
comparison methods will be applied pairwisely. For instance, for code classification under our experi-
mental environment, HEAT has to be compared with all the other codes, namely HYDROT, HYDRO,
SWEEP, and DSWEEP; HYDROT is compared with the rest of the codes, namely HYDRO, SWEEP,
and DSWEEP; HYDRO is compared with SWEEP and DSWEEP; and finally, SWEEP is compared with
DSWEEP. In general, there are a! comparisons for a factor with a levels. If two machines belong to the
same category, then statistically they are the same for the set of codes and the given range of problem sizes.
If two codes belong to two different categories, then they have different memory reference/computation
patterns. A good general purpose machine should not deliver a wide cpi distribution among codes.

4.3. Level 3 evaluation: scalability comparison

Both level 1 and level 2 evaluation consider performance over a set of codes and machines. The third step
of our evaluation method is individual detection of outliers. It compares the data scalabilities of a given
code for varying problem sizes on different machines. Scalability is a factor that contributes to the ability
of a system to deliver the expected performance. Memory scalability evaluation is a new approach. It
evaluates the ability of a memory system to handle large data sizes. The same or better initial performance
combined with better scalability guarantees a code will have better performance when problem size scales
up. A code with a smaller initial cpi and better scalability has the potential to become superior as problem
size scales up.

The basic statistical method for memory scalability evaluation is the regression method given in Section
3.4. The two factors (independent regression variables) are problem size and machine. The regression
method does not measure data scalability directly for which a formal quantitative definition of scalability
is required. Instead, it gives a statistical relative comparison of two or more machines for a given code.
Problem size increase may change the performance of a code–machine combination. This change varies
with code, machine, and code–machine combination. It forms the base of scalability comparison. Using
cpi as the measurement with the same code on two different machines, if the interaction of the two
variations is negative, then the second machine has a better scalability; if the interaction of the two
variations is zero, then the two machines have the same scalability; otherwise, the first machine has a
better scalability.

Ideally, different scalability benchmarks can be used for different scalability applications. For instance, a
performance benchmark can be used to evaluate a memory subsystem’s ability in maintaining performance
when problem size increases; or a variation benchmark can be used to determine the predictability of a
code–machine combination. In general, however, benchmark development is a challenging issue on itself.
There is no widely accepted benchmark for scalability study at this time.

4.4. Level 4 evaluation: memory hierarchy

As discussed in the previous section, the performance of a code may vary with problem size, and this
variation is different over different memory architectures. The last step of our evaluation methodology
is designed to locate memory components which cause the variation. Level 4 evaluation compares the
performance variation of primary components of the underlying memory systems. It is necessary for
the performance monitors to provide information in this context. In other words, we will use cache hit
measurements to determine relative memory performance. Our method is general for testing the variance

8 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

of any measurable quantity for further evaluation of a system. Combined with the level 2 evaluation, this
evaluation determines the ability of each memory component in handling different memory reference
patterns and suggests possible improvements at the component level.

The basic statistical method used in level 4 evaluation is the same as that of level 3 evaluation, except
for the dependent variables. The actual design of level 4 evaluation varies with the underlying memory
structure. As discussed in Section 5, the memory hierarchy of SGI PowerChallenge and Origin 2000 has
four primary components: L1 cache, L2 cache, outstanding cache misses, and main memory. L1, and
L2 hit-ratio can be derived using hardware counters provided on-board the SGI microprocessor. For this
reason, we choose L1 and L2 as the dependent variables.

5. Test environment

Two machines and a set of five benchmarking codes are used throughout our study to illustrate the
method and to verify the correctness. These machines and benchmarks are described below. While our
discussion is focused on a particular environment, the factorial method used in this study is general. It
can be applied to any machine and set of applications.

5.1. Machine description

The PowerChallenge is an SMP architecture that employs a central bus to interconnect memories and
processors [12]. The bus bandwidth (1.2 Gbps) does not scale with more processors. Cache coherence
is maintained through a snoopy bus protocol which broadcasts cache information to all processors con-
nected to the bus. The Origin 2000, on the other hand, is a distributed shared memory (DSM) architecture
which uses a switch interconnect that improves scalability by providing interconnect bandwidth propor-
tional to the number of processors and memory modules [19]. Coherence is maintained by a distributed
directory-based scheme. Each router in the hypercube topology connects two nodes to the network. Each
node contains two processing elements and one local memory unit. A 128-processor system, for example,
consists of a fifth-degree hypercube with four processors per router.

