
LuxIO: Intelligent Resource Provisioning
and Auto-Configuration for Storage Services

Keith Bateman, Neeraj Rajesh, Jaime Cernuda Garcia, Luke Logan, Jie Ye,
Stephen Herbein *, Anthony Kougkas, Xian-He Sun

Illinois Institute of Technology, * Lawrence Livermore National Laboratory
{kbateman, nrajesh, jcernudagarcia, llogan, jye20}@hawk.iit.edu, stephen@herbein.net,{akougkas, sun}@iit.edu

Abstract—Storage in HPC is typically a single Remote and Static
Storage (RSS) resource. However, applications demonstrate diverse I/O
requirements that can be better served by a multi-storage approach. Cur-
rent practice employs ephemeral storage systems running on either node-
local or shared storage resources. Yet, the burden of provisioning and
configuring intermediate storage falls solely on the users, while global job
schedulers offer little to no support for custom deployments. This lack of
support often leads to over- or under-provisioning of resources and poorly
configured storage systems. To mitigate this, we present LuxIO, an intelli-
gent storage resource provisioning and auto-configuration service. LuxIO
constructs storage deployments configured to best match I/O require-
ments. LuxIO-tuned storage services show performance improvements
up to 2× across common applications and benchmarks, while introducing
minimal overhead of 93.40 ms on top of existing job scheduling pipelines.
LuxIO improves resource utilization by up to 25% in select workflows.

Keywords—resource provisioning, I/O behavior, storage auto-tuning

I. INTRODUCTION

Traditional storage in High Performance Computing
(HPC) systems is a consistently available Remote and Static
Storage (RSS) resource [1], [2], [3]. Typically, it takes the form of
a Parallel File System (PFS). The remote property of RSS indicates
that data resides in a permanent, centralized location separated from
compute nodes by the network. The static property of RSS indicates
that the storage deployment cannot change, implying the I/O
requirements of all applications using the RSS do not change either.

However, the ever-increasing diversity in storage device type (e.g.,
NVMe, PMEM, etc.) and scientific application complexity [4] have
put more and more pressure on RSS performance tuning, due to
their diverse and often conflicting requirements. Storage hardware
innovation has resulted in the compute-node-local deployment of
fast storage devices that could significantly improve application I/O
performance and promote the deployment of ephemeral I/O services
(e.g., scratch filesystems) that last the duration of the job. Local
storage has the potential to provide superior performance to remote
storage, but only if it is managed appropriately. Modern complex
scientific applications present several challenges for storage, since
I/O requirements can be either dynamic or self-conflicting between
I/O phases of an application; the static aspect of RSS is consequently
contested, and custom storage solutions are a better way to optimize
performance for such diverse applications [5], [2]. Due to the increased
diversity of both the application I/O requirements and hardware
composition available in production, there is a need for provisioning,
configuring, and deploying custom storage services (which may be
ephemeral) tailor-made for a particular set of performance targets.
However, configuration and provisioning of optimized custom storage
systems is complex due to the aforementioned variety of options.

Domain scientists are typically made to do this task, but they are not
experts in storage, which leads to a need for a service to automate it.
There are various challenges to address when creating this

service. Challenge 1: this service requires performant and detailed
characterization of I/O behavior in order to relate applications to
corresponding storage services. Challenge 2: this service also requires
a comprehensive classification of storage systems available on
the target cluster, incorporating an understanding of the effect of
different characteristics on I/O performance for varied I/O workloads.
Challenge 3: this service needs to bridge the gap between provisioning
decisions and the user in a way which improves resource utilization.
To address the aforementioned challenges, this paper presents

LuxIO, an intelligent storage resource provisioning and auto-
configuration service. LuxIO enables storage system configuration to
be performed efficiently and automatically. It does this by suggesting
storage deployments which satisfy the I/O requirements of a known
application with similar I/O behavior. This is achieved through
comprehensive modeling of application I/O behavior and storage
performance characteristics. LuxIO handles the deployment and
management of storage services via auto-generated deployment
scripts. Additionally, LuxIOmaintains a database which keeps track of
active storage deployments for storage resource sharing. To improve
resource utilization, LuxIO leverages various resource models, such
as a storage device pricing model and an interference model.
The contributions of LuxIO are:

a) Application I/O behavior model: A model capturing the I/O
behavior in an application and classifying applications according
to their behavioral relationships (section III-B).

b) Storage quality and semantic model: A model describing the
expected performance characteristics and semantics of storage
systems and their relationships to each other (section III-C).

c) Storage resource provisioning model: A collection of models
that perform intelligent storage resource provisioning. Examples
include cost-aware, interference-aware, and performance-aware
models. (section III-D).

d) I/O requirement specification: A standard for communicating
I/O requirements between users, schedulers, and storage
systems. This includes I/O Identities for representing application
behavior, Storage Service Level Objectives (SSLOs) for
representing storage system characteristics, and a storage
deployment schema for representing the scheduling needs and
requirements of storage. (section III-E).

e) LuxIO service: An automatic, transparent-to-user, end-to-end
service for the provisioning of storage devices, and for
configuration and deployment of storage services based on
application I/O behavior (section III-A).

246

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/22/$31.00 ©2022 IEEE
DOI 10.1109/HiPC56025.2022.00041

20
22

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

H
iP

C
) |

 9
78

-1
-6

65
4-

94
23

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
H

iP
C

56
02

5.
20

22
.0

00
41

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND MOTIVATION

A. Application I/O Characterization

There are various techniques which can be used to profile and
characterize the I/O requirements [5] of applications. These include
I/O tracing [6], source code and binary analysis [7], [8], and analysis
of execution traces and system monitoring logs [9]. Analysis and
characterization of data collected from such sources is typically
performed manually and offline using various statistical methods. For
instance, Liu et al [5] has investigated Darshan traces from Argonne
using cumulative density functions and t-SNE visualizations. Darshan
is an I/O tracing library and runtime which captures the I/O calls
of the application and reports information on various aspects of those
calls such as their counts, sizes, and types [6]. It has become fairly
ubiquitous, with many supercomputing sites such as Argonne and
NERSC employing it as the standard I/O tracing software.

B. Complexity of Storage Systems

There are a large variety of storage systems available in HPC, such
as Ceph [10], Lustre [1], and OrangeFS [11]. Most storage systems
have a multitude of configuration parameters (e.g., buffer-size-related
as in the OrangeFS TCPBufferReceive parameter or scale-related as
in the number of Lustre OSTs) that can be tuned to a particular archi-
tecture and workload. For example, Lustre has approximately 36 con-
figurable parameters [12], while Ceph has roughly 320 configurable
parameters [13]. In addition, there are a variety of storage device types
available in HPC, including HDD, SSD, NVMe, PMEM, and more.
The performance of an application workload will vary depending
on which storage system, configuration, and resource set it is run
on [14]. Therefore, storage systems will need to be carefully selected,
configured, and deployed to reach optimal performance for a given
application workload. This is a complex task, as each option expo-
nentially increases the complexity of determining the optimal choice.

