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Abstract—Hadoop, as one of the most widely accepted MapRe-
duce frameworks, is naturally data-intensive. Its several depen-
dent projects, such as Mahout and Hive, inherent this character-
istic. Meanwhile I/O optimization becomes a daunting work, since
applications’ source code is not always available. I/O traces for
Hadoop and its dependents are increasingly important, because it
can faithfully reveal intrinsic I/O behaviors without knowing the
source code. This method can not only help to diagnose system
bottlenecks but also further optimize performance. To achieve
this goal, we propose a transparent tracing and analysis tool
suite, namely IOSIG+, which can be plugged into Hadoop system.
We make several contributions: 1) we describe our approach of
tracing; 2) we release the tracer, which can trace I/O operations
without modifying targets’ source code; 3) this work adopts
several techniques to mitigate the introduced execution overhead
at runtime; 4) we create an analyzer, which helps to discover new
approaches to address I/O problems according to access patterns.
The experimental results and analysis confirm its effectiveness
and the observed overhead can be as low as 1.97%.
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I. INTRODUCTION

MapReduce paradigm and its open source implementation
Hadoop [1], [2], are widely applied for data-intensive jobs due
to its capability of scaling out and fault tolerance. With the
help of Hadoop, the data processing ecosystem is advancing
continuously, such as HBase [3], Pig Latin [4], Hive [5], and
Mahout [6]. Recently, YARN, the next generation of Hadoop,
enables HDFS to support various workloads and evolves into
a larger scale [7].

However, due to performance gap between computing and
storage devices, Hadoop ecosystem is generally becoming
more data-intensive. Thus, the overall performance of Hadoop
applications is greatly determined or affected by their I/O
performance. In order to improve their performance, tracing
I/O behaviors is one of simple yet powerful ways. Tracing and
analysis has been studied for many years in HPC environment
as an optimization prerequisite, such as mpiP [8], IOSIG [9]
and Darshan [10]. These tools or interfaces can trace for MPI-
based applications, but neither are they suitable for Java based
applications nor Hadoop frameworks.

Even though Hadoop’s system log is another convenient
source of logging system behaviors, it is often problematic
to analyze Hadoop logs. Because loggers in Hadoop are
added by random independent developers, they are incomplete,
less reliable, and even misleading especially for I/O behavior
analysis [11], [12].

Our solution is to inject byte codes into Hadoop systems
and get related I/O traces. There are further reasons to trace
and analyze Hadoop systems: First, many existing works chose

to use data mining, black-box, and gray-box methods [12],
[13], [14] to make guidelines to improve I/O performance but
missed potential fine-grain optimization opportunities. Second,
there are many configuration parameters in Hadoop systems,
some of which can make a huge impact on the performance
but neither users nor system can be aware of the optimal ones
in advance. Third, tuning parameters for I/O throughput is
not enough because MapReduce employs lots of threads that
are in charge of functions of a task and working corporately.
Their behaviors’ impact to the performance is also important
but remains unknown. Finally, since Hadoop widely adopts
buffering and asynchronous I/O, I/O traces reveal the data
accesses across multiple I/O stacks in order to reflect the
causality between data accesses and I/O performance.

This paper introduces our solution for Hadoop systems.
Hadoop applications can be naturally decoupled into two lay-
ers: Application(MapReduce) and HDFS. However, acquiring
the I/O behaviors for two layers without API interference is
not an easy task. To address this problem, our technique con-
tribution in this paper, is to trace I/O calls in Hadoop systems
without API interference, avoiding high performance overhead.
Our tool suite can record Hadoop applications and underlying
HDFS I/O requests without changing any code for targeted
applications and Hadoop itself. To reveal I/O behaviors and
further optimize Hadoop systems, we also build comprehensive
tools for trace analysis, and pattern visualization, especially for
Hadoop systems. The contributions are:

• We build a Java-based I/O signature agent to auto-
matically collect Hadoop traces without introducing
interferences to applications. Trace files are stored in
compression at runtime.