The processing elements of both the Origin 2000 and PowerChallenge systems use a 200 MHz MIPS
R10000 microprocessor. The processor is a four-way super-scalar architecture which implements a num-
ber of innovations to reduce pipeline stalls due to data starvation and control flow [19]. For example,
instructions are initially decoded in order, but are executed out-of-order. Also, speculative instruction fetch
is employed after branches. Register renaming minimizes data dependencies between floating-point and
fixed-point unit instructions. Logical destination register numbers are mapped to the 64 integer and 64
floating-point physical registers during execution. The two programmable performance counters track
a number of events and were a necessity for this study. The most common instructions typically have
one- or two-clock latencies.

Whereas the processing elements of the PowerChallenge and Origin 2000 systems are identical, there
are major differences in the memory architecture and corresponding performance of the two systems. The
PowerChallenge is a UMA architecture with a latency of 205 clocks (1025 ns). Latencies to the memory
modules of the Origin 2000 system, on the other hand, depend on the network distance from the issuing
processor to the destination memory node. Accesses issued to local memory take about 80 clocks (400 ns),
while latencies to remote nodes are the local memory time plus 33 clocks for an off-node reference plus
22 clock periods (CP; 110 ns) for each network router traversed. In the case of a 32 processor machine,

X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18 9

the maximum distance is four routers, so that the longest memory access is about 201 clocks (1005 ns)
which is close to the constant latency of the PowerChallenge.

In addition, improvements were made in the number of outstanding loads that can be queued by the
memory system. Even though the R10000 processor is able to sustain four outstanding primary cache
misses, external queues in the memory system of the PowerChallenge limited the actual number to less
than two. In the Origin 2000, the full capability of four outstanding misses is possible. The L2 cache sizes
of these two systems are also different. A processor of PowerChallenge can be equipped with up to 2 MB
L2 cache, while a CPU of Origin 2000 system always has a L2 cache of 4 MB.

As evident, these SGI machines provide a unique performance evaluation environment since the archi-
tectures employ identical microprocessors, but differ significantly in the design of the memory subsys-
tems. The particular differences, namely L2 cache size, main memory latency, and number of outstanding
misses, allow this statistical factorial study to unveil the relative performance impact of the memory sub-
system. We intend to focus on single processor execution and use identical executables across machines to
eliminate software differences. All data was captured using on chip performance counters provided for the
MIPS R10000 microprocessor. This method of data collection, as opposed to simulation or other similar
methods, provides a non-intrusive representation of the processor performance under real conditions.

5.2. Code description

The following codes were used in the factorial experiment design:

• SWEEP and DSWEEP are both three-dimensional discrete-ordinate transport solvers that differ in
their implementations. In both versions, the main part of the computation consists of a balance loop
in which particle flux out of a cell in three Cartesian directions is updated based on the fluxes into
that cell and on other quantities such as local sources, cross-section data, and geometric factors. The
cell-to-cell flux dependence implies a recursive wavefront structure. In the DSWEEP implementation,
the mesh is swept using diagonal planes which enable the balance loop to be vectorized. In this
version, gather/scatter operations must be used to obtain local source and cross-sectional values. In the
second implementation, namely SWEEP, a “line sweep” is accomplished involving separately nested,
quadrant, angle, and spatial-dimension loops. There are no gather/scatter operations, all accesses are
now unit-stride, and memory traffic is significantly reduced through “scalarization” of some array
quantities. However, with the balance loop proceeding along rows and columns instead of the diagonal,
recursion prohibits complete vectorization.