C. Provisioning Storage Resources

Provisioning resources for storage systems and scheduling their
deployment is typically performed manually by the users. Job sched-
ulers have limited or no support for I/O subsystems. Job schedulers
in HPC typically provision with a focus on compute and network re-
sources, and there is comparatively little work focusing on storage pro-
visioning [15]. Manual provisioning of storage can involve erroneous
plans, such as over-provisioning resources to a job or greedy allocation.

D. Motivation

Supercomputing sites such as Argonne tend to display a wide
variety of workloads [5], some of which will see suboptimal
performance on a single RSS, however optimized. This leads to a
need for custom storage systems. Unlike RSS, which is typically
configured and provisioned by the system admin, custom storage
has to be selected, configured, and deployed by the domain scientist.
Domain scientists lack the expertise required to configure and
provision storage, and there is extreme complexity involved in
doing so for each application. The result is that cluster resources get
allocated inefficiently or greedily and storage systems underperform
on those resources [16]. There is a need for a service to automate
configuration and provisioning of optimal storage systems, which
domain scientists can utilize as an alternative to manual methods.
In the current paradigm, ephemeral storage remains largely underuti-

lized or poorly understood [17]. There are emergent ideas pertaining to

achieving ephemeral storage systems on major supercomputers, such
as the Rabbit architecture on the upcoming El Capitan supercomputer
at Lawrence Livermore National Laboratory, which allows precon-
figured ephemeral storage services to be deployed on Solid State
Drives (SSDs) at the tops of the racks [18]. This is a paradigm shift
from RSS. However, the problem of the user not being familiar with
storage and how it maps to their particular application is not solved
by this architecture. This represents a key usecase, as there is a need
for a service to assist in the choice of ephemeral storage deployment.

III. LUXIO

A. LuxIO High-Level Architecture
LuxIO is an intelligent storage resource provisioning and

auto-configuration service designed to efficiently improve I/O
performance by matching application I/O behavior to an appropriately
tuned custom-deployed storage. The source code for LuxIO can be
found on GitHub 1. A typical LuxIO interaction would involve the
user accessing the global LuxIO service via a transparent wrapper
over the job submission interface, sending along information about
known or assumed I/O behavior via LuxIO-specific flags, with
LuxIO ultimately ornamenting the user job submission with a storage
deployment schema and passing it along to the job scheduler. LuxIO
aims to achieve: (1) detailed yet performant application I/O behavior
modeling, (2) I/O-aware abstraction of storage system complexity,
(3) constraint-based resource provisioning, and (4) a standardized
set of semantic-rich user interactions.
As a storage resource provisioning and auto-configuration service,

LuxIO provides a comprehensive approach to managing custom
ephemeral storage services. This approach is shown in Figure 1.
LuxIO takes in input from various sources such as a jobspec, an
I/O trace file, execution traces, source code, and/or the binary of
the application. An application jobspec is a definition of the core
scheduling requirements of a job (e.g., the path to the binary, the scale
of the job, and the compute and network resources desired). As an
example, LuxIO accepts the Flux definition of a jobspec from Flux
RFC 14 [19]. In our prototype implementation, we mostly focused on
the application jobspec and its respective Darshan I/O trace. LuxIO
processes and aggregates the I/O characteristics which these sources
provide into an I/O Trait structure (step 1). The I/O Traits are put
through the I/O Identity Builder to create an I/O Identity (step 2) by
deriving new features and/or removing unnecessary ones. The fitness
(normalized euclidean distance relationship [20]) of the I/O Identity to
the different I/O behavior classes is then measured by the I/O Fitness
Calculator (step 3). The I/O Identity Builder and I/O Fitness Calculator
enable LuxIO to achieve detailed yet performant application I/O
behavior modeling via an efficient and complete understanding of
the I/O behavior of an application and how it relates to known I/O
behaviors. The ClassificationMapper then performs a conversion from
these fitnesses and the list of available SSLOs (step 4) to an SSLO
(step 5), which represents the most desirable characteristics of storage
to optimize performance for the application (a sort of storage class);
this mapper is an indirect tuning mechanism which enables LuxIO to
achieve I/O-aware abstraction of storage system complexity via a re-
lationship of application I/O behavior classes to SSLOs using metrics
such as coverage and satisfaction. These metrics represent how well
an I/O behavior class or application is covered by a particular SSLO,
respectively. The Deployment Constructor then uses the SSLO to

1https://github.com/scs-lab/luxio

247

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: LuxIO High-Level Architecture

Fig. 2: Application I/O Behavior Modeling (1-3)

create a deployment schema (description of desired storage and how to
configure it) for the job (step 6). The Deployment Constructor enables
LuxIO to achieve constraint-based resource provisioning. It uses
models to determine the optimal deployment based on one or more
of the following four constraints: 1) resource utilization, 2) optimal
performance, 3) interference, and 4) resource cost. Finally, a jobspec
is ornamented with the deployment and passed to the job scheduler.
LuxIO also aims to achieve a standardized set of semantic-rich user
interactions via its data representations, such as the decorated jobspec
containing the recommended storage deployment schema.

B. Application I/O Behavior Modeling
LuxIO’s Application I/O Behavior Model is shown in Figure 2. In

step 1, LuxIO collects I/O Traits. In order to have an I/O behavior
model which is as complete as possible, LuxIO takes inputs from
multiple sources and aggregates them together into the I/O Traits
structure. The different input sources include a jobspec, an I/O or
execution trace, source code, an application binary, and user input.
Of all the input sources possible, LuxIO only requires a jobspec
and a Darshan trace. Darshan profiling is turned on by default on
most supercomputers [21], so this is a realistic expectation. With
more information, Luxio will be able to better characterize the I/O
behavior of the application, but analyzingmore information has greater
complexity (either in time or in resolving conflicts). In step 2, the I/O
Identity Builder creates an I/O Identity from the I/O Traits, deriving
important features implied by the input. These derived features include
common I/O metrics such as average write bandwidth (derived from
total bytes written divided by time spent writing) and total metadata
operations (sum of each metadata operation counter). In step 3, the
I/O Fitness Calculator determines the relationship of the application
to known I/O behavior classes using its I/O Identity. If fitness exceeds
a configurable distance threshold, a new class will be created for that
application in order to learn unknown behavior. The Classification

Mapper will classify the application into one of the I/O behavior
classes. Application classification is necessary for various reasons.
First, classification allows LuxIO to speed up auto-configuration,
because it can reuse the storage requirements (i.e., SSLOs) of similar
applications rather than relearning them. Second, classification allows
making well-informed storage resource sharing decisions via knowl-
edge of how application classes interfere with each other. Third, having
a measurement of similarity to reference applications can provide a
behavioral approximation which is useful to the user in other contexts.

