
Memory Servers: A Scope of SOA for High-End Computing

Surendra Byna Xian-He Sun Ryan Nakhoul
Computer Science Department, Illinois Institute of Technology, Chicago

{bynasur, sun, rnakhoul}@iit.edu

Abstract

The expanding gap between microprocessor and disk
performance has initiated new techniques of providing
memory as a service in high-end computing (HEC).
Although the processor and disk densities have improved
over the last decades, the improvement of disk
performance is inferior to that of processors, which is
causing a bottleneck for HEC. With the rapid growth of
network technology for cluster computers, the idea of
accessing memory of an idle peer node has proven to be
faster than accessing a disk. With this motivation, many
researchers developed systems that offer idle memory as a
service. In this paper, we present a brief survey of various
systems that offer memory service in improving the disk
access performance and discuss the scope of applying
service oriented architecture (SOA) for HEC.

1. Introduction

High-end computing is a major strategic tool for
science, engineering, and industry. HEC simulations in
various areas of science enable to understand the world
around us [1]. HEC systems have emerged with Teraflops
of computing power and Petaflop computing is in the near
horizon. However, disparity among processors, storage,
memory, network, and applications causes a gap between
peak performance and sustained system performance, and
this gap is growing rapidly [5] (figure 1). While processor
and network speeds are growing rapidly, disk
performance has been improving very slowly. The
processor performance is improving thousands of times
faster compared to that of I/O.

To solve this problem, many research groups have
proposed providing memory as a service over network in
order to reduce disk accesses and to let clients directly
access memory remotely. The assumption with this
research is that data can be accessed faster on network
than from disks [2, 4, 6, 8, 10]. In this paper, we discuss
and compare these strategies, and present a possibility of
extending this idea with SOA model.

2. Background and Evaluation Criteria

Research has shown that in a cluster of workstations,
and in local area networks consisting of multiple
computers intercommunicating, a considerable amount of

unused memory is available in each node [2]. With very
low sustained system performance, much of memory on
individual workstations is idle. This fact has lead to
investigating solutions that allow applications to take
advantage of this collectively large amount of available
memory.

Data-intensive applications in the areas of graphics
rendering, weather prediction systems, simulation
software etc. require massive amounts of memory. When
no more physical memory is available, these applications
begin paging to secondary storage-local disk. The disk
access overhead is in the range of 10 ms, where as
memory access latency ranges from 44ns to 114.3 ns [12].
Thus, the efficiency of HEC machines in running the
applications mentioned above is dramatically low. In
addition to that, transferring data rate from or to a hard
disk is 320MB/s, while data transfer rate on a network can
reach more than 1000MB/s. This is where network
memory servers come into play by allowing processes to
access remote idle memory not being used by the remote
host. Although accessing remote memory resources
introduces network communication overhead, it is widely
believed that this method is still faster than paging to local
disk.

To design a distributed system in which physical
memory resources of each individual node can be utilized
by other machines requires considering many issues.
These issues for any distributed system are: transparency,
fault tolerance, replication and consistency, portability,
scalability, and network performance. Another criterion
under consideration is how these memory servers are
implemented. There are six types of implementations [3]:
explicit program management, user level implementation,

Figure 1. “Divergence Problem” - Increasing

gap between peak performance and
sustained system performance (SSP)

Source: HECRTF [1]

user-level page management, device driver, modified
kernel, and network interface. We base all these issues in
comparing existing network memory servers.

3. Comparison of Experimental Systems

Two of the original research projects with the idea of

exploiting memory space over network in various
computing environments are Network RAM [3], Global
Memory Service (GMS) [6]. Based on these models many
extensions were proposed. Dodo [2] suggests harvesting
idle memory space by using resource monitors, a central
memory manager and scheduler. Iftode et al. [7] suggests
using part of the nodes of a multi-computer as memory
servers. These memory servers form a layer between the
RAM and disks. Recently, Xiao et al. [10] have proposed
Parallel Network RAM (PNR) to utilize global cluster
memory when memory requirement is large. Anemone [7]
is the latest implementation of network memory server
that uses RAM disk interface. Due to space limitation, we
briefly discuss these projects and compare them. A
detailed comparison of these memory servers is available
at www.cs.iit.edu/~suren/scc06full.pdf.

The Network RAM [3] project is a user-level
implementation allowing applications to utilize remote
memory resources by making explicit calls in their code.
Backup mechanisms, to cope with node failures, were as
well investigated, but not implemented. These
mechanisms are network backup, and local backup. In the
application code, nevertheless, the type of mechanism
should be specified.

The Global Memory Management (GMS) [6] project
has been developed to offer a way of globally managing
memory resources, in a cluster of workstations, in order to
avoid disk accesses as much as possible. The solution is a
distributed memory management algorithm implemented
at the operating system level.

The Dodo [2] project was designed to allow
applications that are hungry for memory to use remote
memory on the network as an intermediate cache between
local memory and disk. Dodo, which is implemented at
the user-level, requires applications to explicitly use
remote memory by the use of a special library. And to
make memory region management easy on programmers,
another special library is provided.