• HYDRO is a two-dimensional explicit Lagrangian hydrodynamics code based on an algorithm by W.D.
Schulz. HYDRO is representative of a large class of codes in use at the laboratory. The code is 100%
vectorizable. An important characteristic of the code is that most arrays are accessed with a stride equal
to the length of one dimension of the grid. HYDROT is a version of HYDRO in which most of the
arrays have been transposed so that access is now largely unit-stride. A problem size of N implies N2

grid points.
• HEAT solves the implicit diffusion PDE using a conjugate gradient solver for a single time-step. The

code was written originally for the CRAY T3D using SHMEM. The key aspect of HEAT is that its
grid structure and data access methods are designed to support one type of adaptive mesh refinement
(AMR) mechanism, although the benchmark code as supplied does not currently handle anything other
than a single-level AMR grid (i.e., the coarse regular level-1 grid only). A problem size of N implies
N3 grid points.

10 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

6. Evaluation of SGI PowerChallenge and Origin 2000

To verify the feasibility and correctness of our method, we apply this method to the computing
environment discussed in Section 5. All four levels of evaluation have been used to evaluate these ASCI
machines and benchmarks. Experimental results show that this proposed adaptive statistical method is
feasible and effective. To illustrate the implementation procedure and to demonstrate the evaluation re-
sults, the experimental results are presented and discussed in this section. In our experimental testing, the
two machines, PowerChallenge and Origin 2000, are denoted as machine level 1 and level 2, respectively.
The five codes, HEAT, HYDRO, SWEEP, DSWEEP, and HYDROT, are denoted as 1, 2, 3, 4, and 5,
respectively. We have used SAS [15] throughout the experimental evaluation.

The problem sizes used in the experiment range from N = 50 to memory/time constraints. The
corresponding range for the codes are: HEAT = [50, 100], HYDRO = [50, 300], SWEEP = [50, 200],
DSWEEP = [50, 200], HYDROT = [50, 300]. All the experimental data are measured from single node
sequential executions using SGI hardware performance counters.

6.1. Main and interaction effects

The relationship between code and machine is first investigated. To catch the mean relationship over
the range of problem sizes, replicate measurements have been taken for different problem sizes for a
given experimental unit. The two-factor factorial experiment introduced in Section 3.2 is used to find the
effects using an initial hypothesis that no effect (or significant statistical differences) exists in the current
experiment. The GLM procedure of SAS is used to analyze the two-factor factorial experiment for level
1 evaluation. Table 2 shows results from GLM.

Table 2 is the mean effects table of the factorial experiment. It consists of two sectors, Part A and
Part B. Part A is for overall effect, and Part B is for individual effects. Look at row 2 of Table 2. The
F -value is 27.44 and the probability of F(Pr > F) is 0.0001, which is less than 0.05. The hypothesis

Table 2
Mean effects table

Source DF Sum of squares Mean square F -value Pr > F

Part A
Model 9 112.5410006 12.5045556 27.44 0.0001
Error 103 46.9436516 0.4557636
Corrected total 112 159.4846523
Dependent variable cpi
R2 0.705654
CV 34.6444
Root MSE 0.675103
CPI mean 1.948661

Source DF Type I SS Mean square F -value Pr > F

Part B
Machine 1 14.39563307 14.39563307 31.59 0.0001
Code 4 93.17895152 23.29473788 51.11 0.0001
Machine × code 4 4.96641604 1.24160401 2.72 0.0334

X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18 11

Fig. 1. Machine mean distribution.

that an overall-effect does not exist is rejected. This means that code or machine effects exist. Part B is
a continuation of Part A to locate the potential effects. Look at row 2 of Part B. The probability of F is
0.0001 < 0.05, which suggests that a machine main effect exists. The same conclusion can be drawn for
code. For machine and code interaction, the probability of F is 0.0334, which is again smaller than 0.05.
An interaction effect for code and machine also exists. Evaluation should be continued to understand
these effects.