The methodology for building I/O behavior classes is as follows:
First, a representative amount of profiling data should be collected
from the site (enough to account for yearly seasonality, for example
20% of jobs in a year randomly-sampled). Second, a derived set of
features that can be used to characterize I/O behavior is constructed
from the profiling data (the same derived features as for I/O Identities
in the previous paragraph). Third, an ensemble of models is built to
predict I/O performance characteristics, such as read time, write time,
and metadata time. The ensemble approach captures the diversity
of I/O behavior because each model may perform better in certain
scenarios. The ensemble model constructed is a stacked model that
contains both linear (Lasso and Ridge) and tree-based (Ada Boost,
Random Forest, XGB Regressor) models. Lasso [22] provides a
simple model which works better with a larger feature set and low
correlation, while Ridge [23] provides a more complex model which
works better with a smaller feature set or high correlation. XGB [24],
[25] is a high-performing model, but requires a large quantity of
data to reach reasonable performance compared to other tree-based
models; Ada Boost [26] is especially robust to overfitting for low-
noise datasets; Random Forest [27] works well for noisy data, but may
have overfitting problems which can cause issues when applied to data
from general-purpose computing environments. The ensemble model
utilizes performance-related features (e.g., number of I/O operations,
average request size) rather than semantic features (e.g., interface
used) to predict performance. XGB Regressor [25] is used as the meta-
learner to combine the outputs from each of the different models in
the ensemble, due to its low execution time and highly accurate results.
Lastly, RayTune [28], a widely popular distributed hyperparameter
tuner, is used to tune the hyperparameters of the model. It uses the
AxSearch algorithm to determine values for hyperparameters such
as the number of features, subsampling method, and maximum tree
depth. Fourth, the feature set is reduced using Recursive Feature
Elimination [29] to minimize noise introduced by low impact features
and improve efficiency of search [30]. This process recursively
removes features insignificant to prediction until a targeted number of
features is reached [29]. The target number of features is determined
by RayTune in the previous step. Fifth, I/O behavior classes are
determined by first normalizing the different features and then
applying a clustering algorithm. Normalization applies a logarithm
on the feature value to reduce the effect of outlier data points, and a
Min-Max Scaler to transform the data into the range [0,1]. K-Means
clustering is applied to the transformed dataset and selected feature set.
The optimal number of clusters is identified using a combination of
the elbow method [31] and Davies-Bouldin index [32] - both widely
used heuristics to assess the quality of unsupervised ML models.

Case Study: As an example of the LuxIO methodology for creating
I/O behavior classes, three years of Darshan trace data of the Theta
and Mira supercomputers, extracted from the Argonne Leadership
Computing Facility (ALCF) public data portal [33], were used to

248

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Example I/O Identity, VPIC simulation

identify classes of I/O behavior pertaining to applications run by
Argonne National Laboratory (ANL) between 2017 and 2019. The
dataset includes a total of 542,029 entries. After removing jobs that
spent less than 5% of their time performing I/O, the dataset was pruned
down to 83,714 entries. In the resulting dataset the average job length
was 1,573 seconds, the average number of processes was 49,132, the
average number of I/O operations was 427,825,400, and the average
number of bytes of data written was 3̃80 GB. Tuning the ensemble
model and eliminating features reduced the original 100 features in
the traces to 24. Examples of eliminated features include number
of MPI-IO syncs, POSIX file alignment, and POSIX mode. On the
other hand, features kept include the number of client processes,
number of opens, total number of bytes read/written, number of
read/write operations, the number of small I/O requests (less than 10
KB), percentage of I/O which is sequential, and others. The complete
list of features is in the data section of the LuxIO GitHub repository.

Model Validation: In order to validate the accuracy of the predictions,
the ensemble model was evaluated using the Argonne dataset, with
80% of the dataset for training and 20% for testing. We found that
the stacked model had a better Mean Absolute Percentage Error
(MAPE) than the individual component models. In the worst case,
the model achieved an MAPE of 35% for the read time, 32% for
the write time, and 27% for the metadata time (more detail in
LuxIO GitHub repository). This resulted in a fast (under 100 ms),
low-resource-overhead model that was able to predict I/O time
measurements to within about 30% of the true value, which was
considered sufficient for the purposes of LuxIO. This was deemed
acceptable because the prediction will typically give an estimate
with the same units (e.g., hours, minutes, seconds) as the actual I/O
performance, even for highly variable workloads.

Application Example: Figure 3 shows an example I/O Identity
for Vector Particle-In-Cell (VPIC). This I/O Identity demonstrates
various features which LuxIO derives from I/O Traits. The names of
the I/O Identities are also used for I/O behavior classes and follow
the format “[job scale]-[most common operation type]-[metadata
operation load]-[access pattern]-[interface]”. Important categories of
features include information about the scale of the application, the kind
of I/O being performed, the different access patterns, and the size of the
I/O operations performed. For example, LuxIO I/O Identities specify

Fig. 4: Storage Service Objective Definition (4-5)

the access pattern of the application, which includes information about
the number of large and small I/O operations and the percentage of
sequential I/O in the application. This example of classification demon-
strates the kind of detail that LuxIO aimed to achieve in objective (1).

C. Abstracting Storage System Complexity

In order to abstract storage system complexity, LuxIO defines
the SSLO abstraction. This abstraction generalizes the performance
characteristics and semantics of storage deployments (e.g., read/write
bandwidth, interfaces supported) under known I/O behaviors. Since
multiple storage deployments possessing similar characteristics can
fulfill the same SSLO, there can be different resource provisioning
strategies based on the resources available in the system and
user-desired heuristics. LuxIO selects an appropriate SSLO in
steps 4 and 5 of Figure 4. In step 4, LuxIO consults a database
for existing SSLOs, representing both currently-deployed storage
services and new deployments. In step 5, the Classification Mapper
selects an SSLO which is appropriate for the I/O behavior class of
the application. This is done instead of unique configuration in order
to make storage configuration performant.

The ClassificationMapper takes as input the fitness matrix from the
I/O Fitness Calculator and the list of SSLOs. It then maps the classes
which represent the application I/O behavior to a single SSLO via
an algorithm that utilizes fitness to a particular I/O behavior class
and the coverage of that class by a particular SSLO. Coverage values
are known relationships between I/O behavior classes and SSLOs.
They are determined via heuristic associations between features of
the I/O behavior classes and features of the SSLOs. For example,
features relating to the sequentiality of accesses in the application
will correspond to the sequential sensitivity feature in the SSLO. The
mapping algorithm is presented as Algorithm 1. The I/O behavior
class fitness is multiplied by the coverage to get the score along a path,
and the satisfaction of a particular SSLO is then determined to be
that of the maximum scoring path with that SSLO as a terminal point.
This SSLOwill be the output of the mapping step. In the event that the
application is too far away from known SSLOs, the default SSLOwill
be applied in order to get feedback on application performance.