• We run several Hadoop benchmarks to evaluate its
performance and overhead.

• We analyze the trace information and show the poten-
tial usage of how to optimize Hadoop I/O stack.

• The built-in analyzer in IOSIG+ can visualize I/O
access patterns. We preview some patterns in this
paper.

The rest of this paper is organized as follows: Section II
illustrates the design and implementation of IOSIG+. In Sec-
tion III, we show our experimental results by evaluating
overhead of IOSIG+. In this section, we also conduct trace
processing and analysis, showing many I/O patterns and opti-
mization opportunities. Section IV reviews the related work of
Hadoop tracing and performance analysis, and discusses the
differences from this work. Finally, we conclude the paper in
Section V.
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Fig. 1. Overview of IOSIG+: KVTracer and StreamTracer are injected
into MapReduce and DataNode respectively on all slave nodes and traces
from them will be sent to CollectionServer. Finally all trace data are fed to
TraceAnalyzer to do analysis.

II. DESIGN AND IMPLEMENTATION

A. Design Overview

IOSIG+ aims at introducing tracing capability with low
overhead in the first place. Our design addresses three chal-
lenges successfully. First, as a tracing tool, IOSIG+ should
yield a low I/O overhead in target applications. We use ramdisk
as temporary trace storage and compress traces on ramdisk
in a non-blocking way. Second, IOSIG+ traces both HDFS
and MapReduce layers. Therefore two-layer tracing is used
in Hadoop systems: one layer for MapReduce framework,
which reads/writes intermediate key-value pairs; the other layer
for HDFS, which actually executes I/O operations. Third,
IOSIG+ is implemented according to Java agent specification
supported by JVM, which makes it transparent to all Hadoop
applications.

Figure 1 shows the overall architecture of IOSIG+, which
consists of four major components: 1) KVTracer, 2) Stream-
Tracer, 3) CollectionServer and 4) TraceAnalyzer. KVTracer
is responsible for tracing intermediate key-value pairs in map
and reduce tasks. KVTracer monitors some Hadoop classes
such as RecordReader, RecordWriter and their inheritances.
StreamTracer resides inside of each DataNode. It can capture
general Java I/O function calls in some common classes,
such as FileInputStream, FileOutputStream and etc. Collec-
tionServer is a non-blocking trace storage server, which saves
all I/O signatures in ramdisk, compresses trace files and
transfers compact trace files into local or network file systems.
TraceAnalyzer is an offline tool to extract and analyze I/O
behaviors based on trace files.

B. Trace Information Levels

Fine-grained tracing is time-consuming, but coarse-grained
tracing may lead to incomplete information or misleading
conclusion. IOSIG+ balances the overhead with tracing gran-
ularity by grading information into levels. Since achieving
both fine-granularity and low-overhead is paradoxical, IOSIG+
provides runtime tunable parameters indicating the expected
tracing granularity so that the users can specify on which
level it traces, thus the tracing overhead can be under control.
Similar to Herodotou’s Profiling [11], IOSIG+ also traces the
information of job-level and task-level. Moreover, we have

TABLE I. THE MATRIX OF TRACING INFORMATION ON LEVELS

Trace Logical Thread Phase Task Job
record x

properties x x

xml x x

classes x x

jars x x

thread x x x

Hadoop log x x x x x

pipe x x x x x

blk x x x x x

blk.meta x x x x x

more fine-grained options in order to not just show the statistics
of jobs and tasks but also I/O accesses to data blocks. The
information levels which IOSIG+ can trace are shown in
Table I.