The mean effect analysis can be explained visually. As depicted in Fig. 1, the code performance crosses
over the two machines between code 2 and code 3. This line crossing indicates the existence of an
interaction effect of machine and code. It confirms the results given by the contrast method (see Table 3).
However, codes 2 and 3 have very similar performances on the two machines. If we can take code 2 and 3
as one code through classification, then there is no code performance crossing over the two machines and,

Table 3
Contrast method for pairwise comparison

Contrast DF Contrast SS Mean square F -value Pr > F

HEAT vs. DSWEEP 1 18.73737434 18.73737434 41.11 0.0001
HEAT vs. SWEEP 1 6.48938939 6.48938939 14.24 0.0003
HEAT vs. HYDRO 1 8.44857266 8.44857266 18.54 0.0001
HEAT vs. HYDROT 1 25.87993484 25.87993484 56.78 0.0001
DSWEEP vs. SWEEP 1 42.24375672 42.24375672 92.69 0.0001
DSWEEP vs. HYDRO 1 51.96661369 51.96661369 114.02 0.0001
DSWEEP vs. HYDROT 1 84.81327756 84.81327756 186.09 0.0001
SWEEP vs. HYDRO 1 0.00268119 0.00268119 0.01 0.9390
SWEEP vs. HYDROT 1 4.41163307 4.41163307 9.68 0.0024
HYDRO vs. HYDROT 1 5.40337655 5.40337655 11.86 0.0008
Machine 1 vs. Machine 2 1 19.78987372 19.78987372 43.42 0.0001

12 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

Table 4
LSD post hoc comparison for code

T grouping Mean N Code

A 3.7324 17 4 (DSWEEP)
B 2.4568 22 1 (HEAT)
C 1.6287 28 2 (HYDRO)
C 1.6048 18 3 (SWEEP)
D 1.0074 28 5 (HYDROT)

therefore, no interaction effect for machine and code. Classification of code and machine is important
for understanding measured performances. In fact, based on our level 2 evaluation, codes 2 and 3 are
statistically the same (see Table 4). The two lines between code 2 and code 3, therefore, statistically are
merged to one line.

Fig. 2 plots the codes performance over the two machines. We can see that machine 2 always outperforms
machine 1, so a machine effect does exist. Based on two-factor factorial mechanisms the GLM procedure
systematically finds the main and interaction effects, which sometimes, but not always, can be determined
easily through visual display.

6.2. Code and machine classification

The codes and machines have been classified based on the contrast and post hoc comparisons introduced
in Section 3.3. The contrast procedure of SAS is used for the contrast comparison. The result of the pairwise
code/machine contrast comparison is given in Table 3.

In Table 3, all the probabilities of rejection are less than 0.05, except at row 9. Code HYDRO and SWEEP
are in the same group. They have similar performance variations caused possibly by the computational

Fig. 2. Code mean distribution.

X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18 13

Table 5
LSD post hoc comparison for machines

T grouping Mean N Machine

A 2.3217 54 1 (PowerChallenge)
B 1.65552 59 2 (Origin 2000)

pattern and/or the data reference pattern. All other codes, namely HEAT, DSWEEP, and HYDROT, have
their own signatures. They each belong to different groups. The two machines are also in two different
groups.

The LSD procedure of post hoc comparison is also applied to classify the sets of codes and machines.
Tables 4 and 5 give the result of the code and machine classification, respectively. From Table 4, we can
see that HEAT belongs to group B; DSWEEP belongs to group A; HYDROT belongs to group D; and
HYDRO and SWEEP belong to group C. The result is the same as that of contrast comparison. In the post
hoc comparison, the grouping distance used is 0.4072. The groups are ordered according to their mean
cpi values. The group with the highest cpi value (worst in performance) is listed first. The group with
the second highest cpi value is listed second, and so on. It is interesting to note the implications of these
simple results for code classification. We observe that with the exception of HYDRO and SWEEP, each
code has a unique performance variation pattern that warrants further investigation. As will be shown,
these unique patterns can be further broken down into individual effects contributed by differences in the
memory hierarchy in this particular test environment. These patterns directly contribute to the inherent
scalable performance across machines for these particular codes. As shown in Table 5, PowerChallenge
and Origin 2000 are classified into two different groups. The distance between the two groups is larger than
0.2522 (least significant difference = 0.2522 cpi). The Origin 2000 is always better than PowerChallenge
for the set of codes under consideration. This result again matches that of contrast comparison.