The methodology for determining the SSLOs has several steps.
First, a comprehensive stress test of the utilized storage systems under
various workloads and device types should be performed. To capture
a wide variety of I/O workloads and their unique characteristics,
LuxIO suggests a stress test based on CORAL [34], consisting of
several I/O benchmarks and kernels (VPIC [35], HACC-IO [36],
Enzo [37]) executed in a combined script. Tests should be run with
various client scales, storage hardware, and storage configurations.
Second, a Min-Max Scaler should be applied to put the resultant

249

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1Mapping I/O Identities to SSLOs
1: procedureMAPPER(IOID, IOClasses, SSLOs, thresh)
2: Let S be an arr with len IOClasses.len * SSLOs.len
3: for IOClass ∈ IOClasses do
4: for SSLO ∈ SSLOs do
5: f←fitness(IOID,IOClass)
6: c←coverage(IOClass,SSLO)
7: S[IOClass,SSLO]←f∗c
8: end for
9: end for
10: return highest-ranked (SSLO, IOClass) pair in S
11: end procedure

Fig. 5: An example of an SSLO, including storage data categories

stress test data in the range [0,1]. Finally, the data should be grouped
using K-Means clustering to create the SSLOs.
In order to provide an example of the LuxIO SSLO construction

methodology, we performed a comprehensive stress test of OrangeFS,
because of its complex configuration space and ability to run in
userspace. This stress test ran over several weeks on a production
cluster (see section IV-A) across all available storage devices, and
collected 16,887 data points of performance measurements such
as I/O time, read/write bandwidth, and latency. Figure 5 provides
an example SSLO generated from the OrangeFS usecase, which
showcases the different aspects needed to define an SSLO. SSLOs
are named according to the following format: “[performant operation
type]-[performant operation size]-[metadata throughput]-[I/O pattern
preference]-[interface supported]”. SSLOs have three categories of
data: a) minimum performance guarantees of the chosen storage
deployment, b) performance variability of the storage system across
various access patterns (i.e., storage sensitivity), and c) different
non-performance-related semantics required by the application. For
example, minimum performance guarantees includes read, write and
mixed bandwidth requirements, I/O operation latency, and perfor-
mance for metadata operations. Semantics are typically user-specified,
and might include the security or logging configurations of OrangeFS,
or could include replication parameters such as osd pool default size
in Ceph. The example SSLO provided shows that LuxIO has captured
the kind of storage behavior necessary to achieve objective (2).

D. Constraint-Based Resource Provisioning
After an SSLO is selected for a job, a deployment schema

meeting the requirements of the SSLO must be constructed based
on the constraints of availability of resources in the cluster and
time and cost requirements of the user, as shown in Figure 6 step
6. Deployment construction involves selection of resources and a
storage configuration. Resource selection identifies physical resources

Fig. 6: LuxIO Deployment Construction

to use for a deployment with various user-chosen policies. These
include maximizing resource utilization, maximizing performance,
and minimizing interference with other applications. Where permitted
by the user, the Deployment Constructor will attempt to share with an
existing storage service, because using storage that another application
has already deployed will eliminate time waiting in the job queue
for the necessary resources and for the storage system to initialize.

Resource and Configuration Selection: To identify the resources
and configuration which fit to a given SSLO, LuxIO uses a model
which predicts performance characteristics based on the workload
characteristics (e.g., access pattern, scale, latency and bandwidth
requirements), storage system type (e.g., OrangeFS, Lustre), network
type (e.g., ethernet, infiniband), device type (e.g., HDD, NVMe), and
number of devices. The model is an XGBRegressor that is trained and
tuned on the stress test data using Bayesian Optimization. The error of
this model was evaluated using 80% of the data as a training set and
20% as a testing set, and it was found that the model gets an MAPE
of 9.995%. Random Forest and Ada Boost models were also tested for
this purpose, but XGB Regressor was selected because it performed
the best of these three. LuxIO uses this model to identify the
minimum number of storage devices required to achieve the required
performance characteristics of the SSLO using nonlinear least squares
minimization [38]. Using this approach, LuxIO constructs new
candidate deployment schemas for every device and network type
and loads the set of existing shareable deployments from the LuxIO
database. LuxIO obtains information about the interference between
I/O behavior classes and the application scale during the stress testing
phase. It does this by running pairwise tests for each pair of I/O
behavior class representative applications (i.e., centroid application in
the class) at various scales. Each pairwise test consists of running each
application in the pair, both on the same node and on isolated nodes.
This data is then used to generate a table of interference factors [8]
for each application pair, calculated as the slowdown experienced
by each representative relative to its I/O performance when running
exclusively. LuxIO is designed so that users that opt into storage
resource sharing may experience significantly improved turnaround
time, but take the risk of some application performance slowdown
within their specified threshold of interference. This approach is
important to address user-defined fast scheduling constraints.

LuxIO employs one of the following policies to decide on the final
set of resources to provision: a)Maximizing performance selects the re-
source set which will yield the best performance for the application, re-
gardless of scheduling delay, and disallows future resource sharing. b)
Minimizing interference favors storage resource sharing and selects the
existing deployment which will cause minimum interference with the
application. If there are no satisfactory existing deployments available,
defaults to maximizing performance policy with storage resource shar-
ing allowed. c)Maximize resource utilization favors deployment con-

250

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

struction and selects the resource set with the lowest overall price (i.e.,
resource cost), or defaults to the minimizing interference policy if no
resources are available within a user-defined time window. These con-
straints enable the sort of provisioning LuxIO aimed at in objective (3).
Pricing Model: In order to determine cost of different resources
for the purposes of achieving better system resource utilization,
LuxIO employs various pricing models. These assign a price to the
different tiers of storage resources (e.g., Non-Volatile Memory express
(NVMe), SSD, Persistent MEMory (PMEM)) to determine the most
suitable tiers a user is able to utilize based on their budget. The
Availability Price Model is represented by the formula 1, where the
price of each tier tcost is a constant tier cost provided by the system
administrator, and device availability is accounted for with tcount.
The Demand Price Model is designed such that resource price

has a direct relationship with popularity, and there are bounds on the
minimum and maximum price. These two bounds, along with the rate
of growth of the sigmoid function, are the three hyperparameters of the
Demand Price Model which need to be configured so that the model
can run. The Demand Price Model sets the adjusted price of the tier
as in formula 2, which returns a number between a configurable mini-
mum and maximum value. The input to the function is the demand on
the tier, which is a value which increases when the tier was accessed
within a time interval ti and decreases when the tier was not accessed
within a time interval tj. The Demand Price Model can determine
the cost of a full deployment by summing the prices of the resources
required for that deployment. This model accounts for popularity as
well as availability when pricing resources, so a resource accessed
more often will be more expensive. LuxIO suggests that future
production machines should incentivize storage resource sharing (and
therefore increase resource utilization) by giving users who opt into
storage resource sharing a core-hour discount using the pricing models.