C. Implementations

IOSIG+ is built in compliance with Java agent specifica-
tion. Java Agent Instrument mechanism allows Java application
to work with agents to run agent codes before running pro-
grams on the JVM. We use an agent to generate and replace
the bytecode of some classes in memory. IOSIG+ can be
deployed as a JAR file, in which an agent class is specified
and the permissions to instrument classes are granted. Before
the target program getting started, IOSIG+ works as an agent
to instrument some bytecodes into target applications. Since
all the writing functions are traced, it incurs recursive calls if
the logging functions are implemented in Java. To avoid this
problem, we also use Java Native Interface (JNI) to implement
the trace file saving mechanism in C language.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

Craysun is a cluster in our lab, consisting of 17 nodes, of
which one node is master and the other 16 nodes are salves.
The master node is a Dell PowerEdge 2850 Server, which has
a dual-core Intel Xeon CPU 2.80GHz with 6GB of memory.
All slave nodes are Dell PowerEdge SC 1425 Server, each
of which has an Intel Xeon CPU 3.40GHz processor, 1GB of
memory, and a 36GB (15,000 rpm) SCSI hard drive. All nodes
are connected within a local area network switch, running
Ubuntu 14.04 with latest available Linux kernel.

B. Tracing Overhead Analysis

The overhead of IOSIG+ is mainly brought by capturing
I/O operations and writing trace files. To better evaluate the
pure overhead of IOSIG+, we compared the performance of
TestDFSIO with and without tracing. TestDFSIO benchmark
is delicately writing 1GB-file on each node in parallel. Fig-
ure 2 shows the performance comparison between the stock
system and that with activated IOSIG+ in throughput and
average I/O rate. In these experiments, the throughputs of
write and read for the stock system are 28.76MB/sec and
74.66MB/sec respectively; while the average I/O rate are
31.21MB/sec and 75.94MB/sec. By contrast, when IOSIG+ is
active, the throughputs of write and read are 25.99MB/sec and
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Fig. 2. Throughput comparison between with and without IOSIG+ for
TestDFSIO
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Fig. 3. IOSIG+ overhead evaluation in TeraSort

60.75MB/sec; while the average I/O rate are 30.60MB/sec and
64.87MB/sec. The least performance degradation with IOSIG+
is in write tests, while the most performance degradation with
IOSIG+ is in read tests. This is because the throughput of read
is more than double of that of write. Since write operations are
more expensive and saving tracing files are all write accesses,
the time spent for writing is longer than that for reading.
Therefore, the overhead for write tests is not as obvious as
that for read tests. In these experiments, the highest overhead
in throughput and average I/O rate are 18.62% and 14.58%;
while the lowest are 9.63% and 1.97%.

C. Scalability

This experiment is to show the overhead of IOSIG+
when the Hadoop system scales out as well as its capability
of capturing traces from every DataNode and stores traces
through CollectionServers. In these experiments, 4GB data
generated from TeraGen are sorted by TeraSort. We vary the
number of slaves in a Hadoop cluster from 1 to 16. In this
set of experiments, as the number of DataNodes increases,
we can observe that the overhead of IOSIG+ is all less than
10% (Figure 3). Because I/O capturing in tracers and storing
traces in collection servers for HDFS are distributed on each
DataNode, each node has almost the same overhead so that
the overall overhead is constant.

D. Request Patterns

During executions of Hadoop applications, periodic I/O
waves can be easily observed. Figure 4 presents the compar-
ison of two-layer trace diagrams in a short period in Ran-
domTextWriter. RandomTextWriter is another benchmark in
Hadoop, which generates random unsorted sequence of words.
We trace the I/O calls from two layers for RandomTextWriter

Fig. 4. Two-layer bandwidth comparison from RandomTextWriter in a time
window. The above subfigure shows the requests in MapReduce layer and the
bottom one shows the requests from DataNode.

and plot the requests in Figure 4. The above subfigure shows
the requests in MapReduce layer and the bottom one shows
the requests from DataNode. We observe that the number of
requests from upper layer (MapReduce) is larger than that
from lower layer (mainly from DataNode). This reveals that
the request pattern varies between layers.