6.3. Scalability comparison

Using the regression method discussed in Sections 3.4 and 4.3, we have conducted scalability com-
parisons on all of the five codes over the two machines. Recall that this third step in our methodology
compares the data scalabilities of a given code on different machines, whereas the level 2 evaluation
grouped codes based on their average performance over the range of problem sizes. As we discussed in
the previous section, a better memory system should lead to a smaller cpi, and a more scalable memory
system should have a smaller cpi increase, or no cpi increase at all, as problem size scales up. Table 6
is generated by PROG REG of SAS for the scalability comparison of HEAT over problem size range
[50, 100]. The response variable is cpi.

Table 6
Scalability comparison of HEAT

Variable DF Parameter estimate Standard error T for H0 parameter = 0 Pr > |T |
Intercep 1 2.453200 0.05065942 48.425 0.0001
Code 1 0.077618 0.01601992 4.845 0.0001
Memory 1 −0.468297 0.05065942 −9.244 0.0001
INTAC 1 0.079500 0.01601992 4.963 0.0001

14 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

Table 7
Scalability comparison of SWEEP

Variable DF Parameter estimate Standard error T for H0 parameter = 0 Pr > |T |
Intercep 1 1.613494 0.02647227 60.950 0.0001
Code 1 0.049352 0.00966631 5.106 0.0003
Memory 1 −0.390073 0.02647227 −14.735 0.0001
INTAC 1 0.012463 0.00966631 1.289 0.2216

In Table 6, “INTAC” stands for INTerACtion effect. At the 0.0001 level (see the last column of Table 6),
the hypothesis of zero effect has been rejected, so an interaction effect exists. The parameter estimate of
“INTAC” is 0.0795, which means that the term βc,m is positive (see Eq. (2)) and the performance difference
of the two machines decreases with problem size. PowerChallenge is more scalable than Origin 2000 over
the range of problem sizes. This reduction in difference is very reasonable. When problem size increases
into main memory, the advantage of having a larger L2 cache fades away. The performances of the two
machines, therefore, become closer. Different codes have different memory access/computing ratios and
have different memory reference patterns. Some codes have good locality, some do not. Some memory
reference patterns can take advantage of the underlying memory support, some cannot. These factors
and others give codes different scalabilities on different memory systems. While the resulting table is not
shown, HYDRO has an INTAC probability level of 0.0111 indicating interaction effects exist for HYDRO.
Unlike HEAT, HYDROs parameter estimate is negative −0.050885, which means that the performance
difference between the two machines increases with problem size. Origin 2000 has a better scalability
than PowerChallenge for HYDRO. The scalability improvement may be due to Origin 2000’s larger L2
cache or hardware support in handling cache misses or faster memory access time. The results of code
SWEEP, DSWEEP and HYDROT are different. Our no-effect hypotheses stands. The more advanced
memory system of Origin 2000 does not improve the performance difference of these three codes when
problem sizes scale up. The relative performances over the two machines remain unchanged.

Table 7 lists results generated by PROG REG for scalability analysis of SWEEP. From Table 7, the
probability level of interaction effect is 0.2216. Therefore, βc,m = 0 and SWEEP has the same scalability
on the two machines. For DSWEEP and HYDROT, the probability level of interaction effect is 0.3002
and 0.2799, respectively.

6.4. Evaluation of memory components

As discussed in Section 5, the memory systems of the SGI machines consist of four primary components:
L1 cache, L2 cache, outstanding cache misses, and main memory. In the level 4 evaluation, we examine
the role of the four components in scalability variation. The same regression method used in scalability
study is used here. We use SAS procedure PROC REG to evaluate the relative performance of L1 and
L2 cache independently. The response variable is the cache hit-ratio of L1 and L2 accordingly. The
cache hit-ratios of L1 and L2 are independent of each other and can be used as independent variables.
Outstanding cache misses cannot be measured. However, based on the scalability comparison given in
the previous section, its role in performance variation can be estimated when the variations of the L1 and
L2 hit-ratios are known.