AvailPrice(t)=
tcost

tcount
(1)

DemandPrice(t)=AvailPrice(t)∗sigmoid(dem(t)) (2)

E. Interacting with LuxIO
Current job scheduling methods are to specify which storage

devices are required for the application. This is functional, but it is
also low-level. The user must know their storage requirements in order
for the job scheduler to understand them. There are no standards for a
higher-level interface which would provide for specifying I/O require-
ments directly to the job scheduler or storage system. In order to prop-
erly provision and configure storage systems, LuxIO needed to create
a standard for specifying I/O requirements in a fashion that could be
conveyed to the job scheduler and storage systems. The specifications
for data in the LuxIO service include I/O Traits, I/O Identities, SSLOs,
and storage deployment schemas. These JSON specifications represent
a standard methodology for detailing the requirements of I/O to the
job scheduler or storage system. Taken together, these I/O requirement
specifications serve to enable simple communication about the natures
of I/O behavior and storage service provisioning as encapsulated by
the I/O behavior and storage quality and semantic models. These I/O
requirement specifications are formally detailed in the specification
section of the LuxIO GitHub repository. It achieves the type of
communication standard that LuxIO aimed at in objective (4).
General use of the LuxIO service takes two forms: non-

interactive and interactive. In the non-interactive case, the user
specifies their access to LuxIO via a wrapper around the Flux
job scheduler, which automatically employs LuxIO in order to

determine and deploy appropriate storage for the job. This wrap-
per includes flags for passing along the various arguments that
LuxIO takes (e.g., “flux jobspec.yaml --use-LuxIO -
-LuxIO-flags=’-t trace.darshan’”). The ornamented
jobspec may rarely become infeasible at scheduling time, and if that
happens, then the job will be put back into the LuxIO pipeline up to
a configurable number of times before failing. The ornamentation on
top of the user-submitted jobspec is a storage deployment schema.
This schema can either recommend a new deployment or a shared
deployment, and contains storage-deployment directives and scheduler
data staging hooks [39]. Staging hooks effectively cause the scheduler
to load specified stage-in files to the storage before scheduling the job.
They are necessary to ensure that data is properly staged into and out
of the service, as ephemeral storage does not equate to ephemeral data.
In the interactive case, the user employs the LuxIO Command

Line Interface (CLI) tools to directly access various I/O requirements.
The primary information provided by LuxIO is the same storage
deployment schema as in the non-interactive case. Alternatively,
LuxIO can provide: a) the I/O Identity of the application, b) insight
into the similarity of the application to common reference applications,
c) the SSLO which represents the storage requirements of the
application, d) the suggested hardware resource set for the application,
and e) a storage system configuration file which satisfies the SSLO.
Each of these data specifications gets stored in the LuxIO database
as LuxIO derives them for future reference.

IV. EVALUATIONS

A. Testbed
Hardware: Tests were performed on the multi-tiered Ares research
cluster at Illinois Institute of Technology [40]. This cluster has 32
compute nodes and 32 storage nodes. Each compute node has a dual
Intel® Xeon Scalable Silver 4114 processor and 96 GB of RAM,
along with an NVMe PCIe ×8 drive and SATA SSD. The storage
nodes, meanwhile, each have a dual AMD Opteron 2384 @ 2.7
GHz processor with 32 GB of RAM, along with a SATA SSD and
a traditional Hard-Disk Drive (HDD). For PMEM, we used a
community-standard emulation technique [41].
Software: LuxIO is built on top of a few other technologies,
consisting of Flux [42], Python 3, Darshan version 3.3.1, and
msgpack version 1.0.2. LuxIO uses Redis version 6.2.6 for its
database. We use Darshan as it is the most common application I/O
profiler used in supercomputing facilities. We use Redis as it is a key
value store that performs well for small size key-value data. Msgpack
was chosen, as it is a well-known efficient binary serialization format.
All the tests were run on top of OrangeFS version 2.9.8 as the PFS,
with operating system caching disabled. They also use the Argonne
and OrangeFS usecases for I/O classes and SSLOs.

B. Overhead Analysis
Identifying the time cost of the internal components of LuxIO is

important to understanding the impact of the LuxIO pipeline on job
scheduling. To do this, we process a single, previously unknown job-
spec using LuxIO twice and measure the execution time of the differ-
ent internal steps each time. The results are shown in Figure 7. Overall,
we see that a fully unknown job requires 93.40 ms to pass through
LuxIO and additional executions of the job require only 22.82ms. Two
core observations can be made from this evaluation. First, these results
show that LuxIO overhead is smaller than that of job scheduling and
deployment, which can run in the 400 millisecond range [42]. This

251

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

(a) Provisioning a new job (b) Provisioning a known job

Fig. 7: Anatomy of operations for LuxIO

7.1%

-1.4%

2.9%
2.4%

0.9%

-4.1%

5.5%

2.1%

0.1%

1.3%

-5.0%
-4.0%
-3.0%
-2.0%
-1.0%
0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%

write optimized read optimized balanced write skew read skew

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

Configuration Type

Write Read

Fig. 8: Percentage variability in performance of diverse OrangeFS
configurations over default for read and write workloads

means that LuxIO runtime is at worst 23.4% of that of existing job
scheduling pipelines, but amortized over time can become as low as
5.7%. Second, LuxIO spends the majority of its runtime in the prepro-
cessing step, which extracts the I/O traits of the application from the
jobspec and input data. This step accounts for 45.6% of the LuxIO run-
time and motivates LuxIO’s usage of an external database to store the
I/O information of previously seen applications; previously seen appli-
cations defer to LuxIO’s secondary bottleneck of deployment construc-
tion, which accounts for 87.4% of the time to process a known jobspec.

C. Performance Variability Across Storage Configurations

One of LuxIO’s core premises is that the performance of an
application is affected by how the underlying storage is configured. In
order to quantify this variation, we evaluated read and write workloads
on a few LuxIO-suggested OrangeFS configurations. We made
sure that our applications ran exclusively during these evaluations
to eliminate resource contention and pollution of performance
results. These configurations and their percentage of improvement
in performance over the configuration that ships as default OrangeFS
can be seen in Figure 8. From this figure, we observe three
things. First, the write-optimized configuration and read-optimized
configuration are each best for their respective workload type and
suffer performance loss if deployed for the opposite workload type.
Correct configuration can lead to an improvement of 5-10% over
the default, while incorrect configuration can lead to 5% loss in
performance over the default. Second, the balanced configuration
shows improvement for both read and write workloads, which shows
an optimal choice for mixed workloads. Third, there are additional
configurations which may be difficult to select manually, such as the
write-skew and read-skew configurations (so named because they give

(a) Workloads Used for End-to-End

(b) Configurations Used for End-to-End

(c) I/O Behavior Classes Used for End-to-End

(d) SSLOs Used for End-to-End

(e) End-to-end evaluations of LuxIO service. Separated into ENZO,
VPIC+BDCATS, and HACC workloads

Fig. 9: End-to-End evaluation of LuxIO service. Columns with black
borders indicate LuxIO’s chosen deployment, SSLO# indicates an
SSLO, C# indicates a set of configuration details, and<device>×#
represents a certain number of devices of the specified type. The *
indicates a baseline deployment.

slightly better performance for write and read workloads, respectively).
LuxIO utilizes these in cases with workload types and ideas that
were not considered in simple manual selection. The performance of
LuxIO’s classification is demonstrated in the end-to-end evaluation.