The Anemone [7] project aims at exploiting large
amount of memory resources available in a high-speed
LAN. The main objective is to provide applications that
utilize memory resources intensively with memory
resources dispersed in the network, in a transparent, fault-
tolerant fashion. The most prominent difference between
Anemone and other projects mentioned above is that there
is no need to modify the operating system or the
application code in order to utilize remote memory
resources. Instead, Anemone makes use of the memory-

resident disk interface (RAM disk) and the Network File
System protocol.

The Parallel Network RAM [10] is yet another project
dealing with harvesting remote memory. It has been
proposed as a solution to the problem of having
overloaded nodes in parallel computing platforms. This
overloading is caused by the fact that memory is allocated
unevenly as the job scheduler in such platform does not
know the real memory requirements of the jobs. Thus,
Parallel Network RAM is a module that runs as another
part of the virtual memory system.

The Memory Servers for Multicomputers [7] project
has been developed with the intent of offering memory
resources as a fast backing storage to other nodes in the
network. This storage logically lies between local
memory and disk.

The objective of Remote Memory Pager [9] project is
to use remote main memory for paging. The system has
been implemented as block device driver linked to the
DCE/OSF1 operating system. Therefore no kernel code or
application code require modification.

Table 1 shows a comparison of the main aspects of the
experimental systems mentioned above. It is worthy to
note that the systems that are implemented at the user-
level are the most portable. On the other hand, as
expected, systems implemented at the kernel level, in
general, offer better performance, but suffer from
portability issues.

A common architecture of all the network memory
servers discussed above contains 1) clients that request for
extra memory, 2) servers that provide memory space, and
3) a memory management engine (MME) to help the
client locate the memory server and to move the data from
the server to the clients (see figure 2). The server is
capable of providing remote memory space for multiple
clients. For the ease of description, we show one client in
Figure 2.

One of the main shortcomings of all the systems we
discussed above is that they passively provide memory
space for clients. While they perform better than disk
access performance the performance gap between CPU
and data access still exists and rapidly growing. We
proposed strategies to predict future data references
adaptively and to push data closer to the CPU on time
[11]. To present the full details of this architecture is out
of scope for this paper. We refer the readers to [11] for

Memory Client

Local Memory

Application

Memory Server

Remote Memory

Memory

Management
Engine

Figure 2. Architecture of Memory Servers

more details of our memory servers for HEC. In the next
section, we discuss scope of developing our adaptive
memory server strategies for HEC, using service oriented
architecture.

4. SOA for Memory Service

The memory servers explained in the previous section

are tightly coupled and have many limitations in fully
utilizing the advances of network and processor
technologies. The development of memory servers was
aimed to improve disk access performance by utilizing the
idle memory of peer nodes on cluster computers.
However, due to this tight coupling the memory servers
suffer from poor fault tolerance and scalability. Moreover,
the performance gap between microprocessor and
memory is rapidly increasing. The passive provision of
memory space on memory servers is not sufficient to

improve the overall performance of scientific and
engineering applications.

The common memory server architecture (figure 2)
and general process of SOA (figure 3) have similarities.
In both architectures, there are clients that require
memory service similar to a service consumer of SOA,
and multiple servers that provide extra memory space for

Table 1. Comparison of Memory Server systems

System Type of
Implementation

Scalability Portability Fault Tolerant Transparency Modification
Required

Speedup

Anemone The Memory Engine,
as of today, is
implemented at the
user-level, and in the
future will be
implemented at
kernel level

High High, but
mostly on
UNIX- based
operating
system.

Not yet, but in the
near future as
replication
mechanisms and
consistency issues
are being
considered.

High None 3-3.5 times faster
than disk paging.

Dodo User-level High High, but
mostly on
UNIX- based
operating
system.

Handles crashes,
but nothing related
to data loss.

High Application code has
to be modified to
make use of the Dodo
special libraries

1.1-3.2 times faster
than disk paging.

Network RAM User-level Low. Global
resource
manager is a
performance
bottleneck

High, but
mostly on
UNIX- based
operating
system.

No, but replication
mechanisms are
being considered to
handle servers
crash. Moreover,
Global resource
manager is a single
point of failure.

High Application code has
to be modified

2-5 times faster than
disk paging.

Parallel Network
RAM

Kernel-level Medium. As the
number of CPUs
increases in the
system,
performance
will degrade.

Medium, since
the Parallel
Network RAM is
a subsystem of
the kernel.

No, every memory
server is a point of
failure. No backup
mechanism is
implemented.

High Kernel code
modification

1.3-1.45 times faster
than disk paging.

Memory Servers
for
Multicomputers

Kernel-level (for a
machine hosting a
memory server)

High Low, specific to
NX/2 operating
system.

Highly fault
tolerant.
Replication
mechanism is used.

High Kernel code
modification for clients
only.

1.1-1.22 times faster
than disk paging.

Global Memory
Management

Kernel-level High Low.
Implemented as
part of the
OSF/1
operating
system.

Although no
globally managed
data is lost (pages
are written in local
disk whenever they
are sent out to
remote nodes),
initiator node and
master node are
each a single point
of failure.