X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18 15

Table 8
L1 hit-ratio comparison for HEAT

Variable DF Parameter estimate Standard error T for H0 parameter = 0 Pr > |T |
Intercep 1 0.818304 0.00039150 2090.171 0.0001
Code 1 0.000086900 0.00012380 0.702 0.4917
Memory 1 −0.000289 0.00039150 −0.738 0.4699
INTAC 1 0.000128 0.00012380 1.032 0.3156

Table 9
L2 hit-ratio comparison for HEAT

Variable DF Parameter estimate Standard error T for H0 parameter = 0 Pr > |T |
Intercep 1 0.766496 0.00267152 286.914 0.0001
Code 1 −0.004971 0.00084481 −5.884 0.0001
Memory 1 0.015196 0.00267152 5.688 0.0001
INTAC 1 −0.005011 0.00084481 −5.931 0.0001

Tables 8 and 9 show the analysis table for L1 and L2 hit-ratio variation of HEAT. We can see from Table 8
that the probability level of “INTAC” is 0.3156 > 0.05. The zero effect hypothesis is true for L1 hit-ratio
of HEAT. HEAT has a constant L1 hit-ratio difference over the two machines. By Table 9, code–machine
interaction effect exists (α = 0.001 < 0.05) and the effect is negative (βc,m = −0.005011 < 0). In
practice, we prefer a smaller cpi and a larger hit-ratio. The negative effect means that the L2 hit-ratio
difference of HEAT on Origin 2000 goes down relative to PowerChallenge, when problem size scales
up. As we know from Section 6.3, HEAT has a better scalability on PowerChallenge than on Origin 2000.
The relative L2 hit-ratio decrease explains the smaller scalability of Origin 2000.

Recall that the underlying SGI PowerChallenge and Origin 2000 machine have the same CPU and the
same L1 cache. It is no surprise that the relative L1 hit-ratio does not change for all five codes. HEAT has
demonstrated how the regression method can be used repeatedly for different components of a memory
system.

Table 10 is the L2 hit-ratio analysis table for HYDRO. As given in Table 10, the null hypothesis of
interaction is accepted. The hit-ratio differences of HYDRO remain the same for the SGI machines when
problem size scales up. As analyzed in Section 6.3, HYDRO-Origin 2000 has a better scalability than
HYDRO-PowerChallenge. This scalability increase is not due to the larger L2 cache of Origin 2000 as
shown by the cache hit-ratios across machines. It is due to the outstanding cache misses ability and faster

Table 10
L2 hit-ratio comparison for HYDRO

Variable DF Parameter estimate Standard error T for H0 parameter = 0 Pr > |T |
Intercep 1 0.911569 0.00944229 96.541 0.0001
Code 1 −0.011458 0.00211136 −5.427 0.0001
Memory 1 0.046284 0.00944229 4.902 0.0001
INTAC 1 0.003901 0.00211136 1.847 0.0771

16 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

main memory access time supported by Origin 2000. Combined with an existing empirical model [9], a
detailed analysis is given in [16] to understand the performance.

Hit-ratio comparison and component level evaluation of SWEEP, DSWEEP, and HYDROT are also
conducted and can be found in [17]. We have applied the four-level evaluation proposed in Section 4 to
analyze the performance of two ASCI machines and five benchmarks available at Los Alamos National
Laboratory. In the level 1 evaluation, we have found that both code and machine effects exist. Performance
varies with codes and machines. Continued from the first level evaluation, in level 2 evaluation, the codes
and machines have been classified into four and two groups, respectively, based on their performance. This
classification shows that, while the codes have a wide distribution in performance due to their inherent
memory reference/computation patterns, the Origin 2000 definitely outperforms PowerChallenge on all
the codes. It is interesting to note that, despite the fact that all the codes had a better performance on
Origin 2000, by level 3 evaluation these codes have different relative performance variations over the two
machines when problem size scales up. When problem size becomes large, the performance difference
of HEAT on these two machines becomes smaller; the performance difference of HYDRO on these two
machines becomes larger; while the differences of the other three codes remain unchanged. Obtaining the
variation in relative performance is important for benchmarking and other performance comparisons. For
instance, the scalability analysis shows that the relative performance of HEAT and HYDRO are more likely
to vary with problem size than the other three codes. A more detailed evaluation, the level 4 evaluation,
has found the causes of the scalability difference over the codes. In addition to a larger L2 cache capacity,
the four outstandings for cache misses and the faster main memory access supported by Origin 2000 have
played an important role in performance improvement. This is especially true for HYDRO and SWEEP.