D. End-to-End Profiling of LuxIO Service
LuxIO provisions resources depending on the I/O characteristics of

the applications. These evaluations demonstrate the effectiveness of
provisioning customized storage services through LuxIO. They focus

252

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

0
1
2
3
4
5
6
7
8
9

0
5

10
15
20
25
30
35
40
45
50

Serial Parallel Luxio -
Partition

Luxio - Sharing

Nu
m

be
r o

f N
VM

es

Ti
m

e
(M

in
ut

es
)

Exec Time Stall Time NVMes Used

Fig. 10: Aggregated runtime of different resource sharing models.
Serial means waiting to run on the same resources, Parallel means
sharing resources, Partition means running with resource partitioning,
and Sharing means running with LuxIO interference staggering and
resource sharing policies.

on four real-world applications: VPIC, BD-CATS, HACC, and ENZO.
These applications are detailed in Table 9a. VPIC [35] is a plasma
modeling code, its I/O kernel consists of a large amount of data written
with large request sizes, specifically 32 bytes per particle across 8
million particles per process in each collective write phase. BD-
CATS [43] is a cosmological and plasma physics clustering analysis
system with an I/O kernel which consists of a large amount of data
being read with large request sizes; in our case, this data is being read
from the VPIC program. Hardware Accelerated Cosmology Code
(HACC) [36] is a cosmological simulation using N-body techniques
to simulate fluid structure formation; its I/O kernel involves a gigabyte-
order write phase and a read phase, each involving large request sizes
of 20 million particles per process. ENZO [37] is an adaptive mesh
refinement simulation code; its I/O kernel consists of gigabyte-order
writes followed by megabyte-order reads, with a medium number of
small request sizes. Enzo processes data on a 128×128×128 grid
which is checkpointed every 10 seconds. A summary of the details of
the best-fitting I/O behavior classes of our test workloads is provided
in Figure 9c. For example, it can be seen that HACC fits best to class C
which has a 512 client process scale and leans towards reads but also
has some writing mixed in. This class is not a perfect fit to HACC, but
it fits well enough that HACC shows an improvement in performance
when mapped to this class. The always-on PFS (i.e., RSS) on our
cluster is represented by SSLO2+C3+SSDx16 and consists of an
OrangeFS running over 16 SATA SSDs using the default OrangeFS
configuration. The relevant OrangeFS configurations are represented
in figure 9b, with important distinguishing factors including Tro-
veSyncMeta, TroveSyncData, TroveMaxConcurrentIO, and TCPBuf-
ferReceive. VPIC, BD-CATS, and HACC spend the majority of their
runtime (90%) in I/O, and perform mainly large I/O accesses (≥1
MB). ENZO spends roughly 40% of its runtime in I/O, and performs
mainly small I/O accesses (<10 KB). Each application is executed
at a 640-process scale over an exclusive deployment of a PFS.

LuxIO Satisfaction Evaluation: In order to show that LuxIO is able
to capture the variety in these applications despite them not being
part of the training set, we also include the fitnesses and coverage
of these applications in Figure 9a. ENZO achieves the best fitness of
82.2%, while the worst fitness is the 41.3% of VPIC. The satisfaction
of these requirements ranges from 25.5% for BD-CATS to 50.4% for
ENZO. We can see that the Argonne models can be applied across
sites, although it is always possible to contrive a workload which does

not fit well to any suggested model. As a general guideline, retraining
of the I/O behavior models is expected to be needed every 10 years
(to account for paradigm shifts in supercomputing) or for any site
with a specialized purpose, and retraining of the SSLOs is expected
to be needed whenever I/O behavior models are retrained or for any
site not using OrangeFS.
LuxIO Recommendation Evaluation: Each application is passed
through the LuxIO pipeline to identify its optimal SSLO, and we
compare the runtime of these applications on the different SSLOs in
order to show performance improvements. A summary of the
relevant SSLOs for the end-to-end evaluation is contained in Figure 9d.
From Figure 9e, we can make the observation that the deployments
that LuxIO recommends perform significantly (20% - 50%) faster
over the always-on PFS. This is because the SSLOs selected satisfy
the requirements of the known characteristics of the applications,
allowing for the construction of faster storage deployments for these
applications. Second, it can be seen that different PFS configura-
tions running over the same storage type and scale can lead to
significantly different performance. For VPIC & BD-CATS, LuxIO
recommends an SSLO that supports a high read/write bandwidth
(SSLO3). The final deployment constructed from this SSLO consists
of 16 NVMes and OrangeFS configuration 3 (i.e., C3). When
compared to SSLO3+C1+SSDx16, which contains 16 SSDs and
configuration C1, a performance improvement of 14% is made. Note
that the performance improvement from a different set of resources
and configuration is more than that from configuration alone (e.g., in
evaluation section IV-C). Third, also focusing on VPIC & BD-CATS,
it can be seen that another SSLO is available that could have resulted
in 10% better performance (SSLO4). However, this SSLO constructs a
deployment of 16 PMEM devices, which are reserved for applications
with random access patterns and small I/O, rather than sequential
access patterns with large I/O. While PMEM is faster than NVMe,
applications with more favorable characteristics for PMEM should
be prioritized. In this evaluation, LuxIO performs a multi-objective
optimization, achieving the best performance while minimizing the
scheduling budget cost of resources. As can be seen, LuxIO avoids
suggesting PMEM devices, since it would violate the budget available
for this job. It is notable that all of LuxIO’s recommended deployments
provide better performance than the default, so that even when
a suboptimal deployment is chosen in order to improve resource
utilization, the application still sees performance improvement. Lastly,
ENZO’s evaluation showcases the value of the cost model used in
LuxIO. While both SSLO1 and SSLO4 provide similar performance,
the SSLO1 deployment uses 4 PMEM devices while SSLO4 uses
16 PMEM devices. In this instance, LuxIO chooses the deployment
with a smaller resource requirement, leading to higher overall resource
utilization. Overall, we observed that LuxIO can reduce the execution
time of application I/O by an average of 43% when compared to an
always-on deployment of the same storage system.

E. Resource Sharing in LuxIO
Figure 10 shows how LuxIO performs when multiple applications

are run on the same resources. For this evaluation, applications
are allowed to share compute nodes and perform I/O to the
same NVMe drives. We also use a new application for this
evaluation: DeNitrification-DeComposition (DNDC). DNDC is a
simulation for carbon and nitrogen models which involves reading
64,000 small files, each of a fewKBs [44]. This evaluation utilizes four
methods of deployment: one where applications wait for each other

253

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

before running on shared resources (serial), one where applications run
simultaneously on shared resources but without LuxIO to determine
the optimal resources for each (parallel), one where LuxIO is used to
determine an optimal partition of resources between the applications
but without sharing (partition), and a final method where applications
run simultaneously on shared resources with LuxIO indicating which
applications should run on which resources and staggering runtime
to minimize interference (sharing). We can make several observations
from this figure. First, in the serial case, turnaround time is longer
compared to LuxIO provisioning strategies; although running a single
application exclusively would be faster due to having exclusive use
of the system resources, this would neglect to consider stall time from
waiting for other applications. Second, in the parallel case, we see an
increase in the total time to run applications due to resource contention.
Finally, in the partition and shared cases, we see an improvement
in overall performance and resource utilization. The sharing case
could pair 2 DNDC instances to one VPIC and therefore require 25%
less resources than the serial or parallel cases. The improvement in
turnaround time is 5% over the serial for the LuxIO partition case, and
12.8% over the serial for the LuxIO sharing case. The advantage over
parallel for these two cases is much more significant, at over 70%.