High Kernel code
modification.

1.5-3.5 times faster
than disk paging.

Remote Memory
Pager

Device driver Medium. Clients
are hardwired
to servers.

Low, works only
with DEC/OSF1
operating
system

Highly fault
tolerant when it
comes to memory
pages. Redundancy
mechanism is used.
However, node
hosting the servers
list is a single point
of failure.

High None. Integrated into
the kernel code
without modifying the
latter.

1.1-2.12 times faster
than disk paging.

Invoke via proxy

Get service provider

Query for service

Directory
Service

Service
Provider

Service
Consumer

Figure 3. Directory service of SOA

the consumer entities. Memory Management Engine
(MME) can act as a directory service between memory
clients and memory servers such that MME collects the
information of available servers and advertises that
information for memory clients to choose a server.
Moreover, the MME can also behave as a service provider
entity to predict the future data references of memory
clients and push that data from its location at memory
servers to the clients [11]. This strategy overlaps the
microprocessor stall time during data access more
effectively and in turn reduces the execution time of
application running on the memory clients.

SOA provides security, scalability, fault tolerance and
interoperability. These features are beneficial for memory
server architecture. Among the memory server systems
described in the previous section, some of them suffer
from scalability and fault tolerance problems. Providing
dedicated servers and offering memory services, such as
extra memory space and proactive data movement,
improves the scalability and fault tolerance.

While SOA features are helpful for providing memory
servers, the success depends on resolving several
challenges. It is widely considered that the performance
of services over the web (web services) is not beneficial
to high performance computing. However, SOA is not
limited to web services. By providing a service-oriented
infrastructure (SOI) that is modified to fit the goals of
HEC, benefits of SOA model can be applied for memory
servers.

While MME provides discovery service, performance
improvement depends on how often this service is
needed. The interaction between memory client and MME
to predict future references may affect the performance.
To improve the performance effectively, it is possible to
have data access profiles of clients before hand. Memory
servers can be implemented on any multiprocessor
environment such as clusters, shared memory processing
machines, multicore processors, and distributed
computing environments [11].

5. Conclusion

Memory server technology has been available for more

than a decade to provide extra memory space for nodes
that require more memory than they have. In this paper,
we have briefly discussed many of these systems. With
the advances in network, and microprocessor technologies
we revisit this idea of using memory servers with the
primary goal of improving data movement performance
for high-end computing.

We presented the common architecture of existing
memory servers (figure 2). The memory management
engine (MME) of this architecture has been passively
providing memory space for multiple clients in the

existing memory servers. Following the service oriented
computing concept, we propose that offering memory as a
service by utilizing SOA features will benefit high-end
computing to reduce processor stall time during data
access. In future, we plan to explore the design of
memory servers using SOA features and verify
performance gain.

7. References
[1] Spencer Abraham, “Facilities for the Future of
Science: A Twenty-Year Outlook”, DOE Office of
Science report, 2003
[2] Anurag Acharya, Samir Koussih and Sanjeev Setia,
“Dodo: A User-level System for Exploiting Idle Memory
in Workstation Clusters”, in HPDC ’99, August 1999
[3] Eric A. Anderson and Jeanna M. Neefe, “An
exploration of network RAM”, Technical report,
Computer Science Division, UC Berkeley, December
1994
[4] D. Comer and J. Griffioen, “A New Design for
Distributed Systems: The Remote Memory Model”, In
proceedings of the 1990 Summer USENIX Conference,
pages 127-136, June 1990
[5] DARPA, “High Productivity Computing Systems
(HPCS), Vision: Focus on the Lost Dimension of HPC-
User & System Efficiency and Productivity”
[6] M. Freeley, W. Morgan, F. Pighin, A.Karlin, and H.
Levy, “Implementing Global Memory Management in a
Workstation Cluster”, in proceedings of the 15th ACM
Symposium on Operating Systems Principles, December
1995
[7] Michael Hines, Kartik Gopalan and Mark
Lewandowsky, “Anemone: Adaptive Network Memory
Engine”, poster for NSDI, 2nd Symposium on Network
Systems Design and Implementation, Summer 2005
[8] L. Iftode, K. Li, and K. Petersen, “Memory servers for
multicomputers”, in Proceedings of COMPCON 93,
1993, pp. 538—547
[9] Evangelos P. Markatos and George Dramitinos,
“Implementation and Evaluation of a Remote Memory
Pager”, Technical Report FORTH/ICS 129, Institute of
Computer Science (ICS), Heraklio, Crete, GR-711-10.
[10] John Oleszkiewicz ,Li Xiao, and Yunhao Liu,
"Parallel Network RAM: Effectively Utilizing Global
Cluster Memory for Large Data-Intensive Parallel
Programs", 33rd International Conference on Parallel
Processing (ICPP 2004), Montreal, August, 2004.
[11] Xian-He Sun, and Surendra Byna, “Data-access
Memory Servers for Multi-processor Environments”,
Technical Report (TR-IIT/CS-05-01), Illinois Institute of
Technology, Chicago
[12] “Hard disk”, (http://www.answers.com/topic/hard-
disk).