7. Conclusions

In this paper, we have presented a novel approach to performance evaluation of advanced hierarchical
memory systems. While statistical methods for trace-driven reduction with some analysis exist, our
approach has more in common with other empirical and analytical approaches to performance analysis.
We have shown, however, that no methods of this type exist that utilize performance counters and take
into account latency hiding techniques. Since we utilize counts provided from performance monitors,
we stipulate the architecture of interest must provide cycle, instruction, and cache hit measurements.
Otherwise, the method can be generally applied to systems of the same underlying architecture with
different implementations of the memory hierarchy.

Levels 1 and 2 of our model identified the inherent differences among our machines and codes, and sta-
tistically classified our machines and codes, respectively. Of particular interest was the result that SWEEP
and HYDRO are statistically similar in the memory usage patterns and hence can be classified accord-
ingly. The rest of the codes were statistically dissimilar enough to warrant further investigation following
the pair-wise comparison of level 2. Level 3 analysis of the memory scalability of our code–machine
combinations is not necessarily intuitive. In fact, the scaled performance of HYDRO is the only code
that performed better (as problem size increased) on the more advanced memory system of the Origin
2000. SWEEP, DSWEEP, and HYDROT showed no discernible scaled performance gain between the
two machines, while HEAT scaled better on the PowerChallenge. This underscores the fact that perfor-
mance differences between hierarchy implementations are extremely code dependent while sometimes
counterintuitive.

X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18 17

In the final level 4, the statistical approach evaluated the individual characteristic differences between the
hierarchies by analyzing the calculated hit-rates obtained via the performance monitors. Since the L1 cache
was identical across machines, performance differences were not attributable to L1 cache differences.
We use the observed statistical differences in L2 cache hit rates to explain the counterintuitive notions
given by the level 3 analysis. We showed HEAT was more scalable on the PowerChallenge in level 3.
Level 4 indicated this was not due to the L2 cache leaving only the combined difference in the memory
access time and outstanding misutilization. The better scalability of the Origin 2000 for HYDRO was
also not due to differences in the L2 caches. This would indicate these are also attributable to outstanding
misutilization and possibly memory access time to some extent.

Since the complexity of memory systems continuously increases, we believe the statistical method
presented herein will provide useful conclusions regarding memory performance differences such as
whether or not code utilizes architectural enhancements. Furthermore, we believe the statistical method
will become even more useful to future generations of memory hierarchies. We have shown the usefulness
of these results and discussed the novelty of our approach. Future improvements to this technique include
incorporation of shared memory attributes, extension to different architectural characteristics, and tight
coupling with other empirical approaches.

References

[1] D. Albonesi, I. Koren, A mean value analysis multiprocessor model incorporating superscalar processors and latency
tolerating techniques, Int. J. Parallel Program. 24 (3) (1996) 235–263.

[2] K.W. Cameron, Y. Luo, Instruction-level microprocessor modeling of scientific applications, Lecture Notes Comput. Sci.,
Vol. 1615, Springer, Berlin, 1999, pp. 29–40.

[3] R. Carl, J.E. Smith, Modeling superscalar processors via statistical simulation, in: Proceedings of the Workshop on
Performance Analysis and its Impact on Design (PAID), Barcelona, Spain, 1998.

[4] P. Crowley, J.-L. Baer, On the use of trace sampling for architectural studies of desktop applications, in: Proceedings of the
SIGMETRICS’99, Atlanta, GA, 1999.

[5] P. Ein-Dor, J. Feldmesser, Attributes of the performance of central processing units: a relative performance prediction
model, Commun. ACM 30 (4) (1987) 308–317.

[6] R. Freund, W. Wilson, Statistical Methods, Academic Press, New York, 1997.
[7] R. Jain, The Art of Computer System Performance Analysis, Wiley, New York, 1991.
[8] U. Krishnaswamy, I.D. Scherson, Micro-architecture evaluation using performance vectors, in: Proceedings of the

SIGMETRICS’96, Philadelphia, PA, 1996.
[9] O.M. Lubeck, Y. Luo, H. Wasserman, F. Bassetti, An empirical hierarchical memory model based on hardware performance

counters, in: Proceedings of the PDPTA’98, July 1998, pp. 386–393.
[10] G. Lyon, R. Kacker, A. Linz, A scalability test for parallel code, Softw. Pract. Exper. 25 (12) (1995) 1299–1314.
[11] W. Mangione-Smith, T.P. Shih, S.G. Abraham, E.S. Davidson, Approaching a machine-application bound in delivered

performance on scientific code, in: IEEE Proceedings on Computer Performance Analysis (special issue), 1993,
pp. 1166–1178.