V. RELATED WORK

A. Application I/O Characterization
Some works have proposed employing sophisticated Machine

Learning (ML) techniques to alleviate the issues with static analysis in
characterizing I/O. For example, the study by Bez et al [45] explains
and evaluates multiple methodologies for the prediction of I/O access
pattern, including decision trees, random forest, and neural networks.
These predictors have the advantages over statistical analysis of
analyzing while the application is running and not requiring user
intervention. However, they can lack semantic detail, abstracting
complex I/O behaviors as simply access patterns. LuxIO models are
designed to provide additional details, such as average I/O bandwidth,
total I/O size, and sequentiality.

B. Configuring and Classifying Complex Storage
The objective of storage auto-configuration is to discover an

optimally-performing configuration for a given application on given
hardware. Auto-configuring storage for an application entails profiling
the application on various storage configurations and selecting the
configuration with the best performance. Configuration of storage can
be done offline or online [46], where the offline case determines which
parameters to use for configuring storage and the online case changes
an existing deployed storage dynamically. Often, the parameter space
for auto-configuration is very large, which necessitates dimensionality
reduction [47] in order to reach feasible search times. Typical
approaches make use of artificial intelligence techniques such as
genetic algorithms [48] or a Latin Hypercube Design [49] in order to
simplify the search, which would take too long using simple random
search. The major flaw in existing auto-configuration approaches
is that they tend to be prohibitively expensive even with the various
techniques used to reduce the configuration search space, and complex
due to the profiling either of one application across multiple storage
types or multiple applications across one storage type. Ultimately, if
optimality of configuration cannot be guaranteed in a satisfactory time
period, then simply providing better performance than default should
be prioritized [50]. This is a key justification for LuxIO, which prefers
to use classification over the perfect optimality of auto-configuration.

A heuristic classification of storage is necessary for LuxIO’s idea
of using “good-enough” storage, rather than always configuring
optimally. To the best of our knowledge, there are no comprehensive
classifications of storage available before LuxIO. The closest existing
works have come is to build loose heuristic classifications of storage
properties, as in the survey by Macedo et al [51], or to characterize
an individual deployment of a storage system, such as in the paper
by Inacio et al [52].

C. Automatic Storage Provisioning in HPC
Automatic provisioning in HPC is primarily seen in burst buffer

scheduling. DataWarp [53] sets up several burst buffers and assigns
applications to them based on remaining capacity and without
concern for application interference. Harmonia [8] allows for
various constraints in its provisioning, and ultimately can reduce
interference where required. These systems are useful, but treat
storage provisioning separately from the job and do not consider
compute-node-local storage resources. While this works well in
high-contention scenarios, and LuxIO techniques would be able
to apply to this sort of situation, the usecase is ultimately different
as LuxIO is aimed at improving utilization in a situation where
node-local storage is ubiquitous. For LuxIO, resource utilization is
the primary concern rather than resource contention.

VI. CONCLUSIONS AND FUTURE WORK

We have presented LuxIO, a service which provides intelligent
storage resource provisioning and auto-configuration. LuxIO-
deployed storage demonstrates up to 2× improvement in performance
over baseline deployments. Experimental and analytical overhead
analyses show that LuxIO only imposes negligible overhead on the job
scheduling pipeline. In addition, LuxIO resource sharing policies lead
to more than 5% improvement in turnaround time, while improving
resource utilization by approximately 25% in select workloads.
LuxIO currently uses a trace-based approach due to availability and

easy-to-process nature of traces. This is limiting in cases where I/O
traces are unavailable or outdated, or when application behavior varies
significantly across runs. In order to overcome this, LuxIO hopes to
explore supplemental information sources in future work, such as
more detailed application binary and source code analysis techniques.
I/O characterization of a job or an application can change over time. In
future work, LuxIO hopes to explore utilizing malleable storage and
techniques that capture the temporal sequence of operations in order to
handle this dynamism, which will also benefit the I/O trace concern.

VII. ACKNOWLEDGEMENT

This research is supported by the National Science Foundation
under Grants OCI-1835764, CSR-1814872, and CSSI-2104013.
Argonne I/O trace data was generated from resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] Oracle, “Lustre* software release 2.x operations manual,” Oracle, Tech. Rep.,
2017. [Online]. Available: https://doc.lustre.org/lustre manual.pdf

[2] A. Kougkas, H. Devarajan, J. Lofstead, and X.-H. Sun, “Labios: A distributed
label-based i/o system,” in Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing, 2019, pp. 13–24.

[3] X. Ji, in Wuxi, B. Yang, T. Zhang, X. Ma, X. Zhu, X. Wang,
N. El-Sayed, J. Zhai, W. Liu, and W. Xue, Automatic, Application-Aware
I/O Forwarding Resource Allocation. Usenix, 2019. [Online]. Available:
https://www.usenix.org/conference/fast19/presentation/ji

254

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

[4] O. Yildiz, D. Morozov, B. Nicolae, and T. Peterka, “Dynamic heterogeneous
task specification and execution for in situ workflows,” in 2021 IEEE Workshop
on Workflows in Support of Large-Scale Science (WORKS), 2021, pp. 25–32.

[5] Z. Liu, R. Lewis, R. Kettimuthu, K. Harms, P. Carns, N. Rao, I. Foster, and M. E.
Papka, “Characterization and identification of hpc applications at leadership
computing facility,” in Proceedings of the 34th ACM International Conference
on Supercomputing, 2020, pp. 1–12.

[6] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross,
“Understanding and improving computational science storage access through
continuous characterization,” ACM Transactions on Storage (TOS), vol. 7, no. 3,
pp. 1–26, 2011.

[7] H. Devarajan, A. Kougkas, P. Challa, and X.-H. Sun, “Vidya: Performing
code-block io characterization for data access optimization,” in 2018 IEEE 25th
International Conference on High Performance Computing, Data, and Analytics.
IEEE, 2018.

[8] A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead, “Harmonia: An
interference-aware dynamic i/o scheduler for shared non-volatile burst buffers,”
in 2018 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2018, pp. 290–301.

[9] K. Shoga, “Monitoring and data integration at LLNL,” Nov 2018. [Online].
Available: https://eehpcwg.llnl.gov/assets/sc18 workship thermo shoga.pdf

[10] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph:
A scalable, high-performance distributed file system,” in Proceedings of the 7th
symposium on Operating systems design and implementation, 2006, pp. 307–320.

[11] OrangeFS, “OrangeFS configuration file,” 2020. [Online]. Available:
http://docs.orangefs.com/configuration/admin ofs configuration file/

[12] Oracle/Intel, “Lustre software release 2.x - operationsmanual - lustre manual.pdf,”
2022. [Online]. Available: https://doc.lustre.org/lustre manual.pdf

[13] C. authors and contributors, “Configuration – ceph documentation,” 2022.
[Online]. Available: https://docs.ceph.com/en/latest/rados/configuration/

[14] F. Tessier, M. Martinasso, M. Chesi, M. Klein, and M. Gila, “Dynamic provision-
ing of storage resources: A case study with burst buffers,” in IPDPSW 2020-IEEE
International Parallel and Distributed Processing Symposium Workshops, 2020.

[15] M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn, and M. Taufer,
“Prionn: Predicting runtime and io using neural networks,” in Proceedings of
the 47th International Conference on Parallel Processing, 2018, pp. 1–12.

[16] U. Schwiegelshohn and R. Yahyapour, “Fairness in parallel job scheduling,”
Journal of Scheduling, vol. 3, no. 5, pp. 297–320, 2000.