IV. RELATED WORK

A. I/O Tracing for System Diagnosis and Debugging

mpiP [8], IOSIG [9] and Darshan [10] are tracing tools for
MPI-based applications. However, they cannot be used for Java
based programs. For example, our previous work IOSIG [9]
supports the tracing for MPI-IO. In addition, plethora of
existing works are designed for the I/O stack on a single node,
and cannot trace applications on a large-scale cluster [15], [16].

Hadoop provides its internal logging support. The earlier
work SALSA and Mochi [17], [18] intelligently process the
raw system logs but these works were based on the assump-
tion that similarity of MapReduce tasks and homogeneous
hardware. However, for other non-MapReduce applications,
it is not suitable for non-fixed I/O patterns on HDFS. For
example, it is inevitable for HBase to send random requests
to HDFS in some cases. Pan et al. proposed Ganesha [13] to
transparently diagnose MapReduce performance, by collecting
OS-level metrics and using data mining clustering method
to identify outliers. The web-page based Hadoop monitoring
tool [19] from Cloudera company provides detailed descrip-
tions on resource utilization and task duration with visualiza-
tion, especially on CPU utilization rate through the execution
duration. McDougall et al. categorized I/O on Hadoop system
and took TeraSort benchmark as an example to quantitatively
measure these I/O patterns, especially the behaviors from the
client-side and the DataNode I/O stacks [20]. While IOSIG+
neither assume homogeneous hardware nor rely on high-level
statistics, it can provide detailed view of I/O operations. More-
over, IOSIG+ supports various course-grained options, like
phase-level and thread-level granularity matrices, especially
concentrates on I/O sensitive data in order to bring lower
overhead than fine-grained ones.



B. Tracing for Hadoop System Characterization and Perfor-
mance Analysis

Hadoop parameter tuning is another popular topic in this
field, since it has many built-in parameters which impact
performance. Application traces are essential input for per-
formance tuning. For example, Herodotou et al. proposed a
tuning system [11] to find optimal configurable parameters
for MapReduce applications in Hadoop. The input for a cost-
based optimizer traces detailed statistics of both job or task
level including resource consumptions, and timing information
for thread worker or functions in task, such as spill, merge,
etc. Kwon et al. proposed SkewTune [21] to tune MapReduce
application skew in runtime. An assigned split is no longer
an atomic unit for task scheduling. An straggler task can be
partitioned into multiple subtasks. The subtasks are assigned
to idle workers and completed in parallel according to both
collected statics and the status of task processing. Li et al.
proposed mrOnline [14], an online tuning system based on
YARN that exploits YARN’s enhanced resource allocation. The
fundamental of optimal parameters search is the runtime statis-
tics, including task and node resource utilization information
that collected by system periodically. Across I/O stacks tracing
and analysis is a promising methodology for performance
optimization. Harter et al. analyzed the tracing logs of HBase
and HDFS respectively in Facebook’s shadow cluster [22], and
observed the data access patterns among different I/O stacks
have huge differences that read intensive applications issue
read requests to memory but write requests to I/O devices.

V. CONCLUSIONS AND FUTURE WORK

We present our solution to reveal I/O behaviors of Hadoop
applications from building a tracing and analysis tool suite,
namely IOSIG+, which helps to capture, compress, save and
visualize I/O traces under Hadoop systems. Compared with the
related work, its advantages are three-fold: 1) it uses white-
box tracing, which accurately record application behaviors; 2)
it presents the pattern comparison between different component
layers in the whole I/O stack of Hadoop; and 3) to our
best knowledge, it has the most comprehensive information
without using a shadow cluster. In addition, we provide all
these features with low overhead. The experiments and analysis
show that IOSIG+ is capable of capturing comprehensive
details of I/O behaviors of Hadoop applications, with a low
execution overhead at runtime. From our analysis, as non-
API-interference tool, IOSIG+ is capable of providing I/O
optimization opportunities, even for applications that users
are not familiar with or applications whose source codes
are not available. In future, we would like to provide more
comprehensive views of traces and hints for I/O optimization.
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