[12] MIPS Technologies, Inc., R10000 microprocessor product overview, MIPS Product Preview, 1995.
[13] B. Peuto, L. Shustek, An instruction-timing model of CPU performance, in: Proceedings of the Fourth Annual Symposium

on Computer Architecture, March 1977, pp. 165–178.
[14] R.H. Saavedra, A.J. Smith, E. Miya, Machine characterization based on an abstract high-level language machine, IEEE

Trans. Comput. 38 (1989) 1659–1679.
[15] SAS User’s Guide, SAS Institute, Inc., Cary, NC, 1996.
[16] X.-H. Sun, K. Cameron, A statistical–empirical hybrid approach to hierarchical memory analysis, Lecture Notes Comput.

Sci., Vol. 1900, Springer, Berlin, 2000, pp. 141–148.

18 X.-H. Sun et al. / Performance Evaluation 45 (2001) 1–18

[17] X.-H. Sun, D. He, K. Cameron, Y. Luo, An adaptive statistical methodology for advanced memory systems evaluation, Los
Alamos National Laboratory Unclassified Technical Report (LAUR) No. 98-4176, 1998.

[18] X.-H. Sun, D. Rover, Scalability of parallel algorithm–machine combinations, IEEE Trans. Parallel Distrib. Syst. 5 (6)
(1994) 599–613.

[19] K. Yeager, The MIPS R10000 superscalar microprocessor, IEEE Micro 16 (2) (April 1996) 28–40.

Xian-He Sun received his Ph.D. degrees in computer science from Michigan State University. He was a
Staff Scientist at ICASE, NASA Langley Research Center and was a Tenured Associate Professor in the
Computer Science Department at Louisiana State University (LSU). Currently, he is an Associate Professor
and the Director of the Scalable Computing Software Laboratory in the Computer Science Department at
Illinois Institute of Technology (IIT) and a Guest Faculty at the Argonne National Laboratory. Dr. Sun’s
research interests include parallel and distributed processing, software system, performance evaluation,
and scientific computing. He has published intensively in the field and his research has been supported by
DoD, DoE, NASA, NSF, and other government agencies. He is a senior member of IEEE, a member of
ACM, New York Academy of Science, PHI KAPPA PHI, a partner of the Esprit IV APART (automatic

performance analysis: resources and tools) working group, and has served and is serving as the Chairman or on the Program
Committee for a number of international conferences and workshops. He received the ONR and ASEE Certificate of Recognition
Award in 1999.

Dongmei He received her B.S. degree in Chemistry from Chengdu Science and Technology University,
China. She got both her Master’s degree in Applied Statistics and Master’s degree in Computer Science
in 1998 from Louisiana State University. Specializing in SAS programming, she is a System Analyst in
the Computing Center at Louisiana State University. Prior to that, she was a Computer Programmer with
USAencies.

Kirk W. Cameron is an Assistant Professor in the Department of Computer Sciences at the Florida Institute
of Technology. His research interests include performance analysis and prediction, computer architecture,
and parallel and distributed computing. Cameron holds his Ph.D. recently in Computer Science from
Louisiana State University. His thesis topic was application modeling using performance monitors. Portions
of this work were accomplished, while funded as a graduate research assistant at the Los Alamos National
Laboratory in Los Alamos, NM.

Yong Luo is currently a Senior Software Engineer of Server and Workstation Architecture Performance
Group at Intel Corporation. Before joining Intel in 1999, Yong was a technical staff member of Los
Alamos National Laboratory. Yong received his Ph.D. in Electrical Engineering from the University of
British Columbia in 1994. Yong started his parallel computing and performance analysis career in 1991
and was awarded Fujitsu (Canada) Award in 1994. Yong’s research interest includes performance analy-
sis/modeling, architecture research, digital signal processing and numeric algorithms.