[17] S. Gugnani, T. Li, and X. Lu, “Nvme-cr: A scalable ephemeral storage runtime for
checkpoint/restart with nvme-over-fabrics,” in 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 172–181.

[18] T. P. Morgan, “Livermore converges a slew of new ideas for exascale storage,”
2021. [Online]. Available: https://www.nextplatform.com/2021/03/09/livermore-
converges-a-slew-of-new-ideas-for-exascale-storage/

[19] F. Team, “14/canonical job specification – flux 0.13.0 documentation,”
2021. [Online]. Available: https://flux-framework.readthedocs.io/projects/flux-
rfc/en/latest/spec 14.html

[20] A. Singh, A. Yadav, and A. Rana, “K-means with three different distance metrics,”
International Journal of Computer Applications, vol. 67, no. 10, 2013.

[21] NERSC, “Darshan i/o profiler.” [Online]. Available:
https://docs.nersc.gov/tools/performance/darshan/

[22] J. Ranstam and J. Cook, “Lasso regression,” Journal of British Surgery, vol. 105,
no. 10, pp. 1348–1348, 2018.

[23] D. W. Marquardt and R. D. Snee, “Ridge regression in practice,” The American
Statistician, vol. 29, no. 1, pp. 3–20, 1975.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[25] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 2016, pp. 785–794.

[26] D. P. Solomatine and D. L. Shrestha, “Adaboost. rt: a boosting algorithm for
regression problems,” in 2004 IEEE International Joint Conference on Neural
Networks (IEEE Cat. No. 04CH37541), vol. 2. IEEE, 2004, pp. 1163–1168.

[27] Y. Liu, Y. Wang, and J. Zhang, “New machine learning algorithm: Random
forest,” in International Conference on Information Computing and Applications.
Springer, 2012, pp. 246–252.

[28] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune:
A research platform for distributed model selection and training,” arXiv preprint
arXiv:1807.05118, 2018.

[29] scikit-learn developers, 2022. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.feature selection.RFE.html

[30] K. Yan and D. Zhang, “Feature selection and analysis on correlated
gas sensor data with recursive feature elimination,” Sensors and
Actuators B: Chemical, vol. 212, pp. 353–363, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925400515001872

[31] M. Syakur, B. Khotimah, E. Rochman, and B. D. Satoto, “Integration k-means
clustering method and elbow method for identification of the best customer
profile cluster,” in IOP conference series: materials science and engineering,
vol. 336, no. 1. IOP Publishing, 2018, p. 012017.

[32] J. Xiao, J. Lu, and X. Li, “Davies bouldin index based hierarchical initialization
k-means,” Intelligent Data Analysis, vol. 21, no. 6, pp. 1327–1338, 2017.

[33] A. L. C. Facility, “ALCF public data,” 2021. [Online]. Available:
https://reports.alcf.anl.gov/data/index.html

[34] L. L. N. Laboratory, “Coral benchmark codes — advanced simulation and
computing,” 2021. [Online]. Available: https://asc.llnl.gov/coral-benchmarks

[35] K. Wu, S. Byna, B. Dong et al., “Vpic io utilities,” Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2018.

[36] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heitmann,
“Hacc: Extreme scaling and performance across diverse architectures,” in SC’13:
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 2013, pp. 1–10.

[37] G. L. Bryan, M. L. Norman, B. W. O’Shea, T. Abel, J. H. Wise, M. J. Turk, D. R.
Reynolds, D. C. Collins, P. Wang, S. W. Skillman et al., “Enzo: An adaptive
mesh refinement code for astrophysics,” The Astrophysical Journal Supplement
Series, vol. 211, no. 2, p. 19, 2014.

[38] T. S. community, “scipy.optimize.least squares –
scipy v1.7.1 manual,” 2021. [Online]. Avail-
able:
docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least squares.html

[39] F. Team, “flux-sched/jobspec.yaml at master · flux-framework/flux-sched ·
github,” 2022. [Online]. Available: https://github.com/flux-framework/flux-
sched/blob/master/t/data/shell/node-local/jobspec.yaml

[40] S. Lab, “Resources — scs lab - illinois institute of technology,” 2022. [Online].
Available: http://www.cs.iit.edu/ scs/resources.html

[41] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson, “Strata:
A cross media file system,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 460–477.

[42] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein, H. I. Ingólfsson,
J. Koning, T. Patki, T. R. Scogland et al., “Flux: Overcoming scheduling
challenges for exascale workflows,” Future Generation Computer Systems, 2020.

[43] M.M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić, V. Roytershteyn,
M. J. Anderson, Y. Yao, P. Dubey et al., “Bd-cats: big data clustering at trillion par-
ticle scale,” in SC’15: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. IEEE, 2015, pp. 1–12.

[44] I. for the Study of Earth Oceans and S. U. of New Hampshire, “Home page,”
2022. [Online]. Available: https://www.dndc.sr.unh.edu/

[45] J. L. Bez, F. Z. Boito, R. Nou, A. Miranda, T. Cortes, and P. O. Navaux,
“Detecting i/o access patterns of hpc workloads at runtime,” in 2019 31st
International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). IEEE, 2019, pp. 80–87.

[46] A. Mahgoub, P. Wood, A. Medoff, S. Mitra, F. Meyer, S. Chaterji, and
S. Bagchi, “{SOPHIA}: Online reconfiguration of clustered nosql databases
for time-varying workloads,” in 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), 2019, pp. 223–240.

[47] H. Dou, P. Chen, and Z. Zheng, “Hdconfigor: Automatically tuning high
dimensional configuration parameters for log search engines,” IEEE Access,
vol. 8, pp. 80638–80653, 2020.

[48] E. Zadok, A. Arora, Z. Cao, A. Chaganti, A. Chaudhary, and S. Mandal,
“Parametric optimization of storage systems,” in 7th {USENIX}Workshop on
Hot Topics in Storage and File Systems (HotStorage 15), 2015.

[49] P. Jamshidi and G. Casale, “An uncertainty-aware approach to optimal
configuration of stream processing systems,” in 2016 IEEE 24th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 2016, pp. 39–48.

[50] A. Fekry, L. Carata, T. Pasquier, A. Rice, and A. Hopper, “To tune or not to
tune? in search of optimal configurations for data analytics,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2020, pp. 2494–2504.

[51] R. Macedo, J. a. Paulo, J. Pereira, and A. Bessani, “A survey and classification
of software-defined storage systems,” ACM Comput. Surv., vol. 53, no. 3, may
2020. [Online]. Available: https://doi.org/10.1145/3385896

[52] E. C. Inacio, J. Nonaka, K. Ono, M. A. Dantas, and F. Shoji, “Characterizing
i/o and storage activity on the k computer for post-processing purposes,” in 2018
IEEE Symposium on Computers and Communications (ISCC). IEEE, 2018,
pp. 00730–00735.

[53] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and N. J. Wright,
“Architecture and design of cray datawarp,” Cray User Group CUG, 2016.

255

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on May 15,2023 at 21:10:14 UTC from IEEE Xplore. Restrictions apply.

